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Abstract
In his ACL 2021 paper [1], Sakai compared several evaluation measures in the context of Ordinal Quantification (OQ) tasks in
terms of system ranking similarity, system ranking consistency (i.e., robustness to the choice of test data), and discriminative
power (i.e., ability to find many statistically significant differences). Based on his experimental results, he recommended the
use of his RNOD (Root Normalised Order-aware Divergence) measure along with NMD (Normalised Match Distance, i.e.,
normalised Earth Mover’s Distance). The present study follows up on his discriminative power experiments, by taking a
much closer look at the statistical significance test results obtained from each evaluation measure. Our new analyses show
that (1) RNOD is the overall winner among the OQ measures in terms of pooled discriminative power (i.e., discriminative
power across multiple data sets); (2) NMD behaves noticeably differently from RNOD and from measures that cannot handle
ordinal classes; (3) NMD tends to favour a popularity-based baseline (which accesses the gold distributions) over a uniform-
distribution baseline, thus contradicting the other measures in terms of statistical significance. As both RNOD and NMD
have their merits, we recommend the organisers of OQ tasks to use both of them to evaluate the systems from multiple
angles.
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1. Introduction
Quantification (or prevalence estimation) tasks are highly
practical [2, 3, 4]. While classification evaluation deals
with a confusion matrix whose rows and columns repre-
sent gold and estimated classes, quantification evaluation
compares a gold distribution over the classes with an esti-
mated distribution. Put another way, while classification
cares about exactly which of given 𝑁 instances (with
masked gold labels) are classified into each class (repre-
sented in the cells of the confusion matrix), quantification
only cares about how many of the 𝑁 instances are clas-
sified into each class. In general, a quantification task
involves 𝑛 test cases; each test case has 𝑁 instances, and
𝑁 can vary across cases. Hence a quantification eval-
uation measure computes a score for each test case by
comparing the gold and estimated distributions, and the
measure score can be averaged across the 𝑛 cases. Hence
statistical significance tests can be applied to compare
the systems.

In the present study, if a task involves the comparison
of an estimated probability mass function with a gold
probability mass function for each test case, we regard
it as a quantification task, regardless of what the exact
input to the estimation system is. (Note that a frequency
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distribution of𝑁 instances can easily converted to a prob-
ability mass function.) In particular, we define Ordinal
Quantification (OQ) as a task that requires systems to
estimate a probability mass function over ordinal classes
for each of 𝑛 test cases.1 Examples of OQ tasks defined
in this way include the following.

SemEval 2016/2017 Task 4 Subtask E Given a set of
𝑁 tweets about a topic, estimate the distribution
of the tweets over five classes: highly negative,
negative, neutral, positive, highly positive [5, 6].

Dialogue Breakdown Detection Challenge For
each system utterance within a human-machine
dialogue, estimate the distribution of gold labels
given by 𝑁 annotators, where the possible
labels are NB (not a breakdown), PB (possible
breakdown), B (breakdown) [7].

NTCIR Dialogue Quality Subtasks For each
customer-helpdesk dialogue, estimate the
distribution of dialogue quality ratings given by
𝑁 annotators, where the possible ratings are −2,
−1, 0, 1, 2 [8, 9].

To evaluate systems (or runs [22]) submitted to OQ
tasks, evaluation measures that can handle ordinal
classes should be used. More specifically, “nominal
quantification” measures such as Mean Absolute Error
(MAE), (Root) Mean Squared Error ((R)MSE), and Jensen-
Shannon Divergence (JSD) are not adequate, as they are
based on simple averaging/summing across classes [1].

1Interval classes are also ordinal by definition.
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Table 1
Quantification measures considered in this study.

Ordinal quantification measures

NMD Normalised Match Distance
(Normalised Earth Mover’s Distance)

RNOD Root Normalised Order-aware Divergence
RSNOD Root Symmetric Normalised Order-aware

Divergence (symmetric version of RNOD)

Nominal quantification measures

NVD Normalised Variational Distance
(essentially Mean Absolute Error)

RNSS Root Normalised Sum of Squares
(essentially Root Mean Squared Error)

JSD Jensen-Shannon Divergence (symmetric
version of Kullback-Leibler Divergence)

To see why, consider a gold distribution for the afore-
mentioned SemEval task, where all 𝑁 tweets for a topic
are in the highly positive class; consider a system which
puts all 𝑁 tweets in highly negative (i.e., an utter failure),
and consider another which puts all 𝑁 tweets in positive.
It is clear that the above measures rate both systems as
utter failures.

To the best of our knowledge, only two families of
measures are known to be suitable for evaluating OQ
systems: the Earth Mover’s Distance family [10, 11, 12],
which is based on cumulative distributions of the gold
and estimated distributions, and Sakai’s Order-aware Di-
vergence family, proposed in 2017-2018 [13, 14]. Recently,
Sakai [1] reported on extensive experiments for compar-
ing the above two families as well as nominal quantifica-
tion measures in the context of evaluating OQ systems
submitted to the SemEval and NTCIR tasks. His rec-
ommendation was to use Root Normalised Order-aware
Divergence (RNOD) as the primary measure, and Nor-
malised Match Distance (NMD) as the secondary mea-
sure, where NMD is simply a normalised version of Earth
Mover’s Distance [5]. In that study, RNOD was preferred
over NMD because it was the overall winner when looked
across the data sets in terms of system ranking consis-
tency (i.e., the ability to provide stable system rankings
regardless of the choice of test data) [15] and discrimi-
native power (i.e., the ability to obtain many statistically
significance differences under the same experimental
condition) [16, 17].

The present study follows up on Sakai’s experi-
ments [1], by taking a much closer look at the statistical
significance test results obtained from each evaluation
measure. We also leverage additional sets of OQ data
from NTCIR that were not previously used. Our new anal-
yses show that (1) RNOD is the overall winner among the
OQ measures in terms of pooled discriminative power (i.e.,
discriminative power across multiple data sets); (2) NMD

behaves noticeably differently from RNOD and from mea-
sures that cannot handle ordinal classes; (3) NMD tends
to favour a popularity-based baseline (which accesses
the gold distributions) over a uniform-distribution base-
line, thus contradicting the other measures in terms of
statistical significance. As both RNOD and NMD have
their merits, we recommend the organisers of OQ tasks
to use both of them to evaluate the systems from multiple
angles.

