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Abstract
A pairs trading strategy (PTS) constructs a market-neutral portfolio whose value typically moves back and forth around a
mean price level; investors short (long) the portfolio when its value reaches the upside (downside) opening threshold and
close the position when the value reverts to the mean to earn the price difference. Recent machine learning models select the
open and stop-loss thresholds either heuristically or chosen from a limited set, which significantly limits the investment
performance. We address this by creating a wider set of open/stop-loss threshold recommendations that generally cover
all possible scenarios; but regression- or classification-based deep learning methods for recommending thresholds fail to
converge. Thus, we design a representative labeling mechanism that selects representative open and stop-loss thresholds
from all possible optimal thresholds according to the selection frequencies of the thresholds and the 𝑘-means algorithm.
Experiments suggest that training the multi-scale residual network with stock pairs relabeled by representative thresholds
yields better investment performance than other methods in the literature.
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1. Introduction
A pairs trading strategy (abbreviated as PTS hereafter)
is a popular market-neutral investment strategy intro-
duced by Wall Street econometricians no later than the
1990s. Instead of guessing at unpredictable financial mar-
ket trends, a PTS eliminates market tendency risk by
simultaneously longing one stock and shorting another
at a specific ratio. The net value of this long-short port-
folio, referred to as the “spread”, moves back and forth
around a certain mean price level without being influ-
enced by financial market trends, as suggested by the
“market-neutral” modifier. A portfolio with this mean
reverting property can be constructed by finding a pair
(or a group) of stocks whose price processes have co-
integration properties per the Johansen co-integration
test [see 1]. We long (short) the portfolio when the spread
is below (above) the mean price level to reach a lower
(higher) opening threshold, and then close the portfolio
when the spread converges to the mean level to earn the
price difference.

Although much statistical literature focuses on gener-
ating high quality stock pairs for PTS, recommendations
for a customized threshold for each stock pair have not
been well-studied. In addition, a PTS is a “statistical”

MUFin21: International Workshop on Modelling Uncertainty in the
Financial World, November 01–05, 2021, Gold Coast, Australia
Envelope-Open allenlike20@gmail.com (W. Kuo); cameldai@mail.nctu.edu.tw
(T. Dai); destiny10191019.cs05@nctu.edu.tw (W. Chang)

© 2021 Copyright for this paper by its authors. Use permitted under Creative
Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

arbitrage strategy;1 that is, the mean reverting property
occasionally fails, leading to significant loss. Thus much
literature adds a “stop-loss” threshold at which point the
portfolio is closed to stop-loss when the spread diverges
excessively from the mean level. Determining a proper
opening and stop-loss threshold for each stock pair is crit-
ical, as the spread of each stock pair has a different price
pattern that varies with changes in the financial markets.
If the opening threshold is too far from the mean level,
the likelihood to open the portfolio is too low to earn
any benefit. However, if the threshold is too close to the
mean, the resultant price differences are insufficient to
cover transaction and price slippage costs.

Recently, reinforcement learning (abbreviated as RL
hereafter) is used by Fallahpour et al. [2] and Kim and
Kim [3] to recommend open/stop-loss thresholds to im-
prove the investment performance of PTS. However, the
actions—or open/stop-loss thresholds—of their RLmodels
are either selected heuristically (with 6 actions) or chosen
from a limited set (with 39 actions), which significantly
limits the investment performance of their models as de-
scribed in our experiments. We address this by creating
a wider set of 300 open/stop-loss threshold recommen-
dations that generally cover all possible scenarios, and
then label each stock pair from the training set with one
of 300 thresholds that maximizes the PTS profit. We find
that methods based on regression- or classification-based
deep learning (abbreviated as DL hereafter) all fail to con-
verge. To resolve this problem, we develop a represen-

1See https://en.wikipedia.org/wiki/Pairs_trade.
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tative labeling mechanism that selects 25 representative
thresholds (determined by the Elbow method) to repre-
sent 300 thresholds by picking most frequently selected
thresholds or use the 𝑘-means method. Each stock pair is
then relabeled with a representative threshold. Our alter-
native to learn from the 300-label stock pairs is changed
to learn from 25-relabeled stock pairs. Experiments show
that training a multi-scale residual network (abbreviated
as ResNet) proposed by Li et al. [4] with relabeled stock
pairs facilitates smooth and quick convergence. They
also show that this representative labeling mechanism
outperforms past work.

Our paper is organized as follows: Section 2 reviews
PTS research and studies on relevant machine learning
models. In Section 3, we discuss the construction of opti-
mal open and stop-loss thresholds and the representative
labeling mechanism adopted to address the failure to
converge. Sections 4 describes how we select and in-
corporate the multi-scale ResNet into our PTS trading
model. The experimental results in Section 5 confirm the
superiority of our models. Section 6 concludes the paper.

2. Preliminaries

2.1. Literature Review
[5] shows that the techniques for finding stock pairs
eligible for PTS can be classified into five approaches.
Our stock pair generation method is based on the co-
integration approach, as Rad et al. [6] and Huck and
Afawubo [7] argue that this approach is better than other
approaches. Engle and Granger [8] and Johansen [9] de-
velop different statistical tests to determine whether the
price processes of a stock pair possess the co-integration
property; that is, there exists a linear combination of two
stock prices that make the value process of this two-stock
portfolio a stationary process. The stationary property
ensures that statistical properties such as the mean of
the value process do not change with time. Thus we can
buy (sell) the portfolio when its value is below (above)
the mean and cash out when the value converges back.
These tests are used by Vidyamurthy [10] and Rad et al.
[6] to detect stock pairs that are eligible for PTS.

