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Abstract
Advances in deep learning have been instrumental in enhancing the performance of face verification systems. Despite their
ability to attain high accuracy, most of these systems fail to provide interpretations of their decisions. With the increased
demands in making deep learning models more interpretable, numerous post-hoc methods have been proposed to probe the
workings of these systems. Yet, the quest for face verification systems that inherently provide interpretations still remains
largely unexplored. Additionally, most of the existing face recognition models are highly susceptible to adversarial attacks.
In this work, we propose a face verification system which addresses the issue of interpretability by employing modular neural
networks. In this, representations for each individual facial parts such as nose, mouth, eyes etc. are learned separately. We
also show that our method is significantly more resistant to adversarial attacks, thereby addressing another crucial weakness
concerning deep learning models.
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1. Introduction
Over the last decade, many deep learning methods for
face verification have been proposed, a few of them have
even surpassed human performance [1, 2, 3, 4]. These
deep learning methods, while enabling exceptional per-
formance does not provide reasoning for their predictions.
Blindly relying on the results of these black boxes with-
out interpreting the reasons for their decisions could be
detrimental especially in critical applications related to
medical, financial, and security domains.

In the context of image recognition, various methods
have been proposed to tackle interpretability by attempt-
ing to reason why an object has been recognized in a par-
ticular way. LRP[5], Grad-CAM[6], LIME[7] have been
used widely to highlight regions of the image that the
models look at for arriving at the final prediction. Despite
the existence of several ways post hoc interpretability
methods, it is desirable to have a system that is inher-
ently capable of producing interpretations of its decisions.
When the latent features generated by the system repre-
sent a logical part of an object, it is convenient to infer
the contributions of these features to the final prediction.

Though most of the interpretability method procure
heatmaps highlighting the regions that contribute to the
decision process of the models, in some applications it
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is still difficult to understand these heatmaps as they are
generated at a pixel-level. If these heatmaps can highlight
logical visual concepts in the images then it would be
more convenient to interpret. (Please refer Figure. 7 and
Section. 5.2).

Another significant drawback of deep learning models
is their susceptibility to adversarial attacks. Seemingly
insignificant noise which is imperceptible to the human
eye can fool deep learning models. Numerous black box
and white box adversarial attack methods have been pro-
posed in the literature [8, 9, 10].

The problem of detecting and defending adversarial at-
tacks on deep learning models is still largely unsolved. As
these attacks on face verification systems pose a serious
security threat, it is imperative to develop trustworthy
systems. Our motivation behind this work is to integrate
both robustness to attacks as well as interpretability into
face verification systems.

Hence, in this work, we propose a face verification sys-
tem that addresses the aforementioned issues by learning
independent latent representations of high-level facial
features. The proposed method generates intuitive and
easily understood heatmaps on the fly, and is also shown
to be much more robust against adversarial examples.

2. Related Work
Face recognition is a non-invasive biometric authenti-
cation mechanism and has been in commercial use for
several years. It has become one of the preferred choice
of authentication for mobile device users as it easy to use
and avoids the need of remembering passwords. Though
people have some reservations against using face recog-
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nition on large scale systems due to privacy issues, it
continues to be one of the widely used technologies for
identification.

Deep learning based face recognition has surpassed
hand crafted feature-based systems and shallow learning
systems in performance. In [2], the authors proposed
a deep learning architecture called VGGFace for gener-
ating facial feature representations or face embeddings.
These face embeddings can be further used for identify-
ing the person using a similarity measure or a classifier.
DeepID2[11] uses a Bayesian learning framework for
learning metrics for face recognition. In FaceNet[12] au-
thors proposed a compact embedding learned directly
from images using triplet-loss for face verification. Dif-
ferent loss functions that maximizes intra-class similarity
and improves discriminability for faces have been pro-
posed ArcFace[13], CosFace[14], SphereFace[15], CoCo
Loss[16].

