
Next Steps for Next-step Hints: Lessons Learned from
Teacher Evaluations of Automatic Programming Hints

Benjamin Paaßen
∗

Institute of Informatics
Humboldt-University of Berlin

benjamin.paassen@
hu-berlin.de

Jessica McBroom
School of Computer Science

The University of Sydney
jmcb6755@

uni.sydney.edu.au

Bryn Jeffries
Grok Learning

bryn@groklearning.com

Irena Koprinska
School of Computer Science

The University of Sydney
irena.koprinska@

sydney.edu.au

Kalina Yacef
School of Computer Science

The University of Sydney
kalina.yacef@
sydney.edu.au

ABSTRACT
Next-step programming hints have attracted considerable
research attention in recent years, with many new techniques
being developed for a variety of contexts. However, evalu-
ating next-step hints is still a challenge. We performed a
pilot study in which teachers (N = 7) rated automatic next-
step hints, both quantitatively and qualitatively, providing
reasons for their ratings. Additionally, we asked teachers to
write a free-form hint themselves. We found that teachers
tended to prefer higher level hints over syntax-based hints,
and that the differences between hint techniques were often
less important to teachers than the format of the generated
hints. Based on these results, we propose modifications to
next-step hint strategies to increase their similarity to hu-
man teacher feedback, and suggest this as a potential avenue
for improving their effectiveness.

Keywords
computer science education, next step hints, data-driven
feedback, teacher evaluation

1. INTRODUCTION
To support students in solving practical programming tasks,
many automatic feedback strategies provide next-step hints,
i.e. they select a target program that is closer to a correct
solution and provide feedback based on the contrast be-
tween the student’s current program and the target program
(e.g. [3,6,10,11,13–15]). Next-step hints are compelling be-
cause they do not require teacher intervention. Instead, they

∗Corresponding Author

Joint Proceedings of the Workshops of the 14th International Conference on
Educational Data Mining (EDM 2021); Copyright ©2021 for this paper by
its authors. Use permitted under Creative Commons License Attribution 4.0
International (CC BY 4.0)

utilize historical student data and, as such, can be fully au-
tomated [10]. However, it remains challenging to evaluate
next-step hints. Price et al. [14] found at least three different
criteria to grade next-step hints: how often they are avail-
able (coverage), how they impact student outcomes, such
as task completion speed and learning gain, and how well
they align with expert opinions. Importantly, the relation
between these criteria is not trivial and different ways to
present next-step hints can influence their effect. For exam-
ple, Marwan et al. [8] found that adding textual explanations
improved hint quality in expert eyes but did not influence
student outcomes.

Our main contribution in this paper is to combine quantita-
tive ratings with qualitative explanations. In other words,
we do not only investigate differences in teacher ratings, but
also why teachers preferred some hints over others. To this
end, we performed a survey with N = 7 teachers, asking
them to grade next-step hints generated by three different
methods across three programming tasks in Python. Our
overarching research questions are:

RQ1 Do teachers’ ratings differ between hint methods?

RQ2 Do automatic hints align with teacher hints?

RQ3 What are teachers’ reasons for preferring some hints
over others?

This paper is set out as follows: Section 2 discusses related
work in more detail, Section 3 describes the setup of our
study, Section 4 describes the results and, finally, Sections
5-6 discuss and summarize the implications of our work.

2. RELATED WORK
Prior work on evaluating next-step hints broadly falls into
three categories: technical criteria, outcomes for students,
and expert opinions [14].

Technical criteria are mostly concerned with the availabil-
ity of hints and motivated by the cold start problem, i.e.

the problem that data-driven hint generation requires a cer-
tain set of data to become possible [1]. Over the years, this
problem has arguably become less critical as multiple meth-
ods are now available which require very little training data,
such as [6, 10, 11, 13, 15]. In this paper we restrict ourselves
to these methods and therefore omit such criteria.

Regarding student outcomes, prior studies have already shown
that data-driven, next-step hints can yield similar learning
gains to working with human teachers [5], can improve so-
lution quality [2], and completion speed [4]. The challenge
in applying such criteria is that they require a study design
in which an intervention group works on-line on a task with
hint support, which was beyond the scope of our pilot study.