[2], [3], [11], and [12] use the reinforcement learning
(RL) method to determine opening/stoploss thresholds
for PTS . Fallahpour et al. [2] enumerate 39 actions (i.e.,
39 combinations of open and stop-loss thresholds) and
reduce the threshold selection problem to a multi-armed
bandit problem solved using a single-state RL model. Our
experiments show that this naive mechanism fails to cap-
ture various properties of different stock pairs and is out-
performed by other approaches in terms of investment
results. Kim and Kim [3] instead use a deep Q-network
(DQN), which outperforms Fallahpour et al. [2]’s model.

They heuristically set six overly simplistic actions, which
significantly limits the profitability as shown later. In ad-
dition, they train each PTS-eligible stock pair with a DQN,
which necessitates a large number of DQNs. Confirming
their observations, we find that co-integration properties
for most stock pairs are not durable over a long period
of time; thus only a small amount of stock pairs con-
tain enough data to train the DQN. We instead train our
machine learning model on trading data from all stock
pairs; the resultant model recommends thresholds for all
stock pairs. Brim [11] proposes the Double-DQN with
three actions, but the low win rate limits the practical
value of the model. Xu and Tan [12] uses determinis-
tic policy gradient (DPG) to predict open and stoploss
timing for PTS and the value weights of pairs to form a
return-maximized portfolio. Hsu et al. [13] uses several
deep learning models with the opinions on social media
to predict the price movement in PTS . Threshold selec-
tion problem can be found in other domain. In order to
manage dynamic network traffic, the number of Virtual
Network Functions(VNFs) instances need to be chosen.
Rahman et al. [14] models the problem as a classification
problem, and uses several machine learning models to
predict the number of VNFs.

The PTS literature largely adopts RL but here we use
DL with representative labeling. Since our experiments
show that a DL model with only a few layers fails to
learn efficiently and accurately, we adopt the residual
network (ResNet) model proposed byHe et al. [15], which
uses deeper layers to capture complex features/patterns
in financial markets. He et al. [15] provide extensive
empirical data demonstrating that ResNets are simpler
to optimize and achieve higher learning precision due to
their greater numbers of hidden layers. Furthermore, Li
et al. [4] extend ResNet from a single scale to multiple
scales by adding convolution kernels of various sizes to
adaptively detect data features from different aspects.
Our paper combines representative labeling with multi-
scale ResNet to yield superior investment performance.

2.2. Co-integration Method and PTS
A trading duration—in this paper a business day—is di-
vided into a formation period and a trading period: data
in the formation period is used to select PTS-eligible stock
pairs in the trading period. We use the co-integration ap-
proach [16, 10, 17, 18, 6] to find eligible stock pairs from
a stock pool, for instance, the 0050 constituent stocks
from the Taiwan stock market. Let the 𝑖-th pair be com-
posed of stocks 𝑆 𝑖1 and 𝑆 𝑖2, and let the capital invested
in these two stocks be 𝛽 𝑖1 ∶ 𝛽 𝑖2 (if the stock pair is eligi-
ble). We extract the logarithmic stock price processes
ln 𝑆 𝑖1(𝑡) and ln 𝑆 𝑖2(𝑡) from the formation period to form a
two-dimensional vector 𝑦(𝑡) ≡ (ln 𝑆 𝑖1(𝑡), ln 𝑆 𝑖2(𝑡))′. The
co-integration property of 𝑦(𝑡) can be tested using the



Johansen co-integration test [see 1] with the following
vector error correction model (VECM):

△𝑦(𝑡) = Π𝑦(𝑡 − 1) +
𝑝−1
∑
𝑖=1

𝐷𝑖△𝑦(𝑡 − 𝑖) + 𝜖𝑡, (1)

where △𝑦(𝑡) ≡ 𝑦(𝑡) − 𝑦(𝑡 − 1), the rank of the 2 × 2matrix
Π denotes the number of co-integration relations, 𝑝 − 1
denotes the VECM order,𝐷𝑖 is also a 2×2matrix, and 𝜖𝑡 de-
notes a 2×1white noise vector. We follow Lütkepohl et al.
[19] in using the power test which decomposes Π as 𝛼𝛽′,
where the 2 × 1 co-integration vector 𝛽 ≡ (𝛽 𝑖1, 𝛽 𝑖2)′ deter-
mines the ratios of the capital invested in the two stocks.
If the 𝑖-th stock pair 𝑆 𝑖1 and 𝑆 𝑖2 passes the co-integration
test, then we construct a portfolio by investing the two
stocks at the ratio 𝛽 𝑖1 ∶ 𝛽 𝑖2. The spread process of this
portfolio