Existing face recognition models are extremely vul-
nerable to adversarial attacks even in black-box setting,
which raises security concerns and the requisite for devel-
oping more robust face recognition models. Adversarial
attacks[17, 18, 19] involve additive small, imperceptible
and carefully crafted perturbations to the input with the
aim of fooling machine learning models. Adversarial
attacks allow an attacker to evade detection or recogni-
tion or to impersonate another person.[20] described a
method to realize adversarial attacks by introducing a
pair of eye glasses. These glasses could be used to evade
detection or to impersonate others. Another approach
for fooling ArcFace using adversarial patches has been
proposed in [21]. In [22], the authors have proposed an
approach for detecting adversarial attacks on faces.

Understanding and interpreting the decisions of ma-
chine learning systems is of high importance in many
applications, as it allows verifying the reasoning of the
system and provides information to the human expert
or end-user. Early works include direct visualization of
the filters [23], deconvolutional networks to reconstruct
inputs from different layers [24].

Numerous interpretability methods have been pro-
posed in the literature, some of the widely known
ones are Layer-wise Relevance Propagation (LRP) [5],
Gradient-weighted Class Activation Mapping (Grad-
CAM) [25], Grad-CAM++ [26], SHapley Additive ex-
Planations (SHAP) values [27] and Local Interpretable
Model-Agnostic Explanations (LIME) [7]. Most of these
techniques attempt to provide pixel-level explanations
to indicate the contribution of each pixel to the classi-
fication decision. However, these methods are mostly
suitable for tasks such as object recognition where the
deep learning models only take a single input image.

Recently, a few methods that attempt to explain the
behavior and decisions of face recognition systems have
emerged [28, 29, 30, 31, 32]. In [28], the authors rely on

controlled degradations using inpainting to generate ex-
planations. In [29], visual psychophysics was used to
probe and study the behavior of face recognition sys-
tems. In [30], the authors propose a loss function that
introduces interpretability to the face verification model
through training. In [31], the authors use 3D modeling
to visualize and understand how the model represents
the information of face images. Fooling techniques [32]
have also been used for gaining insights on facial regions
that contribute more to the decision.

The recently developed explainability methods for
face recognition are considerably different from one an-
other in their approach and form of explanations, unlike
saliency methods for object recognition which generate
similar form of explanations. Each of these methods have
their own pros and cons and are suitable for different pur-
poses. We believe our method has certain characteristics
that are well-suited for real world applications: easily
interpretable feature level explanations, on-the-fly expla-
nations for every prediction, structurally interpretable
model architecture, provides feedback in real time and
more importantly robust towards adversarial attacks.

3. Interpretable and Robust Face
Verification System

Modular neural networks (MNN) [33] are a class of com-
posite neural networks that were inspired by the biologi-
cal modularity of the human brain. MNNs are composed
of independent neural networks that serve as modules,
each of them specializing in a specific task. MNNs are
inherently more interpretable than monolithic neural net-
works due to their architecture and divide-and-conquer
methodology. MNNs also intrinsically introduce struc-
tural interpretability due to their modular structure. Stud-
ies have shown that MNNs are better at handling noise
than monolithic networks [33]. Several defense mecha-
nisms against adversarial attacks have been proposed in
the literature, some of which have employed deep gen-
erative models [34, 35]. One of the main motivations
for using generative models is their capability of repre-
senting information in a lower-dimensional latent space
retaining only the most salient features [36].

3.1. Model
3.1.1. Model Composition Overview

In the proposed MNN architecture, we allocate dedicated
modules for eyes, nose, mouth and one for the rest of the
features. We employ autoencoders to learn separate and
distinct latent representations for different facial features.
To achieve this, we mask the input image to retain only
the region of interest of that specific module and present



Figure 1: Proposed feature specific latent representations encoding. Images are encoded to feature specific latent repre-
sentations using feature extracting autoencoders. Reconstructions and corresponding target images are displayed on the
right.

it as the target image (See Fig. 1). After the autoencoders
have been trained, we retain the encoder and substitute
the decoder with Siamese networks in all of the modules,
resulting in Modular Siamese Networks (MSN) (See Fig.
2).