An alternative which requires less resources is offered by
expert opinions, i.e. ratings by experienced programming
teachers on the quality of hints. In particular, Price et
al. [13] have suggested three scales (relevance, progress, and
interpretability) to grade hint quality and have shown that
expert ratings on these scales are related to the likelihood of
students accepting hints in the future. Further, both Piech
et al. [12] and Price et al. [14] asked teachers to generate
next-step hints themselves and evaluated the overlap be-
tween the teacher hints and automatic hints as a measure
of quality. Importantly, a next-step hint may be affected
not only by the selected target program but also by how the
hint is presented. For example, Marwan et al. [8] found that
adding textual explanations improved expert quality ratings
– but not student outcomes.

In our work, we combine aspects of this prior work with
qualitative questions. In particular, we use a variation of the
three scales of Price et al. [13] for quantitative ratings of hint
quality and let teachers provide their own hints to evaluate
overlap, akin to [12, 14]. Additionally, we ask teachers to
provide a textual explanation for why they would give a hint
and why they would choose not to give one of the automatic
hints.

3. METHOD
In this section, we cover the setup for our survey, beginning
with the programming data sets we used, followed by the
mechanism to select specific examples, the hint methods,
and the recruitment for the survey itself.

3.1 Programming data sets
In order to provide realistic stimulus material, we selected
our programs from three real-world, large-scale data sets of
program traces in introductory programming. Namely, we
considered data from the 2018 (beginner challenge) and 2019
(beginner and intermediate challenges) National Computer
Science School (NCSS)1, an introductory computer science
curriculum for (mostly Australian) school children in grades
5-10. 12, 876 students were enrolled in the beginners 2018
challenge, 11, 181 students in the beginners 2019 challenge,
and 7, 854 students in the intermediate 2019 challenge. Each
challenge consisted of about twenty-five programming tasks
in ascending difficulty, each of which were annotated with
unit tests. In all cases, we only considered submissions, i.e.

1https://ncss.edu.au

programs that students deliberately submitted for evalua-
tion against unit tests.

3.2 Example selection
Our goal in this study was to evaluate the quality of auto-
matic hints in a range of realistic situations where students
were likely to need help and where feedback generation was
non-trivial. For the purpose of this study, we considered a
program as indicative of help-need if at least five students
who submitted this program failed the same or more unit
tests in the next step of their development. This is in line
with prior work of [9] and [7], who both suggest that help is
needed if students repeatedly fail to make progress.

As proxy for non-triviality we considered the tree edit dis-
tance to the top-100 most frequent submissions for the same
programming task. If this tree edit distance is low, provid-
ing automatic hints is simple: we can retrieve the nearest
neighbor according to tree edit distance and use a successful
continuation of this nearest neighbor as a hint, as suggested
by [6]. However, if this distance is high, we are in a region of
the space of possible programs that is not frequently visited
by students and, hence, harder to cover for an automatic
hint system.

In the end, we selected for each of the three challenges the
program which maximized the tree edit distance to frequent
programs and indicated help-need. The resulting submis-
sions are shown in Figure 1, alongside with a description of
the respective programming task and an example solution.

3.3 Hint generation
We considered three techniques to produce next-step hints.

Firstly, we used one-nearest neighbor (1NN) prediction [6],
i.e. we selected the nearest neighbor to the help-seeking pro-
gram in the training data and recommended its successor.
Distance was measured according to the tree edit distance,
as used e.g. by [10,15].

Secondly, we used the continuous hint factory (CHF) [10]
which extends the one-nearest neighbor approach by com-
puting a weighted average of multiple close neighbors and
then constructs the program which is closest to this weighted
average. Since this construction occurs in the space of syn-
tax trees, it does not come with variable or function names
attached. We therefore consider two versions: For the first
two tasks, we present an ’abstract’ program version where
all variables and functions are named ’x’. For the last task,
we instead use the nearest neighbor in the training data to
the weighted average.

Finally, we used the ast2vec neural network [11] to first
translate the student’s current program into a vector, then
predict how this vector should change via linear regression,
and decode this predicted vector back into a syntax tree. To
provide function names as well, we trained a classifier that
mapped ast2vec encodings for subtrees to typical function
names in the training data and we automatically copied vari-
able names and strings from the student’s current program,
as suggested by [11].