𝑃 𝑖(𝑡) ≡ 𝛽 𝑖1 ln 𝑆 𝑖1(𝑡) + 𝛽 𝑖2 ln 𝑆 𝑖2(𝑡) (2)

is market neutral and moves back and forth around the
mean of the spread 𝐸(𝑃 𝑖(𝑡)). We could also measure the
variation of 𝑃 𝑖(𝑡) by calculating its standard derivation 𝜎 𝑖.
If we purchase this portfolio at time 𝜏 and sell it at time
𝜏 ′, the profit (or loss) can be expressed as product of the
investment amount 𝑐 and the difference of the spread:

𝑐 × (𝑃 𝑖(𝜏 ′) − 𝑃 𝑖(𝜏 )) = 𝑐 × (𝛽 𝑖1 ln
𝑆 𝑖1(𝜏 ′)
𝑆 𝑖1(𝜏 )

+ 𝛽 𝑖2
𝑆 𝑖2(𝜏 ′)
𝑆 𝑖2(𝜏 )

)

≅
𝑐𝛽 𝑖1
𝑆 𝑖1(𝜏 )

[𝑆 𝑖1(𝜏 ′) − 𝑆 𝑖1(𝜏 )] +
𝑐𝛽 𝑖2
𝑆 𝑖2(𝜏 )

[𝑆 𝑖2(𝜏 ′) − 𝑆 𝑖2(𝜏 )] ,
(3)

where ln
𝑆 𝑖𝑗(𝜏 ′)
𝑆 𝑖𝑗(𝜏 )

denotes the return rate for investing 𝑆 𝑖𝑗

over the time period [𝜏 , 𝜏 ′].
𝑐𝛽 𝑖𝑗
𝑆 𝑖𝑗(𝜏 )

denotes the numbers of

shares for trading 𝑆 𝑖𝑗 at time 𝜏.2
The market-neutral nature of Equation (2) allows us

to long (short) the portfolio when the spread is below
(above) its mean and close the position when it converges
to the mean to make a profit as illustrated in Figure 1. To
increase the profit in Equation (3), which simultaneously
covers the transaction cost, we find a suitable open thresh-
old, defined as the product of a scalar 𝜉 ′𝑂 and the volatility
𝜎𝑖. We also find another stop-loss threshold, defined as
the product of a scalar 𝜉 ′𝑆 and 𝜎𝑖, to prevent occasional
failures of the market-neutral property from seriously
influencing profits. The intersection of the spread 𝑃 𝑖𝑡 with
either element of the trigger pair (𝜉 ′𝑂, 𝜉

′
𝑆 ) determines the

timing to long/short the portfolio or to stop loss, respec-
tively. Specifically, if the spread 𝑃 𝑖𝑡 reaches the upper
opening trigger (denoted by node 𝐵), then we short the
portfolio with the value investment ratio 𝛽 𝑖1 ∶ 𝛽 𝑖2 for
stocks 𝑆 𝑖1 and 𝑆 𝑖2. After shorting the portfolio, 𝑃 𝑖𝑡 may

2We long (short) 𝑆 𝑖𝑗 if this value is positive (negative).
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Figure 1: Possible Scenarios in the Trading Period. The
red line, blue lines, and black lines denote the mean of 𝑃 𝑖(𝑡), the
triggers for opening the portfolio, and the triggers for stoping losses.
The values of these triggers are listed on the right of these lines.
The orange and green curves illustrate all possible scenarios to open
the portfolio and to close the portfolio. After opening the portfolio,
we use dash curves and solid curves to denote that the portfolio
is closed to get profit and to stop loss, respectively. The dot curve
denotes that the portfolio is closed at the end of the trading period.
The period begins from time 0 and ends at time 𝑇. Node 𝐸 and 𝐻
occur at time 𝜏 and 𝜏 ′, respectively.

still reach node 𝐶, in which case we close the portfolio
to stop loss. Otherwise, it may fall to node 𝐷, in which
case we close the portfolio to gain a profit. On the other
hand, if 𝑃 𝑖𝑡 falls to the lower opening trigger (denoted by
node 𝐸), then we long the portfolio. After longing the
portfolio, 𝑃 𝑖𝑡 may still fall to node 𝐻, in which case we
close the portfolio to stop loss. Otherwise, it may reach
node 𝐹, in which case we close the portfolio to gain a
profit. Finally, the portfolio may still be open at the end
of the trading period, say, the closing time of Taiwan
Stock Exchange. In this case the portfolio is forced to
close to avoid incurring risks to keep cross-day positions.

3. Representation Labeling
Mechanism

We first describe our dataset and the preprocessing of the
stock tick data, after whichwe discuss why it is difficult to
train naive deep learning methods for regression or clas-
sification to pick feasible open and stop-loss thresholds
for PTS. We propose the core idea and several variations
of the representation labeling mechanism (abbreviated
as RLM hereafter) to address this problem by generat-
ing “representation” thresholds and labels suitable for
training deep learning methods.