2. Related Work
The aforementioned OQ tasks of SemEval (2016/2017
Task 4 Subtask E) [5, 6] used Earth Mover’s Distance
(EMD) as the evaluation meaure, remarking that “EMD is
currently the only known measure for ordinal quantifica-
tion.” Their EMD is the same as Match Distance [14, 10],
and the present study uses its normalised version, called
Normalised Match Distance (NMD) [14, 1]. NMD has
been used as one of the evaluation measures for evalu-
ating the aforementioned OQ tasks of NTCIR (Dialogue
Quality) [8, 9].

In 2017, Sakai [13] proposed Order-aware Divergence
(OD), Normalised OD (NOD), and Symmetric Normalised
OD (SNOD) for OQ tasks, by explicitly incorporating
the notion of “distance” between classes. Subsequently,
Sakai [14] proposed Root Normalised OD (RNOD) and
Root Symmetric Normalised OD (RSNOD), as the compu-
tation of OD involves sums of squares. The OQ tasks of
NTCIR have used RSNOD along with NMD [8, 9]. Sakai’s
recent recommendation for OQ tasks [1] is to use RNOD
as the primary measure and NMD as the secondary mea-
sure, for the reasons discussed in Section 1.

Although the aforementioned Dialogue Breakdown
Detection Challenge (DBDC) [7] is an OQ task, the offi-
cial evaluation measures used there for comparing two
distributions were MSE and JSD, which cannot consider
the ordinal nature of classes (i.e., nominal quantification
measures). Subsequently, the organisers of DBDC used
their Japanese and English DBDC task data to compare
these official DBDC measures with NMD and RSNOD
in terms of system ranking consistency and discrimina-
tive power; they reported that RSNOD was the overall
winner [18].

3. Quantification Measures
Table 1 provides a brief qualitative summary of the mea-
sures considered in this study. Due to lack of space, we
refer the reader to Sakai [1] for the definitions of nominal
quantification measures; here, we define only the ordinal
quantification measures.

Let 𝐶 denote the set of ordinal classes, represented by
consecutive integers for convenience. Let 𝑝𝑖 denote the



estimated probability for Class 𝑖, so that
∑︀

𝑖∈𝐶 𝑝𝑖 = 1.
Similarly, let 𝑝*𝑖 denote the gold probability. We also
denote the entire probability mass functions by 𝑝 and 𝑝*,
respectively. Let cp𝑖 =

∑︀
𝑘≤𝑖 𝑝𝑘 , and cp*

𝑖 =
∑︀

𝑘≤𝑖 𝑝
*
𝑘 .

NMD is given by [14]:

NMD(𝑝, 𝑝*) =

∑︀
𝑖∈𝐶 |cp𝑖 − cp*

𝑖 |
|𝐶| − 1

. (1)

We now define R(S)NOD. First, let the Distance-
Weighted sum of squares for Class 𝑖 be:

DW 𝑖 =
∑︁
𝑗∈𝐶

𝛿𝑖𝑗(𝑝𝑗 − 𝑝*𝑗 )
2 , 𝛿𝑖𝑗 = |𝑖− 𝑗| . (2)

DW𝑖 was designed to quantify the overall error from the
viewpoint of a particular gold class 𝑖: it tries to measure
how much of its probability 𝑝*𝑖 has been misallocated
to other classes 𝑗 ∈ 𝐶(𝑗 ̸= 𝑖), by assuming that the
difference between 𝑝𝑗 and 𝑝*𝑗 is directly caused by a mis-
allocation of part of 𝑝*𝑖 ; the weight 𝛿𝑖𝑗 is designed to
penalise the misallocation based on the distance between
the ordinal classes. Note that the 𝛿𝑖𝑗 in Eq. 2 assumes
equidistance; we shall discuss an alternative in Section 6.

Let 𝐶* = {𝑖 ∈ 𝐶|𝑝*𝑖 > 0}. That is, 𝐶*(⊆ 𝐶) is the
set of classes with a non-zero gold probability. Order-
aware Divergence is defined as:

OD(𝑝 ‖ 𝑝*) =
1

|𝐶*|
∑︁
𝑖∈𝐶*

DW 𝑖 , (3)

with its symmetric version:

SOD(𝑝, 𝑝*) =
OD(𝑝 ‖ 𝑝*) +OD(𝑝* ‖ 𝑝)

2
. (4)

RNOD and RSNOD are defined as:

RNOD(𝑝 ‖ 𝑝*) =

√︃
OD(𝑝 ‖ 𝑝*)

|𝐶| − 1
, (5)

RSNOD(𝑝, 𝑝*) =

√︃
SOD(𝑝, 𝑝*)

|𝐶| − 1
. (6)

Note that Eq. 3 averages over𝐶* rather than𝐶 because
of what DW𝑖 is meant to represent, as discussed above.
However, it is also possible to define a variant of OD as
follows; let us call it ADW (Average DW𝑖):

ADW (𝑝, 𝑝*) =
1

|𝐶|
∑︁
𝑖∈𝐶

DW 𝑖 . (7)

From Eqs. 2 and 7, it is clear that ADW is symmetric.2 A
root-normalised measure based on ADW, which we call

2Similarly, it is clear from Eqs. 2 and 3 that 𝐶* = 𝐶 (i.e., there
is no gold probability that is zero) is a sufficient condition for OD to
be symmetric [13]. Another sufficient condition for guaranteeing
the symmetry of OD is: |𝐶*| = 1 and |{𝑝𝑖 ∈ 𝐶 | 𝑝𝑖 > 0}| =
1 (i.e., both the gold and estimated distributions have exactly one
positive probability).

RNADW (Root Normalised ADW) can also be defined:

RNADW(𝑝, 𝑝*) =

√︃
ADW(𝑝, 𝑝*)

|𝐶| − 1
. (8)

We will evaluate this variant in our future work.
When there are only two classes (|𝐶| = 2) and

therefore the distinction between nominal and ordi-
nal classes becomes unnecessary, it can be shown that
NMD(𝑝, 𝑝*) = RNOD(𝑝 || 𝑝*) = RNOD(𝑝* || 𝑝)(=
RSNOD(𝑝, 𝑝*)). See the Appendix for a proof.