In the task of face verification, a pair of images is given
as input, which could be either a valid pair or an impostor
pair. In the proposed MSN architecture, disentangled em-
beddings of facial features are generated for both of the
input images by the feature extracting encoders present
in each feature specific module. These feature embed-
ding pairs are then fed to the Siamese networks present
in each module which compute the 𝐿1 distance vectors
for each of the twin feature latent embeddings pairs, sim-
ilar to the method followed in [37]. The distance vectors
from all of the modules are then concatenated and fed
to a common decision network which makes the final
prediction.

3.1.2. Feature-extracting Autoencoders

In this work, we employ undercomplete autoencoders
[36], a type of autoencoder which has a latent dimension
lower than the input dimension. Undercomplete autoen-
coders are trained to reconstruct the original image as
accurately as possible while constricting the latent space
to a sufficiently small dimension to ensure that only the
most salient features are retained in the encoded latent
vectors. To achieve our task of extracting feature specific
latent vectors, we use a novel technique. In this tech-
nique, instead of giving a full image as the target, we
mask the input image and retain only a part of the image
containing the feature of interest and produce it as the
target image. Consequently, the autoencoder learns a

latent representation containing important information
about the feature and restores only the required part of
the image (See Fig. 1, examples in 3.2).

3.1.3. Siamese Networks

Siamese networks have achieved great results in image
verification [37, 38]. The two Siamese twin networks
share the same weights and parameters. The hypothesis
behind this architecture is that if the inputs 𝑥1 and 𝑥2 are
similar, then the distance between the output vectors ℎ1
and ℎ2 will be less. The network is trained in such a way
that it maximizes the distance between mismatched pairs
and minimizes the distance between matched pairs. Loss
functions like contrastive loss [39] and triplet loss [40]
can be used to achieve this task, few improvised versions
of these loss functions have also been proposed in the
literature [41, 42].

In our model, we employ Siamese networks for dis-
criminating between feature specific latent vectors of
impostors and valid pairs. The latent vectors 𝑥1 and 𝑥2
are obtained from the feature-extracting autoencoders
described in 3.1.2. L1 distance vectors are computed from
the output vectors ℎ1 and ℎ2 obtained from the Siamese
twins for each module. The distance vectors of all of the
modules are then concatenated and given as input to the
decision network (See Fig. 2).

3.1.4. Decision Network

The decision network is a feed-forward fully connected
network that takes the concatenated input from all of
the modules. This network enables us to incorporate



Figure 2: Proposed Modular Siamese Network. Image is initially disentangled by feature-specific encoders to obtain feature-
wise embedding pairs, then these embedding pairs are fed to Siamese networks which will compute the distance vectors. All
of the distance vectors are then concatenated and fed to the decision network for final verification decision.

information from all of the modules to predict the final
decision.

3.1.5. Model Architectural Details

The model architecture and training setting described
in [43] were used for training the feature extracting au-
toencoders. The Siamese networks consist of four fully
connected layers with ELU activation functions. The final
decision network that takes the concatenated distance
vectors from the modules has two fully connected layers
with ReLU activation functions.

3.2. Training details
The training of the proposed MSN is carried out in 3
training phases. In the first phase, the feature extracting
autoencoders are trained with perceptual loss [43]. In
the next phase, the decoder parts in each of the modules
are replaced with the Siamese network and trained using
the triplet loss, freezing the layers trained in the previous
phase. Finally, the decision network is trained using
Binary Cross-Entropy (BCE). The Adam optimization
technique [44] was used for training the network in all
of the three training phases.

From Fig. 3, 4, 5 and 6, we observe that the feature
extracting autoencoders are able to generate high qual-
ity reconstructions of the intended facial feature. Once
training is complete, the autoencoders take unmasked
full images as input and reconstruct only the required
facial region by incorporating relevant information of
that facial feature into the latent feature vector.