In all cases, the hint was formatted as a program which the

https://ncss.edu.au

recipe task

You’re opening a boutique pie shop. You
have lots of crazy pie ideas, but you need
to keep them secret! Write a program
that asks for a pie idea, and encodes it
as the numeric code for each letter, using
the ord function. Print the code for each
letter on a new line.

recipe submission

1 msg = input(’Pie idea: ’)
2 code = ord(msg [0])
3 code1 = ord(msg [1])
4 code2 = ord(msg [2])
5 code3 = ord(msg [3])
6 code4 = ord(msg [4])
7 code5 = ord(msg [5])
8 print(code)
9 print(code1)

10 print(code2)
11 print(code3)
12 print(code4)
13 print(code5)

recipe solution

1 msg = input(’Pie idea: ’)
2 for a in msg:
3 print(ord(a))

anagram task

Let’s make a computer program that only knows
how to say ’hi’: It doesn’t matter what you type in,
it should still print ’Hi, I am a computer’! To
make it a bit more exciting, though, we’ll add an
Easter Egg. The word ’anagram’ should trigger a
secret message:

Hi, I am a computer!
What are you? anagram
Nag a ram!
Hi, I am a computer!

anagram submission

1 print(’Hi, I am a computer!’)
2 raining = input(’What are you? ’)
3 if raining == ’a dog’:
4 print(’Hi, I am a computer!’)
5 if raining == ’anagram ’:
6 print(’Nag a ram!’)
7 print(’Hi, I am a computer!’)
8 if raining == ’a person ’:
9 print(’Hi, I am a computer!’)

anagram solution

1 print(’Hi, I am a computer!’)
2 word = input(’What are you? ’)
3 if word == ’anagram ’:
4 print(’Nag a ram!’)
5 print(’Hi, I am a computer !)

scoville task
The Scoville scale measures the spiciness of
chilli peppers or other spicy foods in Scoville
heat units (SHU). For example, a jalapeño has
a range between 1,000 to 10,000, and a ha-
banero is between 100,000 and 350,000! Differ-
ent people have different tolerances to eating
chilli peppers. Nam’s parents cook with a lot
of chilli, and so she enjoys eating foods with
a SHU value less than 10000. Michael likes it
less spicy, and only enjoys eating foods with
a SHU value less than or equal to 120. Write
a program to read in the SHU value for some
food, and print out who will enjoy the food.
For example:
What is the SHU value? 5000
Nam will enjoy this!
and another example:
What is the SHU value? 120
Michael will enjoy this!
Nam will enjoy this!
If neither Michael nor Nam will enjoy the food,
your program should output: This food is too
spicy for everyone :(

scoville submission

1 jalapeno = int(input("What is the SHU value? "))
2 if jalapeno <= 10000:
3 print(’Nam will enjoy this!’)
4 else:
5 print(’This food is too spicy for everyone!’)
6
7 sugary = int(input("What is the SHU value? "))
8 if sugary <= 120:
9 print(’Nam will enjoy this!’)

10 print(’Michael will enjoy this!’)
11 else:
12 print(’This food is too spicy for everyone!’)

scoville solution

1 shu = int(input("What is the SHU value? "))
2
3 if shu < 10000:
4 print(’Nam will enjoy this!’)
5 if shu < 120:
6 print(’Michael will enjoy this!’)
7 if shu >= 10000:
8 print(’This food is too spicy for everyone :(’)

Figure 1: The three program examples in our study (recipe, anagram, and scoville), each with the task description the student’s
received, the student submission, and a correct solution.

recipe hints

1NN

CHF

ast2vec

1 a = input(’Pie idea: ’)
2 b = [ord(x) for x in a]
3 print(*b, sep="\n")

1 x = x(’<string >’)
2 x = x(x[0])
3 x = x(x[0])
4 x = x(x[0])
5 x = x(x[0])
6 for x in x
7 x(x, keyword=’<string >’)

1 msg = input(’Pie idea: ’)
2 code = ord(msg [0])
3 code1 = ord(msg [1])
4 code2 = ord(msg [2])
5 code3 = ord(msg [3])
6 code4 = ord(msg [4])
7 print(code1)
8 print(code1)

anagram hints

1 print(’Hi, I am a computer!’)
2 computer = input(’What are you? ’)
3 if computer == ’anagram ’:
4 print(’Nag a ram!’)
5 print(’Hi, I am a computer!’)

