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Abstract

As a new technology, virtual reality (VR) is constantly enriching people’s experience. VR application has high requirements
for the performance VR devices, but the computing resources of VR devices are limited. Mobile edge computing provides an
effective solution to solve the above issue by offloading VR application to edge servers (ESs) for processing. Nevertheless, the
resources of ESs are limited and heterogeneous. And thus, it is necessary to consider the load balancing of ESs. In addition,
user privacy protection in the process of computation offloading is another issue that needs to take into consideration. In
view of this, in this paper, we investigate the computation offloading for VR applications with privacy protection. Technically,
we propose a privacy-aware computation offloading method based on multi-objective optimization genetic algorithm to
obtain the optimal strategy for VR application. Finally, it is shown that the proposed method is effective through extensive

experiments.
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1. Introduction

With the development of communication and net-
working, the number of mobile users is increasing in a
staggering speed. According to Oracle, there are more
than 10 billion mobile devices connected to the Internet,
and that number will grow to 22 billion by 2025 [1]. The
explosive growth of mobile devices leads to a large re-
quest and the promising application prospect [2]. New
technologies are beginning to be applied to mobile de-
vices, such as virtual reality (VR), artificial intelligence
(AI) and the Internet of Vehicles (IoV) [3]. Among these,
as a prospective technology, VR is constantly enriching
people’s experience ([4],[5]). In practice, the VR applica-
tions are usually run over a wearable VR devices (VDs),
which can record information about the movement and
activity of VR users (VUs). Equipment manufacturers
of VD usually need to consider physical size constraint,
which equips with a small CPU and GPU with low-power
consumption and low-capacity battery [6]. However, due
to VR application requires real-time processing, it will
consume a lot of computing resources. This poses a big
challenge to VDs.

Fortunately, mobile edge computing (MEC) is a
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promising distributed computing paradigm ([7],[8]).
Computation offloading of MEC has been well studied in
([9]-[10]). Inspired by this, offloading the VR application
to edge servers (ESs), the time and energy consumption
of VD can be significantly reduced. However, computing
resources of the ES are limited, it will increase the waiting
time and energy consumption of VDs when the number
of tasks performed exceeds computing capacity of the ES
[11]. Meanwhile, the resources of ESs are heterogeneous,
the tasks should be reasonably distributed on ES cluster
to avoid some of the ESs are overload [12]. Meanwhile,
when the VU interacts with the VD, the application will
collect the VU’s private information, such as location,
posture [13]. If placing data with privacy conflicts on the
same ES, it is easy to cause the leakage of VU privacy in-
formation [14]. Therefore, it is necessary to consider the
load balancing and the privacy constraints of placement
of computation offloading for VR application.

To address above issues, the computation offloading
considering privacy protection for VR applications are
investigated in this work. The contributions of this paper
can be summarized as follows.

1) We model the computation offloading problem as
a multi-objective optimization issue, where the motion-
to-photons latency and energy consumption of VD, as
well as load balancing of ES are considered as the opti-
mization objectives, and privacy protection is considered
as a constraint.

2) A computation offloading method for VR appli-
cations based on multi-objective optimization genetic
algorithm, named MCOVR, is proposed to address the
above issue.
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Figure 1: MEC-Enabled VR application architecture.

3) We conduct a large number of comparative ex-
periments to prove that MCOVR can obtain the optimal
computation offloading strategy for VR application.

The remaining of the paper is describe as follows.
Firstly, section 2 describes the system model and defines
the problem formulation. Secondly, section 3 introduces
our proposed multi-objective computation offloading of
VR application method. Then, section 4 demonstrates
the experiment results. Finally, section 5 introduces the
related work and section 6 describes the conclusion and
the future work.

2. System Model and Problem
Formulation

In this section, the architecture of MEC-enabled VR
application is firstly introduced. Then, the model of VR
application is established. Finally, the system model and
problem formulation are described.

The MEC-enabled VR application architecture is
shown in Figure 1. We assume that the cloud has infinite
computing resources, and resources of ESs are finite
and heterogeneous. These VR applications are executed
by VDs or offloaded to the ES or to the cloud. VUs
communicate with ESs via local area network (LAN) and
with the cloud via wide area network (WAN).