The subnetworks can be trained in parallel as they are
independent of each other. Once the training is complete,
we obtain a complete end-to-end face verification system.

Figure 3: Reconstruction of eyes. (a) input image, (b) masked
target image, (c) reconstructed image

Figure 4: Reconstruction of nose. (a) input image, (b)masked
target image, (c) reconstructed image

Facial landmarks used for masking were generated by
using MTCNN [45].



Figure 5: Reconstruction of mouth. (a) input image, (b)
masked target image, (c) reconstructed image

Figure 6: Reconstruction of remaining facial region. (a) is
the input image, (b) is the masked target image, (c) is the
reconstructed image

4. Interpretability in Modular
Siamese Networks

The proposed system generates inherently feature-level
heatmaps that are intuitive and easily interpreted, as
humans naturally observe the similarity of high-level
visual concepts instead of pixels. Each subnetwork of
the MSN generates a distance measure that reflects the
visual similarity of the features. This is achieved by com-
puting the euclidean distance between the twin output
vectors produced by the Siamese networks for each mod-
ule representing a certain feature. Using these distance
measures, a pairwise heatmap incorporating the simi-
larity or dissimilarity of the features is generated and
overlayed on both of the images. As can be seen in Fig. 7,
the proposed system is able to effectively localize the sim-
ilarities and dissimilarities of features in a pair of images.
These heatmaps could be used as a tool for understand-
ing the decisions taken by the verification system (Refer
section 5.2).

5. Experimental Results
The face verification system was trained on the VG-
GFace2 dataset [46] and evaluated on Labeled Faces in

the Wild (LFW) dataset [47]. For reporting performance,
we use 10-fold cross validation using the splits defined
by LFW protocol which serves as a benchmark for com-
parison [47].

5.1. Verification
The accuracies of the individual modules and the pro-
posed MSN model have been presented in Table 1. The
accuracies for individual modules have been calculated by
finding the optimum distance threshold that maximizes
accuracy.

No. Model Accuracy

1. Module 1 - Eyes 80.8%
2. Module 2 - Nose 73.2%
3. Module 3 - Mouth 74.5%
4. Module 4 - Rest 78.3%
5. Modular Siamese Network 98.5%

Table 1
Accuracies of modular siamese network and sub-modules.

We observe that the eyes module outperforms other
modules, indicating that it could be the most discrim-
inating feature. The accuracy of MSN is 98.5% which
is comparable to the SOTA accuracies that have been
reported in the literature which are greater than 99%.

5.2. Feature-level Heatmaps
Feature-level heatmaps are intuitive and easily inter-
pretable as humans, unlike computers, look at features
as whole and not at pixels individually. The pairwise
heatmaps that are inherently generated by the proposed
method incorporate relative information taking both of
the input images into consideration. The feature-wise
euclidean distances computed by individual modules in
MSN are used to generate the heatmaps. As can be seen
in Figure. 7, features that look visually similar are col-
ored blue and colored red when dissimilar in all of the
images. For true positives, the heatmaps are indicating
high similarity for features that are visually close, as ex-
pected. The system shows high dissimilarity between the
nose regions of the first impostor pair in 5.b, which is in
line with human perception as their shapes are signifi-
cantly different. Studying when the system fails could
be helpful, since these visual cues may help rectify the
workings of the system. In the first pair of 5.c, we ob-
serve that both of the persons wearing eye glasses caused
the eyes module to assign low distance score and when
accompanied another similar looking feature resulted in
misclassification. The heatmap of the second pair of 5.c
demonstrates how spectacles and similar looking facial
hair fooled the system. The heatmaps in 5.d illustrate



Figure 7: Demonstration of facial feature explanations: Each
facial factor and its relevance to face verification. Green in-
dicates similarity while red indicates dissimilarity. (a) True
Positives (b) True Negatives (c) False Positives (d) False Neg-
atives (e) Color map indicating dissimilarity. Best viewed in
color. (Refer Section. 5.2)

how closing eyes and significant difference in pose can
affect the verification. In the first pair, the same person
closing eyes in one of the images made the eyes module
to compute a high distance score. In the second, signifi-
cantly different pose which resulted in partial visibility
of facial features in one of the images led the system to
predict high dissimilarity score.