3.1. Dataset and Preprocessing
The dataset used to develop and examine pair trading
strategies is composed of the constituent stocks of Taiwan
Top 50 ETF (0050) from January 1, 2013 to December 31,
2018. We adopt a day-trading strategy without holding
positions overnight, as day trades provide 50% discounts
on transaction costs,3 which significantly increases win
rates and profits. Figure 2 illustrates the overall pro-
cedure of the proposed PTS; Step 1 describes the data
preprocessing. We first set non-overlapping training and
testing periods from 2013 to 2018. The stock tick data
for each business day in the training period generates
the spread features and labels needed to train the RLM
model, whose performance is then verified at each busi-
ness day of the testing period. Daily trading is conducted
from 9:00 a.m. to 13:30 p.m. for each business day, di-
vided into the formation period (the first 166 minutes,
ignoring the beginning of the first 16 minutes) and the
trading period (e.g., the rest of the business day). We use
the tick data from the formation period to calculate the
weighted average stock price for eachminute, and use the
resultant time series to construct eligible stock pairs and
corresponding investment ratios based on the Johansen
co-integration method, as described in Section 2.2. The
feature of the 𝑖-th stock pair is the spread process 𝑃 𝑖𝐹 (𝑃 𝑖𝑇)
constructed by substituting the stock price processes of
𝑆 𝑖1 and 𝑆 𝑖2 during the formation period (training period)
into Equation (2).

3.2. Labeling: Finding the Optimal
Trigger Pair

Now we label the 𝑖-th spread process in the formation
period 𝑃 𝑖𝐹 with the optimal trigger threshold (𝜉 𝑖𝑂, 𝜉

𝑖
𝑆) that

maximizes the profit when executing the PTS. Specifi-
cally, we long (short) the portfolio when the correspond-
ing spread process in the trading period 𝑃 𝑖𝑇 reaches −𝜉 𝑖𝑂𝜎𝑖
(𝜉 𝑖𝑂𝜎𝑖) and stop loss when the process falls to −𝜉 𝑖𝑆𝜎𝑖 (or
rises to 𝜉 𝑖𝑆𝜎𝑖 ), as defined in Figure 1; the correspond-
ing PTS profit is calculated by Equation (3). Note that
both open and stop-loss triggers can be any positive real
number, which makes the search for the optimal trig-
ger thresholds (or the labeling process) intractable. In
the literature [3, 2] either fixed triggers are used or op-
timal triggers are found from a limited set which is de-
termined heuristically, which significantly weakens the
performance as verified later. To search for the optimal
trigger threshold over the whole solution space with-
out incurring excessive computational resources, we first
collect all the spread processes of all business days in
the training period, after which we define the maximum
derivation for each spread process during the formation
period as max𝑡 (𝑃 𝑖𝐹(𝑡) − E (𝑃 𝑖𝐹(𝑡))). A feasible stop-loss

3The transaction cost is 0.3% but reduces to 0.15% for day trading.

Figure 2: The Flowchart for Generating PTS Trigger
Pairs with RLM .

threshold set 𝑆 is constructed by discretely enumerating
equal-space samples from the range determined by the
minimum and the maximum derivation of the spreads
that do not converge to the mean. Hence 𝑆 is defined as
{1.5, 1.5 + 1, 1.5 + 2 × 1, … , 24}.4 Also, to ensure that the
profit (which is proportional to the distance between the
open threshold and themean level) covers the transaction
cost and the price slippage, the opening trigger generally
should be larger than 0.5𝜎𝑖. Thus, the open threshold
set 𝑂 is constructed by enumerating samples from the
range determined by 0.5 and the maximum derivation of
the spreads that converge to the mean. Hence the set 𝑂
is defined as {0.5, 0.5 + 0.05, 0.5 + 2 × 0.05, … , 8}, and all
trigger thresholds (𝜉 ’𝑜, 𝜉 ’𝑠) are generated by separately
selecting the opening trigger threshold 𝜉 ’𝑜 from set 𝑂 and
the stop-loss trigger threshold 𝜉 ’𝑆 from set 𝑆. In addition,
the condition 1.5 × 𝜉 ’𝑜 < 𝜉 ’𝑠 is enforced to prevent the
two thresholds from being too close together, as such
proximal thresholds increase the likelihood of closing
the portfolio to stop loss immediately after opening the
portfolio, which results in degraded trading performance.
In addition, we add one more combination (10, 25) with
extremely high open and stop-loss thresholds to filter
out stock pairs that are not suitable for trading. Then

4Here we replace minimum and maximum derivations with
nearby numbers 1.5 and 24, respectively.



we trade stock pair 𝑆 𝑖1 and 𝑆 𝑖2 by using the spread at the
trading period 𝑃 𝑖𝑇 and the trigger threshold (𝜉 ’𝑂, 𝜉 ’𝑆) to
determine the timing for opening and stopping loss as in
Figure 1 and calculate the profit with Equation (3). An
optimal trigger threshold that maximizes the profit is

(𝜉 𝑖𝑂, 𝜉
𝑖
𝑆) ≡ argmax𝜉 ′𝑂∈𝑂,𝜉 ′𝑆∈𝑆 [Profit (𝑃

𝑖
𝑇, 𝜉

′
𝑂, 𝜉

′
𝑆 )] . (4)

This trigger threshold becomes the label for the spread
𝑃 𝑖𝐹 for training the proposed machine learning models.
There are about 300 combinations5 for opening and stop-
loss trigger thresholds that have been selected by at least
one stock pair. Note that many aforementioned enumer-
ated trigger thresholds are never selected by any stock
pair. This is because the stock price is quoted as inte-
gral multiples of basic units (i.e., ticks) rather than con-
tinuously. Thus many trigger thresholds would not fit
discrete changes of the spread process defined in Equa-
tion (2) due to discrete stock price quotes and thus will
never be selected as optimal trigger thresholds. This ex-
plains why heuristically setting trigger thresholds [3]
would significantly limit PTS performance. Since deriv-
ing proper trigger thresholds from discrete changes of
the spread process could be difficult, thus we enumerate
many thresholds and use Equation (3) to filter improper
ones.