1 x(’<string >’)
2 x = x(’<string >’)
3 if x == ’<string >’:
4 x(’<string >’)
5 if x == ’<string >’:
6 x(’<string >’)
7 x(x)
8 if x == ’<string >’:
9 x(’<string >’)

1 raining = input(’What are you? ’)
2 if raining == ’anagram ’:
3 print(’Nag a ram!’)
4 print(’Hi, I am a computer!’)
5 if raining == ’a person ’:
6 print(’Hi, I am a computer!’)

scoville hints

1NN

CHF

ast2vec

1 msg = int(input(’What is the SHU value? ’))
2 if msg < 10000:
3 print (’Nam will enjoy this!’)
4 else:
5 print(’This food is too spicy for everyone :(’)
6 if msg <= 120:
7 print (’Michael will enjoy this!’)

1 shu = int(input(’What is the SHU value? ’))
2 if shu < 10000:
3 print(’Nam will enjoy this!’)
4 if shu <= 120:
5 print(’Michael will enjoy this!’)
6 else:
7 print(’This food is too spicy for everyone :(’)

1 sugary = int(input(’What is the SHU value? ’))
2 if sugary >= 10000:
3 print(’Nam will enjoy this!’)
4 if sugary < 0:
5 print(’What is the SHU value? ’)
6 if sugary < 120:
7 print(’Nam will enjoy this!’)

Figure 2: The hints of all three methods (1NN, CHF, and ast2vec) for all three student submissions from Figure 1.

student might try next to improve their current program.
We used a random sample of 30 student traces from the
same task as training data to simulate a ‘cold start’ with
only a classroom-sized training data set.

The resulting hints of all three methods for all three tasks
are shown in Figure 2.

3.4 Survey and recruitment
For our study, we recruited N = 7 teachers from program-
ming courses in Australia and Germany. Recruitment was
performed via e-mail lists with a survey link. Teachers could
then voluntarily and anonymously complete the survey in
Microsoft forms. Participants were first asked about their
experience as programming teachers. Six participants re-
sponded that they had taught more than three courses, and
one participant that they had taught between one and three
courses. Participants with no experience were excluded from
the study.

We acknowledge that our recruitment strategy has limita-
tions: While we can be reasonably certain that only experi-
enced programming teachers took part, we have no informa-
tion about the specific courses they taught and whether that
matches up with the kind of programming task we investi-
gated in our study. Further, self-selection bias may have
occurred as we did not employ a random recruitment strat-
egy.

Next, we presented the first programming task (the recipe
task) with the official task description from the National
Computer Science School, the example solution, and the stu-
dent’s submission (refer to Figure 1, top left). We asked the
teachers whether they thought the student needed help in
this situation (on a four point scale), why (as a free text
field), and what edit they would recommend to guide the
student (free text field). Further, we presented the three
automatic hints in Figure 2 (top left) and asked the teacher
how relevant each hint was, how useful it was, and how
much the student could learn from it, all on a five-point
scale. We defined ‘relevant’ as ‘addressing the core problem
of the student’s program’ and ‘useful’ as ‘getting closer to
a correct solution’. These scales correspond to the scales of
relevance and progress proposed by [13]. We replaced the
‘interpretability’ scale of [13] with ‘learning’ to encourage
the teachers to reflect on the learning impact a hint may
have.

Finally, we asked the teachers whether they would prefer
not to give any of the hints and why (free text). We re-
peated all questions for the anagram and scoville tasks. To
avoid ordering bias, the order of hint methods was shuffled
randomly for each participant.

4. RESULTS
We present our results beginning with the teacher’s assess-
ment of whether hints were needed at all, followed by the
hints given by teachers, and we conclude with the assessment
of teachers for the automatic hints.