Y is a set of VU, which is defined as
Y = {1,2,..,y}. There are vn applications in
V, which is defined as V = {v*,v?, ..., v"™}. The task
length requested by the v-th application of y-th user is
denoted as [+, and the task workload is denoted as 7.
Let X be the set of ES, denoted as X = {1,2,...,z}.
In each ES, the computing resources of ES are rep-
resented as a number of ¢ virtual machine(VM) xn,
represented as n = {zn',2n? ..., zn'}. J is a set of
computation offloading strategies, which is defined as
J = {ji.1s s J1,05 52,15 o, Jy,v }- And Jy . represents
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the offloading strategies of v-th application from y-th
VU. jy,» = O represents that the application is run
by VD, jy» € (1,2,...,2) indicates the application is
offloaded to ES, j,,, = = + 1 represents the application
is offloaded to cloud for processing.

2.1. Virtual Reality Application Model

In general, Augmented reality (AR) application can
be represented as a directed acyclic graph(DAG) [15].
Similarly, VR can also be represented by a DAG. As
shown in Figure 2, the VR model can be represented as
follows. The VR application contains three independent
operations, namely, rendering, calibration and process-
ing. Thus, we use a layer containing three operations to
represent each video frame, namely node. In addition,
there are k video frames in a VR application, the nodey,
represents the k—th node in application.

2.2. Motion-to-Photons Latency Model
2.2.1. Executing latency

Execution latency is the time cost of processing VR
applications on the three platforms, namely, VD, ESs, and
cloud center. In this part, the executing time of v-th VR
application of y-th user is represented as

7';;1} jy,v — O
S (Jyw) = Tjﬁ: Jyw=1or2,0or...orz (1)
Tj/‘;v Jyw =x+ 1.

2.2.2. Transmission latency

The transmission latency is related to the compu-
tation offloading strategy of the two tasks. Let P°(c €



Figure 2: VR Application Model.

{1, 2, 3}) be the flag between two strategies, which are
defined as

Two applications are executed
by same plat form c=1,
pe_ VDand ES
of floading c=2,
Cloud and
other plat forms of floading c=3.
(2)

According to transmission strategy P€, the transmission
time S*(j,,») of the v-th application of the y-th VU is

shown as
lyw

S () = 5 3)
where B represents the transmission bandwidth. The
transmission bandwidth is divided into three cases which
is denoted as

o  P¢=1,
B={B pc=2, )
B° P°=3.

2.2.3. Waiting latency

When the number of applications offloaded to the ES
exceeds the number of VM xn, the newly coming tasks
need to wait for the previous task to complete execution.
The i-th VM in z-th ES is represented as a double-tuple
xni = (vmwk, tnum), where vmwk represents the i-
th VM collection and the tnum represents the number of
applications in VM. When the offloading strategy j,,., =
T, Ty,v is offloaded to VM of z-th ES. Then, the vmwk
is updated by vmwk = vmwk + [, and the tnum =
tnum + 1. Finally, the S™(jy, ) of v-th application from
y-th VU is calculated as

Sw(jy,v) = Se(pre(jy,v)) “yvqs 5)

where 1)y ., is to determine whether r, , needs to
wait for the previous task, and the execution latency of
previous task is represented as S°(pre(jy,v))-

2.2.4. Total latency

The total time S(jy,v) is represented as the sum of
all time, including the executing latency S€(jy,o), the
transmission latency S*(jy,,) , and the waiting latency
S*(jy,v)- The total latency is represented as

S(iyw) = S (Gyw) + S (Gyw) + 5 (Gyw).  (6)

2.3. Energy Consumption Model
2.3.1. Executing energy consumption

The executing energy of MDs is related to the exe-
cuting time, the executing time of v-th VR application of
y-th user is represented as

r/j,[;v . pacti'ue jy,'u =0
S (Jyw) = L;;v - piite Jyw=1Llor2or...orx
7‘3;(,;1; . pzdle jy,'u = x4+ 1.