3.3. Failure of Naive
Regression/Classification Deep
Learning Approaches

Since the feasible ranges of both open and stop-loss
thresholds are positive real numbers, it is natural to pre-
dict the optimal trigger threshold (𝜉 𝑖𝑂, 𝜉

𝑖
𝑆) by adopting

a two-output-neuron regression-based deep neural net-
work (RDNN) using the spread and stock processes (i.e.,
𝑃 𝑖𝐹, 𝑆

𝑖
1(𝑡), and 𝑆 𝑖2(𝑡)) during the formation period as input.

The RDNN training loss is defined as the mean square
error (MSE) between the predicted thresholds and the
optimal thresholds produced in Section 3.2. The training
loss illustrated in Figure 3(a) does not converge as train-
ing proceeds, which shows that RDNN does not capture
discontinuous relationships between open and stop-loss
thresholds and profits. This is because minor shifts in
either threshold can yield large changes in PTS profits,
as illustrated in Figure 1. For example, a slight increment
in the upper open threshold from the upper blue solid
line to the blue dashed line removes the chance to short
the portfolio at point 𝐵 for the solid orange spread and
reduces the profit to zero.

Instead of predicting open and stop-loss thresholds
with regression-based approaches, we could select the
optimal trigger threshold from all possible thresholds
generated by the method described in Section 3.4 using

5This value changes with the training set data.

(a) Losses of Training DNN

(b) Lossese of Training CNN

(c) Losses of Training ResNet

Figure 3: Training Losses with different Models

classification-based approaches. As illustrated in Fig-
ures 3(b) and 3(c), it is difficult to train a reliable CNN
or ResNet to recommend each stock pair with one of
300 possible thresholds. We use cross-entropy as the loss
function, and use the spread and the stock price processes
during the formation period, 𝑃 𝑖𝐹, 𝑆

𝑖
1(𝑡), 𝑆 𝑖2(𝑡), as inputs; we

number all 300 possible thresholds as outputs. In this
case the CNN training loss fails to converge, and that
of ResNet converges only very slowly. We address this
problem in the next section with representative labeling,
which significantly reduces the number of labels without



significantly sacrificing threshold quality. Our experi-
ments show that this mechanism improves the ResNet
training accuracy and the resultant PTS investment per-
formance.

3.4. Representation labelling
In contrast to machine-learning based work such as Kim
and Kim [3] and Fallahpour et al. [2], which use RL to
learn 6 to 60 trigger thresholds (i.e., actions), we pro-
pose a novel deep learning model with a representation
labeling mechanism to train above 25 representative trig-
ger thresholds (determined by the Elbow method) that
represent the 300 optimal thresholds determined in Sec-
tion 3.2. Experimental results in Section 5 show that
using representations of the optimal trigger thresholds
yields performance significantly better than that of the
RL approach with heuristically selected thresholds.

The representation mechanism resolves the training
problem of non-convergence by reducing the number
of classifications and maintains trading performance via
properly selected representations. Recall that we divide
the 𝑖-th spread process defined in Equation (2) into a
formation period part 𝑃 𝑖𝐹 and a trading period 𝑃 𝑖𝑇, and
then substitute 𝑃 𝑖𝑇 into Equation (4) to extract the opti-
mal trigger threshold (𝜉 𝑖𝑂, 𝜉

𝑖
𝑆) that maximizes the benefit

for trading the stock pair 𝑆 𝑖1 and 𝑆 𝑖2. Then (𝜉 𝑖𝑂, 𝜉
𝑖
𝑆) can

be viewed as the label for 𝑃 𝑖𝐹; the trigger threshold dis-
tributions are illustrated in Figure 4(a). Pink, yellow,
green, and blue reflect the magnitude of the probability
for choosing a threshold as the optimal threshold. By
excluding thresholds with probabilities lower than 0.1%
and 0.5%, we obtain Figures 4(b) and 4(c). We observe
that the trigger threshold distribution is widespread and
far from uniform. In addition, for some thresholds, the
probability of selecting them (denoted by pink or yellow
nodes) as optimal thresholds is much higher than that
of other thresholds. This significant lack of smoothness
could explain why regression-based DL fails to converge
in Figure 3(a).