4.1 Help-need assessment
For each of the programs in Figure 1, we first asked the
teachers how much help a student in this situation would

0 1 2 3
0
1

3

5

7

help need

#
te

a
ch

er
s

recipe
anagram

scoville

Figure 3: teacher’s assessment of help-need for the three sub-
missions from Figure 1. 0 corresponds to ’no help needed’, 3
to ’the student should start from scratch’. The y axis corre-
sponds to the number of teachers.

need on a four-point scale, ranging from 0 (“The student is
on the way to a correct solution and does not need help.”)
to 3 (“The student seems to have crucial misconceptions and
should start from scratch.”).

Figure 3 shows the distribution of responses for each task.
Most teachers agreed on response 1 for all tasks (“The stu-
dent is on the way to a correct solution but could benefit
from a hint.”). This indicates that our automatic selection
indeed identified examples which indicated help-need.

We also asked teachers why they believed that the student
did or did not need help. In response to this question, most
teachers appeared to analyze which high-level concepts the
student had already understood - judging from their pro-
gram - and which concepts were still missing or were misun-
derstood. For example, one teacher responded for the recipe
task: “They know how to input, they know how to do the ord,
they know they need to move through the string, they have
just forgotten that there is a ’short cut’ to do this in a loop.”,
and another teacher responded for the anagram task: “The
student is not seeing the general rule of the program and
is trying to cover possible cases by hand.” Further, multi-
ple teachers responded to this question with suggestions on
how to provide further guidance and help to the student,
such as “It just hasn’t clicked that there are other possible
inputs that they need to account for. Keeping this fresh in
their mind should quickly lead to a solution.” or “I think that
they should mess around a bit more, but they should get a
hint that the input function should only be used once for this
problem.”.

4.2 Categories of teacher Hints
Next, we asked teachers how they would recommend editing
the student’s program next. Interestingly, teachers generally
did not give hints on a syntactic level. In fact, some of them
stated explicitly that they thought this was not helpful (e.g.
“I would not give students exact syntax because then they
blindly follow without understanding”). However, in some
cases, they did suggest lines to delete. We found that teacher
feedback tended to fit into four general categories:

A suggesting a missing concept, such as a for-loop, an else
statement, or a combination of if-statements. For ex-
ample, “When you have a line of code that you are

Table 1: teacher hint types
teacher

task 1 2 3 4 5 6 7

recipe A A B B A C,D A,B
anagram B B A D B B B
scoville A A A D B D A,D

Table 2: Average teacher ratings (± std.) for each of the
hints from Figure 2.

method relevant useful learning

recipe

1NN 1.43 ± 0.73 0.86 ± 1.12 −0.14 ± 1.12
CHF −1.71 ± 0.45 −1.86 ± 0.35 −1.86 ± 0.35

ast2vec −1.29 ± 0.88 −1.71 ± 0.45 −1.43 ± 0.73

anagram

1NN 1.86 ± 0.35 1.43 ± 0.73 0.14 ± 0.99
CHF −2.00 ± 0.00 −2.00 ± 0.00 −1.86 ± 0.35

ast2vec −0.29 ± 1.28 −0.43 ± 0.90 −0.71 ± 1.03

scoville

1NN 1.14 ± 0.35 1.14 ± 0.83 0.14 ± 1.12
CHF 1.43 ± 0.49 1.57 ± 0.73 0.57 ± 1.29

ast2vec 0.29 ± 1.28 −0.29 ± 1.58 −0.29 ± 1.28

repeating it can be useful to use a loop like ‘for’ or
‘while’. This also allows you to repeat the code within
the body of the loop for a flexible number of times.”

B explaining or hinting at situations when the program will
not work as expected. E.g. “You’re almost there. How-
ever, it will only do the right thing when the user writes
‘a dog’, ‘anagram’ or ‘a person’. You can improve it
so that it says ‘Hi, I am a computer!’ every time, no
matter what the user says.”

C suggesting the student solve a simpler problem first. E.g.
“Suggest that they delete all but the first line and try
and print out each letter one at a time.”

D suggesting that the student has something unnecessary
in their program, or directly telling them to delete it.
E.g. “Remove the two irrelevant if statements leaving
only the correct ‘easter egg’ statement”

Table 1 shows a classification of the teacher hints into these
four categories. We observe that each hint could be classified
in at least one category.