_ (7)
where p*“'"¢ represents active state of VD energy con-
sumption and o' represents idle state of VD energy
consumption.

2.3.2. Transmission energy consumption

N'() represents transmission energy consumption,
which can be obtained by multiplying the transmission
power by the transmission time. N() can be calculated
by

N'(Gyw) = S (Gy.0) - 9",

trans

®)

where p represents the energy consumption of

transmission.

2.3.3. Waiting energy consumption

Waiting energy consumption is the energy consump-
tion of VD when the task waits for the execution of the
previous task. Waiting energy consumption is related to
waiting time which can be obtained as

NY (Gyw) = S" (Gyw) - 0" )



2.3.4. Total energy consumption

The total energy consumption N(jy,») is repre-
sented as the sum of all energy consumptions which
includes the executing energy consumption N°(jy,v),
the transmission energy consumption N*(j, ), and the
waiting energy consumption N (jy,. ). The total energy
consumption can be calculated by

N(jyw) =

N®(y,0) + N'(Gyw) + N (fy,0)-  (10)

2.4. Load Balancing Model

The ESs are heterogeneous means that the com-
puting resources of ESs are not equal. Therefore, the
workload of ESs needs to be balanced. And, (, is a
binary number to calculate the occupation of ES, which
is calculated by

Q}ZZ{ é:

And, 71, is a flag to represent whether the ES is
occupied, which is represented as

if € is occupied
Otherwise.

(11)

_ | 1, if vexisted in e®
" =19 0, Otherwise.

Firstly, the number of ES that are utilized is defined
as UE(j), which is represented as

(12)

(13)

T represent the amount of occupied ESs which is
calculated by

- { % 23:1 25:1 Gy Mo, G =1
0, Otherwise.
(14)
According to the resource utilization of each ES,
the average resource utilization «(j) can be obtained by

IR
o) = ;

Finally, the load balancing of each ES is calculated
by the squared difference between the resource utiliza-
tion of each ES and the average resource utilization. The
loading balancing F'(J) is calculated by

(15)

\4

’ Z [a(jy.v) — T(jyyv)}Q)

v=1

(16)

2.5. Privacy Model

As VR applications need to collect user information,
VR privacy conflicts need to be considered. In this pa-
per, we address privacy conflicts by placing applications
on different ESs to avoid privacy leakage [14]. A graph
h = (RW, CT) is used to describe the privacy conflicts,
where RW represents the a set of computing services and
CT denotes a set of privacy conflicting relation. A pair
of conflict relations (rwy, rwyx ) (rwy, rwy. € RW) are
used to indicate that VU information with privacy con-
flicts cannot be placed in the same ES. The conflict appli-
cation of rw,, are represented as

rwy|(rwy, rwy.) € CT,yx = {1,2,..,Y}.  (17)
HS = hsi,hsa, ..., hsy(hs € Y) represents the place-
ment location ES for executing the applications. After-
wards, based on the acquired conflicting service set, the
placed destination hs, has a conflicting ES set, which is
calculated by

(18)

hyl(eszllese) € rwg, x = {1,2, ..., [rwy|}.

2.6. Problem Formulation

The main objectives of this study are to decrease the
motion-to-photons latency and energy consumption of
VDs, as well as the load balancing of ESs while preserving
the VU’s privacy. The problem formulations are defined
as follows.

Y V
Min» > " S(jy);Vi € {1,2,3,...

szt (19)
y=1v=1
Y V
Min > N(jyo) Vi €{1,2,3,...,2}.  (20)
y=1lv=1
Y %4
Min» > " F(jyw);Vi € {1,2,3,...,a}.  (21)
y=1v=1
s.t.gye €{0,1,2, ...,z + 1} (22)
hsy & hy. (23)
Y
D> " S(ye) < 897 (24)
y=1v=1

3. Method Design

In this section, we describe the details of our pro-
posed multi-objective computation offloading of VR ap-
plication (MCOVR). MCOVR is based on MOMBI [16].