Since these computations at feature level are carried
out in live, the system could instantly generate meaning-
ful messages that can help the user to correct any issues
in case of a failure, like removing eye glasses or changing
pose for better lighting.

5.3. Performance under adversarial
attacks

We tested the robustness and resistance of the proposed
method against the widely known adversarial attacks
such as the Fast Gradient Sign Method (FGSM) [8],
DeepFool [48] and FGSM in fast adversarial training
(FFGSM)[49].

Assuming the first image in the two image pairs to be
the test image, and the other one to be the anchor image,
we attack only test image similar to the experiments
conducted in the studies [50, 51]. For comparison, we
have considered the well-known FaceNet model which
has report SOTA performance earlier. The results have
been plotted in Figures. 8, 9 and 10.

The proposed method has shown significantly higher
robustness than FaceNet against all three adversarial at-

Figure 8: Robustness of proposed approach against FGSM
Attack. (IFV: Interpretable and Robust Face Verification sys-
tem (proposed method))

Figure 9: Robustness of proposed approach against Deep-
Fool Attack. (IFV: Interpretable and Robust Face Verification
system (proposed method))

Figure 10: Robustness of proposed approach against FFGSM
Attack. (IFV: Interpretable and Robust Face Verification sys-
tem (proposed method))

tacks.
For FGSM, the accuracy of FaceNet falls below 20%

when 𝜖 is 0.05 while MSN is still close to 60% accurate
(See Figure. 8). In the case of DeepFool attack, we no-
tice a sharp drop of accuracy to below 10% on step 2 in
facenet, while MSN shows a lot more resilience by being
more than 70% accurate. Similarly for FFGSM, accuracy



of FaceNet drops to just above 30% while MSN has an
accuracy still above 60% at 𝜖 equals 0.03. In all of these
attacks, we notice that individual modules are noticably
more resistant. Since MSN makes the final prediction
based on these functionally independent modules, it con-
sequently inherits its robustness from them.

The enhanced robustness could be attributed to the
fault tolerant nature of MNN [52, 33]. Additionally, the
encoders used for extracting feature specific latent rep-
resentations are trained to retain only the most salient
features because of the bottleneck latent layer and as a re-
sult, they may be able to provide some immunity against
noise or perturbations.

6. Conclusion and Future Work
Numerous face verification methods have been proposed
in the literature, most of which focus solely on improving
the performance. Consequently, super-human accuracy
has already been achieved in face verification. The real
need for improvement in this domain is in the areas of
robustness, explainability and fairness. The most impor-
tant attribute of the proposed method is that it is both
robust to adversarial attacks and inherently interpretable.
To the best of our knowledge, there is no other published
method for face verification that provides both of these
qualities at the same time. We believe that pursuing this
direction is essential for developing more trustworthy
systems.

Having the interpretations of predictions or decisions
while they are being taken by deep learning models could
prove to be paramount in many applications. While post-
hoc interpretations might help in understanding the be-
havior of the model, they may not be of much help in
generating real-time explanations. Incorporating inter-
pretability to the system itself could allow us to handle
human errors by enabling communication with the user,
informing them of what went wrong and suggesting rec-
tifications.

In this paper, we have presented a new technique to
learn latent representations of high-level facial features.
We proposed a modular face verification system that in-
herently generates interpretations of its decisions with
the help of the learned feature-specific latent representa-
tions. The need and importance of having such a readily
interpretable systems were discussed. Further, we have
demonstrated that the proposed system a has higher re-
sistance to adversarial examples.

In summary, we have introduced and validated a face
verification system that: provides on-the-fly and easily
interpretable feature level explanations, has structurally
interpretable model architecture, is able to provide feed-
back in real time, and has increased robustness towards
adversarial attacks.
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