4.3 Assessment of automatic hints
Our third set of questions for each task concerned the rating
of automatic hints (refer to Figure 2) according to relevance,
usefulness, and learning, each on a five-point scale from -2
(“not at all”) to +2 (“very”). Table 2 shows the average
ratings (± standard deviation) given by the teachers.

We observe that 1NN is generally regarded as relevant and
useful, which can be explained by the fact that it always

recipe anagram scoville

0
1

3

5

7

#
te

a
ch

er
s

1NN

CHF

ast2vec

Figure 4: The number of teachers (y-axis) who would prefer
not to give a certain hint according to hint method (color)
and task (x-axis).

recommended a correct solution for the tasks in our exam-
ples (refer to Figure 2 and 1). However, teachers believed
that students would not learn particularly much from these
hints (rating around zero). For CHF, we observe strongly
negative ratings in all three criteria for the recipe and ana-
gram task, where CHF did not provide function and variable
names (refer to Figure 2), but positive scores for the scov-
ille task where it selected a correct solution. On that task,
it received even higher scores than 1NN. Ast2vec received
negative scores on the recipe task, and scores around zero
for all criteria on all other tasks.

Finally, we asked teachers if there were any hints they would
prefer not to give, and why. Figure 4 shows how often each
method was named for each task (where lower is better).
Regarding the reasoning, one teacher always responded that
“I would not give students exact syntax because then they
blindly follow without understanding.”, which excludes all
automatic hints. Further, 1NN was often named because it
“shows a valid solution. Students may copy the hint code
and then use it - without understanding what it does.”. The
hints provided by CHF for the first two tasks did not in-
clude variable and function names (refer to Figure 2), which
lead teachers to exclude it because it “does not look syntac-
tically valid, and is incomprehensible.”. Ast2vec was named
least often, albeit by a narrow margin. Reasons for nam-
ing it were that it is “not helpful for developing student un-
derstanding”, would require additional explanation, or even
“harm the learning of the student.”

5. DISCUSSION
In this section, we interpret the results in light of our three
research questions: Do ratings differ between methods? Do
automatic hints align with teacher hints? And what are
teachers’ reasons for preferring some hints over others?

RQ1: Do teacher’s ratings differ between hint meth-
ods?. We do observe systematic differences between hint
methods in terms of ratings. However, these differences
appear to be driven less by the underlying algorithm, but
rather by two factors: a) whether a correct solution was se-
lected or a partial solution, and b) whether the hint was
presented as a program with function and variable names
or not. teachers only gave high scores for usefulness and
relevance if a correct solution was given and gave very low
scores if function and variable names were missing. They

Table 3: Abstracted hints based on the four hint types from
Table 1.

method abstracted hint
recipe hints
A 1NN, CHF Maybe you could try a for-loop.
B 1NN What happens when the user types

‘apple’?
C 1NN, CHF Try doing this task on for-loops first
D 1NN, CHF,

ast2vec
Can you think of a way to reduce the
number of print statements?

anagram hints
B 1NN What happens when the user types

‘cat’?
D CHF,

ast2vec
Can you think of a way to use fewer
if statements?

scoville hints
B 1NN, CHF What happens when the user types

120?
D 1NN, CHF,

ast2vec
How can you reduce the number of
input calls? (and/or) Try using only
one variable.

never gave high scores for learning.

RQ2: Do automatic hints align with teacher hints?.
We observe that teacher hints do not directly align with
automatic hints because teachers generally suggested hints
which were higher-level, like adding missing concepts or delet-
ing lines to get to a more compact program. More gener-
ally, we identified four categories (refer to Section 4.2) which
cover the kinds of edits teachers would have given them-
selves. To align teacher hints to automatic hints, we could
employ automatic heuristics which post-process next-step
hints, such as:

A - Missing Concepts Compare the nodes of the student’s
current AST to that of the next step, then suggest
concepts corresponding to missing nodes.

B - Mishandled Situations Apply test cases to the current
and the predicted program, then suggest the student
focus on inputs that work for the next step but not the
current step

C - Simpler Problem Similarly to A, first identify missing
concepts in the student’s work, then suggest easier pro-
gramming tasks that contain this concept (e.g. from
earlier in the course).