OD-based measures tend to emphasise errors near ei-
ther end of the ordinal scale, as the following example
illustrates. Consider a situation with |𝐶| = 4 ordinal
classes and a uniform gold distribution: 𝑝*𝑖 = 0.25(𝑖 =
1, . . . , 4). If we compare System A which returns 𝑝1 =
𝑝4 = 0.25, 𝑝2 = 0.35, 𝑝3 = 0.15 and System B which
retruns 𝑝1 = 𝑝2 = 0.25, 𝑝3 = 0.35, 𝑝4 = 0.15, then
from Eq. 2, DW1 = DW4 = 0.03,DW2 = DW3 = 0.01
and therefore OD = 0.020 for System A; whereas,
DW1 = 0.05,DW2 = 0.03,DW3 = DW4 = 0.01 and
therfore OD = 0.025 for System B. Hence System A
is considered slightly better. On the other hand, it can
easily be verified that A and B are considered equally
effective in terms of NMD. It should be noted that this
difference does not say which measure is “correct” as
an OQ evaluation measure, as both measures take the
ordinal nature of the classes into account. (Similarly, we
cannot say whether (say) JSD is superior to NVD for a
nominal quantification task just because they differ.)

4. Data
Table 2 provides an overview of the eight OQ task data
sets that we used for our analysis. The three STC-3
(Short Text Conversation 3) data sets [8] were not used in
Sakai [1], but the specifications of the Dialogue Quality
(DQ) subtask at STC-3 are identical to those of DialEval-1
(Dialogue Evaluation 1) [9]. As can be seen, all data sets
come with five ordinal classes. For the two SemEval data
sets, the classes are tweet polarities, namely, highly nega-
tive, negative, neutral, positive, highly positive [5, 6]. For
the six NTCIR data sets, the classes are five-point scale
dialogue quality ratings (−2 through 2) based on three
different viewpoints, namely, A-score (task accomplish-
ment), E-score (dialogue effectiveness), and S-score (cus-
tomer satisfaction) [8, 9]. Hence, for example, DialEval-1
DQ-A is the data set containing the gold and estimated
probability distributions for the A-score estimation “sub-
subtask” of the NTCIR-15 DialEval-1 task. The NTCIR
dialogue data were provided in both Chinese and English
(manually translated from the original Chinese text) to
the participants, and the participants were allowed to
submit Chinese and/or English runs. On the other hand,



Table 2
Eight data sets used in our experiments (C: Chinese; E: English; C+E: runs for both languages combined).

Short name Evaluation Task (Subtask) Task Language #Ordinal Test data #Runs used
in this paper venue Type classes sample size

Sem16T4E SemEval-2016 Task 4 (Subtask E) OQ E 5 100 12

Sem17T4E SemEval-2017 Task 4 (Subtask E) OQ E 5 125 14

STC-3 NTCIR-14 Short Text OQ C+E 5 390 19 (10+9)
Conversation 3

DQ-{A, E, S} (2019) (Dialogue Quality)

DialEval-1 NTCIR-15 Dialogue Evaluation 1 OQ C+E 5 300 22 (13+9)
DQ-{A, E, S} (2020) (Dialogue Quality)

Table 3
Discriminative powers of ordinal quantification measures (NMD, RSNOD, RNOD) and nominal quantification measures (NVD,
RNSS, JSD) at significance level 𝛼 = 0.05. “#all” is the number of system pairs compared; “#sig” is the number of systems
pairs with a statistically significant difference according to a randomised Tukey HSD test with 𝐵 = 5, 000 trials. Percentages
over or equal to 50 are shown in bold; Those below 40 are underlined.

NMD RSNOD RNOD
𝑆𝐷 𝑇𝐷 % 𝑆𝐷 𝑇𝐷 % 𝑆𝐷 𝑇𝐷 %

Sem16T4E 38 66 57.6 32 66 48.5 35 66 53.0
Sem17T4E 48 91 52.7 40 91 44.0 35 91 38.5

STC-3 DQ-A 71 171 41.5 67 171 39.2 68 171 39.8
STC-3 DQ-E 68 171 39.8 72 171 42.1 66 171 38.6
STC-3 DQ-S 65 171 38.0 66 171 38.6 61 171 35.7

DialEval-1 DQ-A 84 231 36.4 119 231 51.5 133 231 57.6
DialEval-1 DQ-E 116 231 50.2 116 231 50.2 117 231 50.6
DialEval-1 DQ-S 82 231 35.5 115 231 49.8 125 231 54.1

POOLED 572 1363 42.0 627 1363 46.0 640 1363 47.0

NVD RNSS JSD
𝑆𝐷 𝑇𝐷 % 𝑆𝐷 𝑇𝐷 % 𝑆𝐷 𝑇𝐷 %

Sem16T4E 31 66 47.0 37 66 56.1 32 66 48.5
Sem17T4E 40 91 44.0 37 91 40.7 35 91 38.5

STC-3 DQ-A 68 171 39.8 67 171 39.2 64 171 37.4
STC-3 DQ-E 66 171 38.6 65 171 38.0 64 171 37.4
STC-3 DQ-S 61 171 35.7 65 171 38.0 64 171 37.4

DialEval-1 DQ-A 138 231 59.7 113 231 48.9 135 231 58.4
DialEval-1 DQ-E 116 231 50.2 115 231 49.8 115 231 49.8
DialEval-1 DQ-S 120 231 51.9 129 231 55.8 127 231 55.0

POOLED 640 1363 47.0 628 1363 46.1 636 1363 46.7

the gold distributions were constructed solely based on
the original Chinese dialogues. Hence, both Chinese and
English runs are evaluated using the same gold distribu-
tions. The gold distributions of the STC-3 and DialEval-1
data were constructed based on votes from 19 and 20
assessors for each dialogue, respectively [8].

The NTCIR data sets are larger than the SemEval data
sets both in terms of the test data sample size 𝑛 and
in terms of the number of runs to be evaluated. Hence
our results with the NTCIR data may be more reliable,
especially regarding statistical significance test results.