3.1. Initialization

The initialization of the algorithm includes the defi-
nition of key parameters and the generation of the initial
population. Firstly, the first-generation population Zy of
size t* is generated randomly. Secondly, MCOVR defines
some parameters, such as crossover probability L¢, muta-
tion probability L™, the number of iterations D;,qz, and
current iteration index d. Finally, the algorithm defines a
size of t? achieve set Qo that keeps the achieve solution.
Moreover, tournament selection, crossover, as well as
mutation is executed on Zy to generate new population
Z5.

3.2. Crossover and Mutation

In the crossover operation, the algorithm randomly
exchanges a certain point value of two offloading
strategies. Through crossover operation, the algorithm
can obtain diversity solutions. In the mutation operation,
mutations will slightly change certain values on
the offloading strategy. And mutation operator can
reduce the occurrence of local optimal and avoid early
convergence.

3.3. R2 Ranking and Reference Points

In the MCOVR, algorithm divides the population
through the R2 indicator to achieve non-dominated sort-
ing, namely, R2 ranking. In R2 indicator, the objectives
are measured based on the weighted Tchebycheff method
and processed by normalization. W is represented as the
weight of each object, A is represented the Pareto solu-
tion set, and 1) represents the utility functions. Therefore,
the R2 indicator is defined as follows.

1

R2I(A,W) = —
W]
wew

min J(a).

acA (25)

Additionally, in Equation (25), when each popu-
lation is calculated by the R2 indicator, the reference
point of the ¥ needs to be updated. The maximum value
€M% and minimum value ¢7"" of the objective need to
be found. Through Equation (25) and reference point
updating policy, the r2 ranking can be calculated as

|fd(jy,’u) — C:lnin ‘}’

max __ min
Ca Ca

rankz, = min { max w;
Za EJW aeA/Bk{iel,it !
w
(26)
where fq(jy,») represents the objective function in d-th

iteration.

3.4. Tournament Selection

The two populations Z; and Z generated by the
algorithm need to select the number of ¢* as the next-
generation population Z441, where d<D,q,. In addi-
tion, based on R2 ranking of Z4, by comparing the ob-
jective function values of the two solutions and select
the optimal value of the objective function as the parent
solution.

3.5. Method Overview

This method aims to reduce the time consumption
and energy consumption of VDs as well as load balancing
of ESs jointly. The flow chart represents the execution
sequence of our proposed MCOVR is shown in Figure 3.

4. Experiment Evaluation

In this section, we present the experimental
evaluation of our method. Firstly, the experiment setting
is introduced, which includes comparative methods and
key parameters. Then, the experimental results and
discussion are described.

4.1. Experimental Setting

Two comparative computation offloading methods
are proposed. The details of the two methods is as fol-
lows.

Benchmark: All applications are offloaded to the
three platforms for processing randomly, named as
Benchmark.

First Come First Service (FCFS): All applications are
offloaded to the three platforms for processing orderly,
named as FCFS.

The key parameter value is described in Table 1. We
execute these offloading methods by JAVA over Win10 64
OS with 8 Intel Core i7-10850H 3.60 GHz CPU processors,
Nvidia RTX2070 GPU processors, and 32GB RAM.

4.2. Experiment evaluation result and
discussion

We design three different kinds of comparative ex-
periments to verify the effectiveness of MCOVR. All the
experiments are performed 10 times, and the result is the
average value.

The comparison of motion-to-photons latency is
presented in Figure 4. Figure 4(a) testifies the motion-to-
photons latency of multi-VU condition. As the number
of VUs increases, the difference of the latency consumed
among the three methods is getting larger. Our proposed
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Figure 3: Flow chart of MCOVR.

Table 1
Experimental Parameter.

Key Parameter Value

Idle power of MDs 0.05W

Active power of MDs 0.6W

Transmitting power of MDs 0.6W

The processing frequency of MD | 500MHZ

The processing frequency of ES 2000MHZ-2400MHZ
The processing frequency of ES 5000MHZ

The bandwidth of LAN 220kb/s

The bandwidth of WAN 150kb/s

Number of VMs for each ES 15-20

MCOVR achieves the minimum latency consumption
among the three methods. The latency consumption ex-
perimental result of the influence of different applications
and different nodes are represented in Figure 4(b) and
Figure 4(c). MCOVR reduces latency significantly and
shows the slowest growth trend among the three meth-
ods. It can be deduced that MCOVR outperforms FCFS
and Benchmark in terms of different situations.