D - Deletions Compare the current step to the next step
and, if lines are deleted, ask the student if these lines
are necessary.

Applying these strategies, the automated hints for the tasks
in Figure 2 might then become the hints shown in Table 3,
which align better with the hints given by teachers.

We note in passing that abstraction may also make it easier
to provide helpful hints because the hint method does not
need to get every detail (such as function or variable names)
right, merely the rough direction. For example, we notice
that ast2vec uses the wrong string in line 5 of its hint and the
wrong comparison constant in line 4 of Figure 2 (bottom).
This would not be an issue in the abstracted hint.

Still, we acknowledge that this approach has limitations: For
strategy A and C, we implicitly assume that ’concepts’ co-
incide with syntactic building blocks, e.g.: ‘have you tried
adding a for loop?’. This assumption likely breaks down in
more advanced programming classes.

RQ3: What are teachers’ reasons for preferring some
hints over others?. Teachers mostly explained hints by
concepts that were still missing in a program (like loops),
undesired functional behavior for additional cases, or super-
fluous code. These reasons align with the hints the teachers
gave. Importantly, many teachers also emphasized that the
student had already gotten many things right, indicating
that teachers were motivated to preserve the progress that
had already been made. The main reason for not provid-
ing a hint appeared to be that the teachers were concerned
that the hint may not lead to any learning, either because
the hint was syntactic, and hence not abstract enough, be-
cause the hint was a correct solution, or because the hint
was ‘incomprehensible’ due to missing function or variable
names. Overall, the reasons provided by teachers underline
our finding that teachers do not only care about the content
of a next-step hint but also – perhaps mainly – how it is
communicated, i.e. with a high-level explanation instead of
a syntactic edit and without revealing the solution.

6. CONCLUSION
We performed a survey with N = 7 teachers to evaluate
hints from three hint methods (1NN, CHF, and ast2vec) to
investigate three research questions: Do quantitative rat-
ings differ between methods? Do automatic hints align with
teacher hints? And what are teachers’ reasons for preferring
some hints over others?

We found that teachers generally had a low opinion of syn-
tactic next-step hints, irrespective of the method. Differ-
ences in ratings could be explained by two factors: Whether
the hint was a correct solution (then it was regarded relevant
and useful) or not (then all ratings were around zero) and
whether the hint used human-readable variable and function
names or not (then the ratings became strongly negative).

Instead of syntactic hints, teachers preferred higher-level
hints which suggested a missing concept, pointed out in-
puts which were not appropriately covered by the current
program, suggested a simpler problem first, or proposed to
remove superfluous lines.

Finally, the main concern of teachers for not giving hints was
students’ learning. They disregarded both syntactic hints
as well as showing a correct solution because they were con-
cerned that students might näıvely apply the hint without
reflecting on it sufficiently. This points to a potential gap in
current next-step hint approaches, which are mainly focused

on suggesting changes, but less on inviting reflection or ab-
stracting to a higher level. For introductory programming
courses, it may be sufficient to just post-process syntax-level
hints with simple heuristics – such as the ones proposed in
the previous section. Additionally, one can introduce textual
explanations as suggested by [8]. However, further research
is needed to investigate whether it is sufficient to change
how next-step hints are communicated or whether deeper
changes in hint methods are necessary to achieve a better
alignment with the pedagogical expertise of programming
teachers. Finally, an evaluation study with students is still
required to make sure that any refined hint strategy yields
better student outcomes compared to current hint strategies.

7. ACKNOWLEDGMENTS
Funding by the German Research Foundation (DFG) under
grant number PA 3460/2-1 is gratefully acknowledged.

8. REFERENCES
[1] T. Barnes and J. Stamper. Toward automatic hint

generation for logic proof tutoring using historical
student data. In B. P. Woolf, E. Aı̈meur, R. Nkambou,
and S. Lajoie, editors, Proceedings of the International
Conference on Intelligent Tutoring Systems (ITS
2008), pages 373–382, Berlin, Heidelberg, 2008.
Springer Berlin Heidelberg.