5. Analysis

5.1. Pooled Discriminative Power
Sakai [1] presented discriminative power curves [16] for
NMD, R(S)NOD, NVD, RNS, and JSD using the SemEval
and DialEval-1 data sets. Given a data set with submitted
runs, a discriminative power curve is obtained by obtain-
ing a 𝑝-value for every system pair (using a randomised
Tukey HSD test with 𝐵 = 5000 trials [19]) and sorting
them in descending order. Curves that are closer to the



origin represent discriminative measures, i.e., those that
can give us confident conclusions from experiments. A
highly discriminative measure is not necessarily “correct,”
but we do want measures to be discriminative to some ex-
tent; otherwise, we will not be able to conclude anything
from experiments [20].

Here, we revisit Sakai’s results by focusing on the
commonly-used significance level of 𝛼 = 0.05, to view
and summarise the discriminative power results in a more
quantitative manner. More specifically, for data set 𝐷,
let DP𝐷 = 𝑆𝐷/𝑇𝐷 , where 𝑇𝐷 is the total number of
system pairs (𝑇𝐷 = 𝑚𝐷(𝑚𝐷 − 1)/2 if there are 𝑚𝐷

systems) and 𝑆𝐷(≤ 𝑇𝐷) is the number of those found
to be statistically significantly different at 𝛼. To provide
a quantitative summary of discriminative power results
over a set 𝒟 = {𝐷} of data sets, we define pooled dis-
criminative power as follows:

PDP =
∑︁
𝐷∈𝒟

𝑆𝐷/
∑︁
𝐷∈𝒟

𝑇𝐷 . (9)

We also report on additional results with the three STC-3
data sets; these were not discussed in Sakai [1].

Table 3 shows the individual and pooled discrimina-
tive power results for each of our eight OQ data sets.
For example, for NMD, the discriminative power with
Sem16T4E is 38/66 = 57.6% and higher than the other
measures, but as it suffers with the NTCIR data, the
pooled discriminative power is only 42.0%. In particular,
note that NMD performs very poorly with DialEval-1 DQ-
A and DQ-S data sets: with DialEval-1 DQ-A, NMD finds
only 84 statistically significant differences at 𝛼 = 0.05,
while RSNOD, RNOD, NVD, RNSS, and JSD find as many
as 119, 133, 138, 113, and 135, respectively; similarly, with
DialEval DQ-S, NMD finds only 82 statistically signifi-
cant differences at 𝛼 = 0.05, while RSNOD, RNOD, NVD,
RNSS, and JSD find as many as 115, 125, 120, 129, and 127,
respectively. This apparent breakdown of NMD for these
two data sets was also visualised in the discriminative
curves of Sakai [1, Figure 2].

Our findings in terms of pooled discriminative power
are:

• The most discriminative measures are RNOD and
NVD (but recall that NVD is a nominal quantifi-
cation measure).

• RNOD outperforms NMD;
• RSNOD slightly underperforms RNOD, suggest-

ing that making the measure symmetric is not
beneficial [1].

5.2. Significance Overlaps and
Contradictions

Discriminative power only considers how many signifi-
cant differences each measure manages to obtain; it does

not examine which measures agree or disagree with each
other in terms of significance test results. This section
addresses exactly this question.

Table 4 breaks down the number of significant dif-
ferences (𝑆𝐷) shown in Table 3 by comparing the re-
sults of every pair of measures. More specifically, we
present Statistical Significance Overlaps (SSO’s), defined
as SSO = 𝑏/(𝑎+ 𝑏+ 𝑐), where 𝑎 is the number of sig-
nificant differences found with the first measure only, 𝑏
is the number of significant differences found with both
measures, and 𝑐 is the number of significant differences
found with the second measure only. That is, the 𝑆𝐷

for the first measure is 𝑎 + 𝑏, and that for the second
measure is 𝑏+ 𝑐.

If the SSO for a pair of evaluation measures is high,
that means that the two measures tend to give us similar
conclusions as to which system pairs are statistically sig-
nificantly different. However, it can be observed that SSO
is not always high, as underlined in Table 4. In particu-
lar, note that the SSOs of NMD with other measures are
particularly low for DialEval-1 DQ-A and DQ-S (Parts (f)
and (h) of the table). In Section 5.1, we have pointed
out that NMD performs very poorly with these two data
sets in terms of discriminative power. The discriminative
power results alone could mean two situations: (i) NMD
manages to find only a subset of the significant differ-
ences found by the other measures; or (ii) NMD finds
significant differences outside those found by the other
measures, and the differences found are relatively few.
Table 4(f) and (h) reveals that the truth is Situation (ii).
For example, from Table 4(h), we can see that the SSO
between NMD and RNOD is only 52.2% (with only 71
differences found significant by both measures), and that
NMD found as many as 11 significant differences that
were not considered significant by RNOD. Similarly, the
SSO between NMD and NVD is only 48.5% (with only
66 differences found significant by both measures), and
NMD found as many as 16 significant differences that
were not considered significant by NVD. This outlier
tendency of NMD is consistent with Sakai’s observation
regarding system ranking similarity [1, Table 5].

The above analysis examined the overlaps of signif-
icantly different system pairs based on two-sided tests.
However, the overlaps in fact contain a few contradic-
tions: a statistical significance contradiction occurs when
one measure says “System 𝐴 statistically significantly
outperforms System 𝐵” while another says “System 𝐵
statistically significantly outperforms System 𝐴.” Which
system outperforms another is determined by the mean
scores of 𝐴 and 𝐵 (smaller the better in our case). Al-
though such situations are very rare, we have found them
useful for understanding the properties of the measures,
as discussed below.

Table 5 shows the number of contradictions, which
can be used together with Table 4. (There were no contra-



Table 4
Statistical Significance Overlap (SSO) for every pair of measures (𝛼 = 0.05). SSO= 𝑏/(𝑎+ 𝑏+ 𝑐) (in percentages) where 𝑎:
#significant with Measure 1 only; 𝑏: #significant with both Measures; 𝑐: #significant with Measure 2 only. 𝑎, 𝑏, 𝑐 are shown
as “(𝑎/𝑏/𝑐).” Percentages over or equal to 90 are shown in bold; those below 70 are underlined.