We address this lack of training convergence problem
by setting representative trigger thresholds via either 𝑘-
means or by using the thresholds with the top-𝑘 highest
probabilities. In the first method, we partition all trigger
thresholds into a reasonable number of clusters by the 𝑘-
means algorithm; the cluster number 25 is determined by
the Elbow approach. The set of representation thresholds
R are defined as the centers of aforementioned clusters,
andwe call this label setting as Kmean(0) . Then the thresh-
old for the 𝑖-th spread process is relabeled by picking one
of these representation thresholds that maximize profit
as follows:

(𝜉 𝑖𝑂, 𝜉
𝑖
𝑆) ≡ argmax(𝜉 ′𝑂,𝜉 ′𝑆 )∈R [Profit (𝑃 𝑖𝑇, 𝜉

′
𝑂, 𝜉

′
𝑆 )] . (5)

Note that each representation threshold selected by Kmean(0)

(the black nodes) does not coincide with any optimal
threshold, as 𝑘-means clustering calculates each cluster
center by averaging; however, as mentioned above, slight
shifts in the threshold (e.g., from the upper blue solid
line to the dashed one in Figure 1) could yield significant
changes to the profit. To prevent disturbances in low-
probability thresholds from degrading the quality of the
representation labels, we apply 𝑘-means on thresholds
with probabilities larger than 0.1% and 0.5%, as illustrated
in Figures 4(b) and 4(c); we term the resulting representa-
tion label settings Kmean(1) and Kmean(2) , respectively. In
addition, to ensure that the representative thresholds co-
incide with an optimal threshold, we could alternatively
choose as representation thresholds those trigger thresh-
olds with the top 25 highest probabilities (denoted by
the orange nodes), as shown in Figure 4(d); we term this
the HighFreq label setting. In Section 5, we show how
these representation labeling mechanisms outperform
previous approaches.

4. Learning Model Constructions
Given the stock and spread prices processes determined
in Equation (2) as inputs and the representative thresh-
olds generated in Section 3.4 as labels, we can compare
the investment performance of several deep learning
models and select the best one as the model used in step
5 of Figure 2. The input 𝑥 𝑖 = [𝑆 𝑖1, 𝑆 𝑖2, 𝑃 𝑖𝐹] is formed by the
price processes of the 𝑖-th stock pair 𝑆 𝑖1 and 𝑆 𝑖2 in the for-
mation period and the corresponding spread process 𝑃 𝑖𝐹
determined in Equation (2). The input 𝑥 𝑖 with length 300
(i.e., the number of half-minute data in the 150-minute
formation period) is extended to 512 by padding the re-
maining positions with zeros. We number each of the 25
representative thresholds with a unique integer from the
range [1, 25]. The number for the representative thresh-
old recommended by the representative label mechanism
(see Section 3.4), 𝑦 𝑖, is used as the label for the stock
pair 𝑖. We train the “plain” CNN (i.e., without adopting
ResNet), the single-scale ResNet [15], and the multi-scale
ResNet [4] with input 𝑥𝑖 and ground truth 𝑦𝑖 for each
stock pair 𝑖 from the training period. The CNN includes
a one-dimensional convolutional layer with three chan-
nels (the spread and the two stock price processes) and
25 1 × 5 kernel maps. The output is sent to the batch
normalization layer [20] to stabilize and speed up the
training process; we use Leaky-ReLU activations. The
results are passed through a one-dimensional convolu-
tional layer with 50 kernel maps, a layer with 100 kernel
maps, and a layer with 200 kernel maps, sequently; and
the final outputs are then sent to a fully connected layer.
The single-scale ResNet uses one size-3 convolution ker-
nel, which applies to one chain of residual blocks. The
three-scale ResNet adds size-5 and size-7 convolution



(a) The Distribution of Trigger Thresholds

(b) Trigger Thresholds Excluding the Thresholds with
Probabilities Lower than 0.1%

(c) Trigger Thresholds Excluding the Thresholds with
Probabilities Lower than 0.5%

(d) Trigger Thresholds and the Thresholds with Top-25
Highest Probabilities

Figure 4: The Distribution of Trigger Thresholds

0 20 40 60 80 100
Epoch

0

25

50

75

100

125

150

175

200

Tr
ai

ni
ng

 lo
ss

Multi-scale ResNet
CNN
Single-scale ResNet

0 20 40 60 80 100
Epoch

20

40

60

80

100

Tr
ai

ni
ng

 a
cc

ur
ac

y

Multi-scale ResNet
CNN
Single-scale ResNet

Figure 5: Training Accuracies and Losses among CNN , single-
and multi-scale ResNets

kernels and two corresponding chains of blocks.6 The
features extracted by the three convolution kernels (i.e.,
the outputs from the three chains of residual blocks) are
concatenated to form a feature vector which is then sent
to a fully connected network.

The training results for these three models are shown
in Figure 5. The training accuracy measures the percent-
age of correct predictions of all pairs in the training set;
training loss is measured by cross entropy. The train-
ing accuracy for the CNN model, denoted by the orange
curves, increases slowly, while the training loss oscil-
lates significantly, which renders this model impractical.
Thus we use a residual network, which employs hidden
layers to capture complex features in financial markets.
Although both the single- and three-scale ResNet achieve
almost 100% accuracy and 0% loss after enough numerous
training epochs, the latter mechanism converges more
smoothly and quickly. Thus we adopt the three-scale
ResNet in the following experiments.

To determine the number of training epochs, the data
are divided into the training set and the validation set.
We train the model on the training set data and run the
resulting model on the validation dataset to calculate the
accuracy and loss. To fairly retrieve useful information
from the training dataset without overfitting, training is

6The structure of ResNet can be found in https://github.com/
geekfeiw/Multi-Scale-1D-ResNet. The convolution kernel sizes 3, 5,
and 7 are suggested by that website.

https://github.com/geekfeiw/Multi-Scale-1D-ResNet
https://github.com/geekfeiw/Multi-Scale-1D-ResNet


halted when the win rate of the validation set reaches a
maximum.