[2] R. R. Choudhury, H. Yin, and A. Fox. Scale-driven
automatic hint generation for coding style. In
A. Micarelli, J. Stamper, and K. Panourgia, editors,
Intelligent Tutoring Systems, pages 122–132, Cham,
2016. Springer International Publishing.

[3] S. Chow, K. Yacef, I. Koprinska, and J. Curran.
Automated data-driven hints for computer
programming students. In Adjunct Publication of the
25th Conference on User Modeling, Adaptation and
Personalization (UMAP 2017), page 5–10, 2017.

[4] A. T. Corbett and J. R. Anderson. Locus of feedback
control in computer-based tutoring: Impact on
learning rate, achievement and attitudes. In
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, page 245–252, 2001.

[5] D. Fossati, B. Di Eugenio, S. Ohlsson, C. Brown, and
L. Chen. Data driven automatic feedback generation
in the ilist intelligent tutoring system. Technology
Instruction, Cognition and Learning, 10(1):5–26, 2015.

[6] S. Gross and N. Pinkwart. How do learners behave in
help-seeking when given a choice? In C. Conati,
N. Heffernan, A. Mitrovic, and M. F. Verdejo, editors,
Proceedings of the 17th International Conference on
Artificial Intelligence in Education (AIED 2015),
pages 600–603, 2015.

[7] M. Maniktala, C. Cody, A. Isvik, N. Lytle, M. Chi,
T. Barnes, et al. Extending the hint factory for the
assistance dilemma: A novel, data-driven helpneed
predictor for proactive problem-solving help. Journal
of Educational Data Mining, 12(4):24–65, 2020.

[8] S. Marwan, N. Lytle, J. J. Williams, and T. Price.
The impact of adding textual explanations to
next-step hints in a novice programming environment.
In Proceedings of the 2019 ACM Conference on
Innovation and Technology in Computer Science
Education, ITiCSE ’19, page 520–526, New York, NY,

USA, 2019. Association for Computing Machinery.

[9] J. McBroom, B. Paassen, B. Jeffries, I. Koprinska, and
K. Yacef. Progress networks as a tool for analysing
student programming difficulties. In C. Szabo and
J. Sheard, editors, Proceedings of the Twenty-Third
Australasian Computing Education Conference (ACE
’21), page 158–167. Association for Computing
Machinery, 2021.

[10] B. Paaßen, B. Hammer, T. Price, T. Barnes, S. Gross,
and N. Pinkwart. The continuous hint factory -
providing hints in vast and sparsely populated edit
distance spaces. Journal of Educational Datamining,
10(1):1–35, 2018.

[11] B. Paaßen, J. McBroom, B. Jeffries, I. Koprinska, and
K. Yacef. ast2vec: Utilizing recursive neural encodings
of python programs. Journal of Educational
Datamining, 2021. in press.

[12] C. Piech, M. Sahami, J. Huang, and L. Guibas.
Autonomously generating hints by inferring problem
solving policies. In G. Kiczales, D. Russell, and
B. Woolf, editors, Proceedings of the Second ACM
Conference on Learning @ Scale (L@S 2015), page
195–204, 2015.

[13] T. Price, R. Zhi, and T. Barnes. Evaluation of a
data-driven feedback algorithm for open-ended
programming. In X. Hu, T. Barnes, and P. Inventado,
editors, Proceedings of the 10th International
Conference on Educational Data Mining (EDM 2017),
pages 192–197, 2017.

[14] T. W. Price, Y. Dong, R. Zhi, B. Paaßen, N. Lytle,
V. Cateté, and T. Barnes. A comparison of the quality
of data-driven programming hint generation
algorithms. International Journal of Artificial
Intelligence in Education, 29(3):368–395, 2019.

[15] K. Rivers and K. R. Koedinger. Data-driven hint
generation in vast solution spaces: a self-improving
python programming tutor. International Journal of
Artificial Intelligence in Education, 27(1):37–64, 2017.

	Introduction
	Related work
	Method
	Programming data sets
	Example selection
	Hint generation
	Survey and recruitment

	Results
	Help-need assessment
	Categories of teacher Hints
	Assessment of automatic hints

	Discussion
	Conclusion
	Acknowledgments
	References