(a) Sem16T4E RSNOD RNOD NVD RNSS JSD

NMD 70.7 (9/29/3) 65.9 (9/29/6) 76.9 (8/30/1) 59.6 (10/28/9) 79.5 (7/31/1)
RSNOD - 86.1 (1/31/4) 85.3 (3/29/2) 76.9 (2/30/7) 73.0 (5/27/5)
RNOD - - 78.4 (6/29/2) 89.5 (1/34/3) 67.5 (8/27/5)
NVD - - - 70.0 (3/28/9) 85.3 (2/29/3)
RNSS - - - - 60.5 (11/26/6)

(b) Sem17T4E RSNOD RNOD NVD RNSS JSD

NMD 76.0 (10/38/2) 66.0 (15/33/2) 76.0 (10/38/2) 63.5 (15/33/4) 72.9 (13/35/0)
RSNOD - 87.5 (5/35/0) 90.5 (2/38/2) 79.1 (6/34/3) 87.5 (5/35/0)
RNOD - - 87.5 (0/35/5) 89.5 (1/34/3) 84.2 (3/32/3)
NVD - - - 83.3 (5/35/2) 87.5 (5/35/0)
RNSS - - - - 75.6 (6/31/4)

(c) STC-3 DQ-A RSNOD RNOD NVD RNSS JSD

NMD 91.7 (5/66/1) 95.8 (3/68/0) 95.8 (3/68/0) 94.4 (4/67/0) 90.1 (7/64/0)
RSNOD - 90.1 (3/64/4) 90.1 (3/64/4) 88.7 (4/63/4) 84.5 (7/60/4)
RNOD - - 100.0 (0/68/0) 98.5 (1/67/0) 94.1 (4/64/0)
NVD - - - 98.5 (1/67/0) 94.1 (4/64/0)
RNSS - - - - 95.5 (3/64/0)

(d) STC-3 DQ-E RSNOD RNOD NVD RNSS JSD

NMD 94.4 (0/68/4) 97.1 (2/66/0) 97.1 (2/66/0) 95.6 (3/65/0) 94.1 (4/64/0)
RSNOD - 91.7 (6/66/0) 91.7 (6/66/0) 90.3 (7/65/0) 88.9 (8/64/0)
RNOD - - 100.0 (0/66/0) 98.5 (1/65/0) 97.0 (2/64/0)
NVD - - - 98.5 (1/65/0) 97.0 (2/64/0)
RNSS - - - - 98.5 (1/64/0)

(e) STC-3 DQ-S RSNOD RNOD NVD RNSS JSD

NMD 98.5 (0/65/1) 93.8 (4/61/0) 93.8 (4/61/0) 100.0 (0/65/0) 98.5 (1/64/0)
RSNOD - 92.4 (5/61/0) 92.4 (5/61/0) 98.5 (1/65/0) 97.0 (2/64/0)
RNOD - - 100.0 (0/61/0) 93.8 (0/61/4) 92.3 (1/60/4)
NVD - - - 93.8 (0/61/4) 92.3 (1/60/4)
RNSS - - - - 98.5 (1/64/0)

(f) DialEval-1 DQ-A RSNOD RNOD NVD RNSS JSD

NMD 65.0 (4/80/39) 55.0 (7/77/56) 56.3 (4/80/58) 39.7 (28/56/57) 62.2 (0/84/51)
RSNOD - 81.3 (6/113/20) 82.3 (3/116/22) 65.7 (27/92/21) 77.6 (8/111/24)
RNOD - - 92.2 (3/130/8) 83.6 (21/112/1) 90.1 (6/127/8)
NVD - - - 76.8 (29/109/4) 92.3 (7/131/4)
RNSS - - - - 74.6 (7/106/29)

(g) DialEval-1 DQ-E RSNOD RNOD NVD RNSS JSD

NMD 77.1 (15/101/15) 80.6 (12/104/13) 82.7 (11/105/11) 81.9 (12/104/11) 81.9 (12/104/11)
RSNOD - 94.2 (3/113/4) 93.3 (4/112/4) 92.5 (5/111/4) 92.5 (5/111/4)
RNOD - - 97.5 (2/115/1) 98.3 (2/115/0) 98.3 (2/115/0)
NVD - - - 99.1 (1/115/0) 99.1 (1/115/0)
RNSS - - - - 100.0 (0/115/0)

(h) DialEval-1 DQ-S RSNOD RNOD NVD RNSS JSD

NMD 60.2 (8/74/41) 52.2 (11/71/54) 48.5 (16/66/54) 50.7 (11/71/58) 56.0 (7/75/52)
RSNOD - 77.8 (10/105/20) 75.4 (14/101/19) 80.7 (6/109/20) 80.6 (7/108/19)
RNOD - - 92.9 (7/118/2) 91.0 (4/121/8) 90.9 (5/120/7)
NVD - - - 91.0 (4/121/8) 90.9 (5/120/7)
RNSS - - - - 91.0 (7/122/5)



Table 5
Statistical Significance Contradictions at 𝛼 = 0.05. (There were no contradictions in the Sem16T4E, Sem17T4E, and STC-3
DQ-E results.)

(I) STC-3 DQ-A RSNOD RNOD NVD RNSS JSD

NMD 0 4 4 4 4
RSNOD - 0 0 0 0
RNOD - - 0 0 0
NVD - - - 0 0
RNSS - - - - 0

(II) STC-3 DQ-S RSNOD RNOD NVD RNSS JSD

NMD 0 0 0 4 4
RSNOD - 0 0 4 4
RNOD - - 0 0 0
NVD - - - 0 0
RNSS - - - - 0

(III) DialEval-1 DQ-A RSNOD RNOD NVD RNSS JSD

NMD 0 8 6 8 8
RSNOD - 8 6 8 8
RNOD - - 0 0 0
NVD - - - 0 0
RNSS - - - - 0

(IV) DialEval-1 DQ-E RSNOD RNOD NVD RNSS JSD

NMD 0 4 4 4 4
RSNOD - 0 0 0 0
RNOD - - 0 0 0
NVD - - - 0 0
RNSS - - - - 0

(V) DialEval-1 DQ-S RSNOD RNOD NVD RNSS JSD

NMD 0 4 0 8 8
RSNOD - 4 0 8 8
RNOD - - 0 0 0
NVD - - - 0 0
RNSS - - - - 0

dictions in the Sem16T4E, Sem17T4E, and STC-3 DQ-E
results.) For example, while Table 4(c) shows that NMD
and RNOD detected a statistical significance for the same
68 run pairs from STC-3 DQ-A (with an SSO of 95.8%), Ta-
ble 5(I) shows that 4 of them were actually contradictions.
Hence, if we choose to remove the contradictions prior to
computing the SSO, it would be 64/(3+64+0) = 95.5%.
However, “practical” contradictions in the five NTCIR
data sets occur less frequently than what Table 5 suggests,
as explained below.