The energy consumption is obtained by Equation
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Figure 4: Comparison of the motion-to-photon latency.

(10). The energy consumption is related to time consump-
tion which has the same growth trend with time con-

iteration

OUTPUT 4—‘

sumption. Figure 5 demonstrates the comparison result
of energy consumption. The multi-VD, multi-application
and multi-node comparison of energy consumption is
shown as Figure 5(a)-Figure 5(c). It is can be seen that
MCOVR is more energy-efficient than the other two
methods.

The load balancing can be obtained by Equation
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ancovr
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Figure 5: Comparison of the energy consumption.

(16). It is a negative indicator, that means the low value
of load balancing represents balanced tasks allocation
in the ES cluster. The load balancing comparison result
of three methods is shown in Figure 6. As shown in
Figure 6(a) and Figure 6(b), with the number of tasks
increases, MCOVR and FCFS show a downward trend
and the difference between the two methods is little. Due
to the offloading strategies of Benchmark are generated
randomly. Therefore, the results of Benchmark are un-
predictable and irregular. As shown in Figure 6(c), as
the number of tasks increases, more task are offloaded to
the ESs, and the load balancing value decreases of these
three methods.

Above all, it is observed that our proposed method
can obtain the optimal solution in comparison to the
three experiments.
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5. Related Work

Many efforts have been make to solve the compu-
tation offloading in MEC. Bi et al. [9] considered energy
consumption with the maximum number of memory con-
straint in MEC. An efficient algorithm based on a penalty
function method is proposed to handle constraint. Xu
et al. [10] jointly considered both IoV energy consump-
tion and load balancing of ES problem. They proposed a
genetic algorithms-based method to solve it. Feng et al.
[17] considered the computation performance for offload-
ing in the wireless powered MEC. Li et al. [18] studied
a joint optimization problem of computation offloading
and privacy preservation in the MEC system and pro-
posed a privacy-aware online learning algorithm to solve
this challenge. Ko et al. [19] studied the computation
offloading problem in smart cities based on the privacy
entropy model. A constrained Markov decision process
method is developed to solve location privacy leakage.
The above-mentioned studies provided a good view of
the computation offloading in MEC and inspired us to
study the computation offloading of VR applications.

A few studies take into account MEC-enabled VR
applications. Zhang et al. [20] proposed an edge-cloud
architecture of VR application that frame rendered on ES
or cloud. They proposed a service placement algorithm
for multi-user VR applications that makes placement de-
cisions, based on QoS and VUs mobility patterns. Zhu et
al. [21] focused on dynamic rendering-module placement
problem for VR streaming. To reduce such rendering la-
tency, they proposed a prediction-based pre-rendering
mechanism at the ES. In [22], the authors investigated
the problem of providing service using the MEC network
architecture with a frame rendering. They solved an
online service placement problem by leveraging model
predictive control and overcoming conflicting system
objectives. In [23], the authors focused on the online

offloading interactive VR application. They considered
the constraints of the delay requirements, the maximum
frame per second demands, the total bandwidth and ren-
dering resources limits and proposed programming to
optimize execution efficiency of VR application.

Different from the above studies, we investigates
how to make privacy-aware computation offloading de-
cisions to reduce the motion-to-photons latency and en-
ergy of VR applications and load balancing of ESs while
considering VUs privacy-preserving. Correspondingly,
we solve this issue using a multi-objective optimization
method.

6. Conclusion

We studied the problem of multi-objective compu-
tation offloading of VR applications. Correspondingly,
we propose a method named MCOVR to minimize the
motion-to-photons latency and energy consumption
of VD and the load balancing of ESs jointly. We also
considered privacy conflicts in VR applications and
using the privacy placement model to protect user data
information security. Finally, the experimental results
have shown that our proposed method is effective.

In future work, we will study mobility-aware com-
putation offloading for augmented reality applications in
smart cities.
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