5. Empirical Tests
We conducted experiments on the Taiwan Top 50 ETF
component stocks from 2013 to 2018 to back-test im-
provements in PTS performance due to the proposed
representative labeling mechanisms. As illustrated in
Figure 2, information on stock pair eligibility and in-
vestment ratios is obtained by applying the Johansen
co-integration test on half-minute average stock price
data during the formation period. We then label the
optimal trigger threshold for each stock pair (Sec. 3.2), re-
label each pair with a representative threshold (Sec. 3.4),
and train the ResNet model with stock pairs and repre-
sentative labels retrieved from each training day in the
training period. To evaluate the trading performance,
we extract each trading day 𝐷 from the testing period,
retrieve stock pairs by applying the Johansen test to the
formation period of day 𝐷, and predict the representative
trigger threshold for each pair using the trained ResNet.
We then use the retrieved stock pair and the threshold
to execute tick-by-tick pair trading in the day’s trading
period. The transaction tax is set to 0.15%, as defined in
the Taiwan Stock Exchange for day trading. To simulate
price slippage effects, all trades are executed one tick
after the spread process hits the trigger threshold.

To compare the trading performance of different PTS
over the trading period, we list the (overall) profit, the
win rate, the normal close rate, the number of trades, the
Sharpe ratio (SR) calculated on the daily base or the pair
base, the maximum drawdown (MDD), the (maximum)
required capital, and the average profit (per trade), as
illustrated in the first column of each table. The (overall)
profit is the sum of the daily profit (or loss) for all trading
days in the testing period, where the profit of day 𝐷 is
the sum of the profits when trading all PTS-eligible stock
pairs on the day. The profit of each trade is calculated in
Equation (3). The required capital for day 𝐷 is measured
as the sum of the capital required to execute each PTS on
the day. The maximum required capital is defined as the
maximum of the required capital for each trading day in
the testing period. The daily (pair) return is then calcu-
lated as the daily (pair) profit divided by the maximum
required capital (the capital required to trade the pair).
The Sharpe ratio, which estimates the excess investment
return divided by the corresponding risk, is calculated
either on a daily basis as

Daily return − Risk-free return
Standard derivation of daily return

,

or on a pair basis as

Pair return − Risk-free return
Standard derivation of pair return

.

The maximum drawdown is the maximum cumulative
daily loss during the testing period. The win rate is de-
fined as the number of profit-making trades divided by
the total number of trades made in the testing period.
The normal close rate is defined as the number of trades
whose spread process converges back to the mean7 di-
vided by the total number of trades. The profit per open
is the average profit for each trade.

In the experiments in Section 5.1, we first compare the
various DL methods and representative labeling methods
discussed in Sections 4 and 3.4. We find that combining
multi-scale ResNet and KMean(0) (or HighFreq) produce
best investment results; thus we will use these settings in
the following experiments. Section 5.2 demonstrates that
the proposed mechanism for representative thresholds
outperforms past threshold selection mechanisms.

5.1. Selection of Learning Models and
Representative Labeling
Mechanisms

To ensure the efficiency of training described in step 5
of Figure 2, it is necessary to select the proper machine
learning models and representative labeling mechanisms.
Table 1 compares the performance when training with
CNN, the single-scale ResNet, and the multi-scale ResNet.
The unstable, slow convergence of CNN clearly yields
poor results. Multi-scale ResNet outperforms single-scale
ResNet, as applying more convolution kernels with dif-
ferent sizes extracts more information from the input
data. Accordingly, in subsequent experiments we use the
multi-scale ResNet as the training model.

Table 2 compare different representative labelingmech-
anisms proposed in Section 3.4. In column 4, KMean(0) ,
KMean(1) , and KMean(2) denote the representative label
settings that applying the 𝑘-mean methods on total op-
timal thresholds (see Figure 4(a)), the optimal thresh-
olds selected with probability larger than 0.1% (see Fig-
ure 4(b)), and 0.5% (see Figure 4(c)), respectively. HighFreq
picks the trigger thresholds with top 25 highest probabil-
ities as in Figure 4(d).

We observe that both the win rate and the normal close
rate are high for these label mechanisms, as the spread
processes after applying the co-integration test described
in Section 2.2 are likely to have the mean reverting prop-
erty. This suggests that a mechanism with large total
opening numbers yields high profits and Sharpe ratios.
Also, the total open number for KMean(0) is the highest
of the fourmechanisms as it does not exclude information
from other trigger thresholds with lower probabilities.
However, unlike representative thresholds produced by
𝑘-means, which typically do not coincide with optimal

7That is, the portfolio is neither closed to stop loss (like nodes 𝐶
of 𝐻) or forced to close (like node 𝐺) as illustrated in Figure 1.



Table 1
Comparing Different Training Models.