Table 6 provides an exhaustive list of the exact run
pairs listed as contradictions in Table 5. For example,
Table 6(I) reveals that the 4 contradictions mentioned in
Table 5(a) are:

• A_BL-popularity-C vs. A_BL-uniform-C
• A_BL-popularity-C vs. A_BL-uniform-E
• A_BL-popularity-E vs. A_BL-uniform-C

• A_BL-popularity-E vs. A_BL-uniform-E

However, these essentially constitute one contradiction,
as the contents of the Chinese and English runs A_BL-
popularity-{C,E} are the same, as are those of A_BL-
uniform-{C,E}. These are the Popularity and Uniform
baseline runs provided by the organisers of the NTCIR
tasks, which rely on the following simple strategies.3

Popularity Access the gold data, and return an “esti-
mated” distribution where the class that is most
frequent in the gold distribution is given a prob-
ability of 1, and others are given a 0. Note that
this is a type of oracle run.

Uniform Always return a uniform distribution.

3The SemEval tasks also had a few baseline runs, including a
run that always assigns a probability of 1 to the Positive class [5, 6].
They did not have Popularity and Uniform baselines.



Table 6
Details of contradicting run pairs, breaking down the numbers shown in Table 5. Measure 1 says Run 1 statistically signifi-
cantly outperforms Run 2 while Measure 2 says Run 1 statistically significantly underperforms Run 2.

(I) STC-3 DQ-A

NMD (Measure 1) contradicts with other measures for the following run pairs:
With RNOD, NVD, RNSS, JSD (Measure 2):
A_BL-popularity-{C,E} and A_BL-uniform-{C,E}

(II) STC-3 DQ-S

NMD and RSNOD (Measure 1) contradict with other measures for the following run pairs:
With RNSS and JSD (Measure 2):
S_BL-popularity-{C,E} S_BL-uniform-{C,E}

(III) DialEval-1 DQ-A

NMD and RSNOD (Measure 1) contradict with other measures for the following run pairs:
With RNOD, RNSS and JSD (Measure 2):
A_BL-popularity-{C,E} and A_BL-uniform-{C,E}
A_BL-popularity-{C,E} and A_NKUST-run0-C
A_BL-popularity-{C,E} and A_NKUST-run0-E
With NVD:
A_BL-popularity-{C,E} and A_BL-uniform-{C,E}
A_BL-popularity-{C,E} and A_NKUST-run0-C

(IV) DialEval-1 DQ-E

NMD (Measure 1) contradicts with other measures for the following run pairs:
With RNOD, NVD, RNSS, and JSD (Measure 2):
E_BL-popularity-{C,E} and E_BL-uniform-{C,E}

(V) DialEval-1 DQ-S

NMD and RSNOD (Measure 1) contradict with other measures for the following run pairs:
With RNOD (Measure 2):
S_BL-popularity-{C,E} and S_NKUST-run0-C
S_BL-popularity-{C,E} and S_NKUST-run0-E
With RNSS and JSD (Measure 2):
S_BL-popularity-{C,E} and S_BL-uniform-{C,E}
S_BL-popularity-{C,E} and S_NKUST-run0-C
S_BL-popularity-{C,E} and S_NKUST-run0-E

Note that the prefix “A_BL” means that the run is a base-
line for the A-score estimation subsubtask; similar base-
line runs are present in the E-score and S-score estimation
subsubtask data from NTCIR, with prefixes “E_BL” and
“S_BL.”

Sakai [1] kept both the Chinese and English versions
of the baselines in his experiments even though their
contents are the same, because they have different file
names and were listed as distinct runs in the official
evaluations [8, 9]. Hence we follow suit. However, it
is clear from the above that the contradiction in STC-3
DQ-A is essentially a single instance: while NMD con-
cludes that Popularity statistically significantly outper-
forms Uniform, RNOD, NVD, RNSS, and JSD concludes
the exact opposite. Similarly, Table 6(II) reveals that the 4
contradictions shown in Table 5 also concerns Popularity
vs. Uniform: NMD and RSNOD conclude that Popular-
ity statistically significantly outperforms Uniform, while

RNSS and JSD conclude the exact opposite. As for the
results for DialEval-1 DQ-E (Table 6(IV)), they are essen-
tially identical to those of STC-3 DQ-A (Table 6(I)).

In Table 6(III) and (V), we see non-baseline runs. Note
that, for example, A_NKUST-run0-C and A_NKUST-
run0-E are actually different runs, unlike the situations
with the aforementioned baseline runs. Thus, for exam-
ple, the 8 contradictions shown in Table 5(III) between
NMD/RSNOD and RNOD/RNSS/JSD are essentially for
the following 3 cases, as shown in Table 6(III).

• A_BL-popularity-{C,E} vs. A_BL-uniform-{C,E} (4
run combinations)

• A_BL-popularity-{C,E} vs. A_NKUST-run0-C (2
run combinations)

• A_BL-popularity-{C,E} vs. A_NKUST-run0-E (2
run combinations)

In every case, NMD and RSNOD conclude that Popular-



ity statistically significantly outperforms the other run,
which is in direct disagreement with the other measures.

We also observe that RSNOD behaves similarly to
NMD from Table 5(II), (III), and (V) and the accompa-
nying details in Table 6(II), (III), and (V). Moreover, there
are no contradictions between NMD and RSNOD. These
results suggest that the properties of RSNOD lie some-
where between NMD and RNOD: this is in line with
Sakai’s observation regarding the system ranking simi-
larity for the DialEval-1 DQ-A and DQ-S data [1, Table 5].
Put another way, introducing symmetry appears to bring
RNOD closer to NMD.

Our findings regarding statistical significance overlap
and contradictions can be summarised as follows.

• The sets of significant differences found by NMD
are generally not subsets of those found by the
other, more discriminative measures. NMD be-
haves markedly differently from other measures
regarding which system pairs are statistically sig-
nificant.

• There are a few contradictions between NMD and
four other measures (RNOD, NVD, RNSS, JSD)
in terms of significance test results, and all of
these contradictions involve a Popularity baseline,
which access the gold distributions. NMD tends
to rate Popularity higher than Uniform, thus di-
rectly contradicting the other measures.

• From the viewpoint of contradictions, RSNOD
behaves somewhat similarly to NMD.

5.3. Popularity vs. Uniform baselines
In Section 5.2, we showed that NMD can contradict with
RNOD, NVD, RNSS or JSD in terms of statistical signif-
icance. In particular, we have seen cases where NMD
favours Popularity over Uniform, contrary to the con-
clusions of the other measures. We find this behaviour
of NMD generally intuitive, as Popularity accesses the
gold data and utilises that knowledge, while Uniform is
noninformative and practically useless. However, note
that whether Popularity should actually be rated higher
depends on what the gold distribution looks like: for ex-
ample, if the gold distributions is almost flat, we would
like the measure to prefer Uniform over Popularity.

To examine the above tendency of NMD, this section
focusses on the comparison between Popularity and Uni-
form. First, we focus on contradictions regarding Pop-
ularity vs. Uniform from the DialEval-1 DQ-A data set,
as we found the highest number of conflicts (not limited
to Popularity vs. Uniform) in this data set among the
five data sets shown in Table 5-6. For each evaluation
measure 𝑀 and for each dialogue, we first compute the
score delta (e.g. Δ𝑁𝑀𝐷):

Δ𝑀 = 𝑀(Popularity)−𝑀(Uniform) , (10)

where 𝑀(∙) is the score according to measure 𝑀 for
a run’s estimated distribution for a particular dialogue.
Note that, since these measures give smaller scores to
better systems, a negative delta means Popularity is pre-
ferred while a positive delta means Uniform is preferred.

Figure 1 shows scatter plots of score deltas by com-
paring NMD with NVD, RNSS, JSD, and RNOD; Figure 2
shows similar scatterplots by comparing RNOD with
NVD, RNSS, and JSD. The two figures are arranged to fa-
cilitate comparisons across NMD and RNOD. (To reduce
the number of measure combinations, RSNOD is omitted
in this analysis.) Within each green box, the number of
instances in the 2nd and 4th quadrants (i.e., dialogues for
which two measures disagree as to which of Popularity
and Uniform is better) is shown, together with a Pear-
son correlation with a 95%CI. From the figures, we can
observe the following.

• The correlations between NMD and the nominal
quantification measures (NVD, RNSS, and JSD)
are lower compared to those between RNOD and
the nominal quantification measures, as the Pear-
son correlations and the scatterplots show.

• More importantly, NMD disagrees more often
with the nominal quantification measures than
RNOD does. All of these disagreements of NMD
happen in the 2nd quadrant: that is, while NMD
says that Popularity outperforms Uniform, the
other three measures say otherwise.

• From Figure 1(d), NMD and RNOD disagree for
a total of 77 dialogues: for 75 of them, NMD
says that Popularity outperforms Uniform while
RNOD says otherwise; for the remaining 2 dia-
logues, NMD says that Popularity underperforms
Uniform while RNOD says otherwise.

In summary, for 62-78 dialogues out of 300 (21-26%), NMD
rates Popularity higher than Uniform, disagreeing with
the other measures.
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Figure 1: Scatterplot of per-dialogue score deltas (A_BL-
popularity − A_BL-uniform from DialEval-1 DQ-A): NMD vs
NVD/RNSS/JSD/RNOD. Number of instances in the 2nd and
4th quadrants, as well as Pearson correlations (with 95%CIs,
𝑛 = 300), are also shown.
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Figure 2: Scatterplot of per-dialogue score deltas (A_BL-
popularity − A_BL-uniform from DialEval-1 DQ-A): RNOD
vs NVD/RNSS/JSD. Number of instances in the 2nd and 4th
quadrants, as well as Pearson correlations (with 95%CIs, 𝑛 =
300), are also shown.



Table 7
Per-dialogue wins and losses between the Popularity baselines and the Uniform baselines. The higher number in each condi-
tion is shown in bold.

NMD RSNOD RNOD NVD RNSS JSD
uni pop uni pop uni pop uni pop uni pop uni pop

STC-3 DQ-A 175 197 224 166 265 125 274 116 297 93 301 89
STC-3 DQ-E 257 127 294 96 331 58 328 62 340 50 347 43
STC-3 DQ-S 109 268 177 213 229 161 224 166 257 133 255 135
DialEval-1 DQ-A 97 185 164 136 185 114 172 113 186 86 192 108
DialEval-1 DQ-E 128 155 174 124 213 85 198 77 226 42 229 71
DialEval-1 DQ-S 79 209 133 167 177 123 157 120 186 90 191 109

TOTAL 845 1141 1166 902 1400 666 1353 654 1492 494 1515 555

Whether a measure prefers Popularity or Uniform de-
pends on what the gold distribution for each dialogue
looks like. To closely examine situations where NMD
favours Popularity while disagreeing with the other mea-
sures, we shall discuss two actual dialogues from the
DialEval-1 DQ-A data below, which were selected as fol-
lows. First, because we are primarily interested in how
and why NMD and RNOD behave differently, we ranked
the 300 dialogues by how the ΔNMD and ΔRNOD values
differ, that is, 𝑑 = ΔNMD−ΔRNOD.

Figure 3 shows the gold, Popularity, and Uniform dis-
tributions for the top two dialogues in terms of 𝑑. In Fig-
ure 3(a) (181th dialogue, 𝑑 = −0.150−0.115 = −0.265),
it can be observed that Class 1 has the highest gold prob-
ability, and therefore that Popularity sets the probabil-
ity of Class 1 to be 1. This is how Popularity “cheats.”
As shown in the pink box, all measures except NMD
have positive Δ𝑀 ’s; that is, they say that Popularity
underperforms Uniform. In contrast, NMD prefers Pop-
ularity. (Recall that for quantification measure scores,
smaller means better.) In Figure 3(b) (18th dialogue,
𝑑 = 0 − 0.263 = −0.263), Class −2 has the highest
gold probability. For this dialogue, NMD says that Popu-
larity and Uniform are equally effective, while all other
measures prefer Uniform. It is clear from these examples
that it is difficult to say whether one measure is “correct”
or not; we can only say that NMD tends to prefer Popu-
larity over Uniform compared to the other measures.

Using the DialEval-1 DQ-A data set, we have so far
discussed how NMD tends to favour Popularity over
Uniform. To generalise this observation, Table 7 shows
how often each measure prefers one of the two base-
lines, for each of the six NTCIR data sets that contain
these baselines. For example, NMD prefers Uniform for
175 dialogues and prefers Popularity for 197 dialogues
from the DTC-3 DQ-A data set. (For the remaining
390− 175− 197 = 18 dialogues, the two baselines are
tied.) It can be observed from the TOTAL row that while
RNOD, NVD, RNSS, and JSD prefer Uniform far more
often (where the probability that Popularity is preferred
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(b) 18th dialogue:
ΔNMD = 0
ΔRSNOD = 0.154
ΔRNOD = 0.263
ΔNVD = 0.250
ΔRNSS = 0.271
ΔJSD = 0.284

Figure 3: Top two dialogues from DialEval-1 DQ-A when
ranked by 𝑑 = ΔNMD − ΔRNOD: 181th dialogue (𝑑 =
−0.265) and 18th dialogue (𝑑 = −0.263).

is far below 50%), NMD prefers Popularity more often
than it prefers Uniform. As for RSNOD, it does prefer
Uniform more often just like RNOD and others, but the
tendency is less clear; again, its property lies somewhere
between NMD and RNOD.



6. Conclusions
The present study re-examined the OQ measures (NMD
and R(S)NOD) along with nominal quantification mea-
sures (NVD, RNSS, and JSD) using SemEval and NTCIR
data sets, using statistical significance test results. Our
main findings are as follows.

• According to our pooled discriminative power
results (Table 3), the most discriminative mea-
sures are RNOD and NVD (but recall that NVD
is a nominal quantification measure and is not
appropriate for OQ).

• The sets of statistically significant differences
found by NMD are generally not subsets of those
found by other, more discriminative measures
like RNOD.

• NMD sometimes contradicts with RNOD and
the nominal quantification measures in statistical
terms, by preferring a Popularity baseline over a
Uniform baseline.

The tendency of NMD to rate Popularity higher than
Uniform is generally intuitive, since the former “cheats”
by accessing the gold data while the latter is the laziest
approach possible. However, it is difficult to say whether
NMD is more appropriate than RNOD, as the preference
between Popularity and Uniform should depend on what
the gold distribution looks like (e.g., Is it almost flat?).
On the other hand, the strengths of RNOD are that it is
statistically stable, as demonstrated in terms of system
ranking consistency [1] and pooled discriminative power.
Based on these arguments, we recommend using both
RNOD and NMD for evaluating OQ systems, to examine
them from multiple angles.

Our future work includes exploring variants of RNOD.
More specifically, while Eq. 2 relies on 𝛿𝑖𝑗 = |𝑖− 𝑗| and
therefore assumes equidistance, an alternative 𝛿𝑖𝑗 that is
free from this assumption could be considered. Inspired
by the distance function used in Krippendorff’s alpha for
ordinal classes [21, 22], one possibility is:

𝛿𝑖𝑗 =

⎛⎝ max(𝑖,𝑗)∑︁
𝑘=min(𝑖,𝑗)

𝑝*𝑘

⎞⎠−
𝑝*𝑖 + 𝑝*𝑗

2
. (11)

That is, we could utilise the gold propabilities that lie
between Classes 𝑖 and 𝑗 to define the distance. This can
also be combined with the RNADW measure that we
defined in Section 3.
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A. Proof That RNOD equals NMD
when |𝐶| = 2.

Note that cp1 = 𝑝1 and cp*
1 = 𝑝*1 in general. Further-

more, when |𝐶| = 2, note that cp2 = cp*
2 = 1. Hence,

from Eq. 1,

NMD(𝑝, 𝑝*) = |𝑐𝑝1 − 𝑐𝑝*1|+ |𝑐𝑝2 − 𝑐𝑝*2|
= |𝑝1 − 𝑝*1|+ 0 = |𝑝1 − 𝑝*1| . (12)

On the other hand, note that when |𝐶| = 2, (𝑝2 −
𝑝*2)

2 = (1 − 𝑝1 − 1 + 𝑝*2)
2 = (𝑝1 − 𝑝*1)

2. To com-
pute RNOD, the following three cases need to be con-
sidered. Case 1 when 𝑝*1 > 0 and 𝑝*2 > 0: from Eq. 3,
OD(𝑝 || 𝑝*) = (DW1+DW2)/2 = ((𝑝2−𝑝*2)

2+(𝑝1−
𝑝*1)

2)/2 = 2(𝑝1 − 𝑝*1)
2/2 = (𝑝1 − 𝑝*1)

2. Hence from
Eq. 5,

RNOD(𝑝 || 𝑝*) =
√︀

OD(𝑝 || 𝑝*) = |𝑝1 − 𝑝*1| . (13)

Case 2 when 𝑝*1 = 1 and 𝑝*2 = 0: from Eq. 3, OD(𝑝 ||
𝑝*) = DW1 = (𝑝2 − 𝑝*2)

2 = (𝑝1 − 𝑝*1)
2. Therefore,

Eq 14 holds for this case as well. Case 2 when 𝑝*1 = 0
and 𝑝*2 = 1: from Eq. 3, OD(𝑝 || 𝑝*) = DW1 = (𝑝1 −
𝑝*1)

2 and Eq 14 holds for this case as well. In summary,
NMD(𝑝, 𝑝*) = RNOD(𝑝 || 𝑝*).

Finally, following similar steps as above, we can also
obtain:

RNOD(𝑝* || 𝑝) =
√︀

OD(𝑝* || 𝑝) = |𝑝1 − 𝑝*1| . (14)

In summary, NMD(𝑝, 𝑝*) = RNOD(𝑝 || 𝑝*) =
RNOD(𝑝* || 𝑝) when |𝐶| = 2. Q.E.D.
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