Train Period Jan. 2014 - Oct. 2015. Jan. 2015 - Oct. 2016. Jan. 2016 - Oct. 2017.
Validation Period Nov. 2015 - Dec. 2015. Nov. 2016 - Dec. 2016. Nov. 2017 - Dec. 2017.
Test Period 2016 2017 2018

Model M-ResNet S-ResNet CNN M-ResNet S-ResNet CNN M-ResNet S-ResNet CNN

Profit (thousand) 2269.83 1920.12 354.13 2232.66 1799.20 35.84 2289.50 1927.66 344.72
Win rate (%) 79 77 75 77 77 77 75 75 74
Normal close rate (%) 81 77 76 76 76 77 77 77 78
Total open number 16776 14433 3130 11900 10631 400 13149 12228 1653
SR (daily based) 8.1789 6.1964 2.2175 7.4381 6.5731 0.4281 2.2287 1.9841 0.4318
SR (pair based) 0.2415 0.2349 0.0956 0.2188 0.1989 0.0719 0.1422 0.1498 0.1296
MDD 66 113 71 76 83 47 344 363 274
Trade capital (thousand) 50542.895 41740.827 26587.459 50783.951 39458.214 5715.334 80291.094 66228.371 24152.580
Profit per open (thousand) 0.1353 0.1330 0.1131 0.1876 0.1512 0.0896 0.1741 0.1595 0.2085

The training period, the validation period, and the testing period are listed in the first, second, and the third row, respectively.
The performance of the CNN model (CNN), the single-scale ResNet (S-ResNet), and the multi-scale ResNet (M-ResNet) are
compared with the performance indicators listed in the first column. The training data are the price processes of spreads
and the two stocks (of the pair). Representative thresholds are generated by HighFreq . SR and MDD are abbreviations of
Sharpe ratios and maximum drawdown, respectively.

Table 2
Compare Different Representative Labeling Mechanisms.

Train Period Jan. 2015 - Oct. 2016.
Validation Period Nov. 2016 - Dec. 2016.
Test Period 2017 2018
Method KMean(0) KMean(1) KMean(2) HighFreq KMean(0) KMean(1) KMean(2) HighFreq
Profit (thousand) 2107.40 2056.18 1920.77 2232.66 2020.37 1802.69 1709.59 2254.96
Win rate (%) 75 76 76 77 74 74 74 75
Normal close rate (%) 75 75 76 76 76 75 76 77
Total open number 12195 11375 11434 11900 13771 12801 13028 13355
SR (daily based) 7.4766 7.1593 7.2001 7.4381 1.8919 1.5950 1.6401 2.1572
SR (pair based) 0.1825 0.1915 0.1942 0.2188 0.1322 0.1223 0.1281 0.1512
MDD 72 91 85 76 419 387 365 400
Trade capital (thousand) 49310.304 43552.278 48495.936 50783.951 64390.225 74759.619 74250.312 62389.603
Profit per open (thousand) 0.1728 0.1808 0.1679 0.1876 0.1467 0.1408 0.1312 0.1688

The training period, the validation period, and the testing period are listed in the first, second, and the third row, respectively.
The fifth rows lists the mechanisms to generate representative thresholds. The indicators used to measure the performance

are listed in the first column.

thresholds due to the average calculation, every thresh-
old recommended by HighFreq is directly an optimal
threshold with the highest 25 probabilities. Absent the
disturbances on opening/stop-loss thresholds, HighFreq
yields better pair-based results (i.e., SR (pair) and profit
per open) than other 𝑘-mean-based mechanisms. Since
KMean(0) and HighFreq possess advantages in different
aspects, subsequent experiments use either KMean(0) or
HighFreq for comparison.

5.2. Comparisons among Past Works
The statistical tests used to determine eligible stock pairs
and investment weights (see Equation (2)) significantly
influence PTS performance, as illustrated in Table 3. In ad-
ditional to the co-integration test described in Section 2.2,
Kim and Kim [3] propose the ordinary least squares (OLS)
and total least squares (TLS) methods. The win rate and
normal close rate of TLS and OLS are relatively low and
the overall profits from 2016 to 2018 and the average
profit (for each trade) are nearly all negative. In addition,

the co-integration method yields more pairs that are eligi-
ble for trading (i.e., have larger total open numbers) than
both TLS and OLS; thus the overall profit, the Sharpe ra-
tios, and the average profit of the co-integrated method
are all significantly better. To fairly compare all machine
learning methods for threshold selections, for subsequent
experiments we generated pairs and investment weights
using the co-integrated method.

Table 4 compares different threshold selection mecha-
nisms with our representative labeling mechanism. Fal-
lahpour et al. [2] reduce the threshold selection problem
to a multi-armed bandit problem and solve it using a
reinforcement learning model with 39 actions (i.e, open
and stop-loss thresholds) generated by Equation (4) with
a much narrower set 𝑂 ∈ {0.5, 1, ⋯ 3} and 𝑆 ∈ {0.5, 1, ⋯ 5}
(denoted by method 1). Kim and Kim [3] use deep re-
inforcement learning to select one of six heuristically-
generated actions for trading (denoted by method 4).
Note that as the number of actions (the threshold choices)
in their papers is relatively small, their models do not suf-



Table 3
Comparing Statistical Testing Methods.

Train Period Jan. 2014 - Oct. 2015. Jan. 2015 - Oct. 2016. Jan. 2016 - Oct. 2017.
Validation Period Nov. 2015 - Dec. 2015. Nov. 2016 - Dec. 2016. Nov. 2017 - Dec. 2017.
Test Period 2016 2017 2018
Model Co-I TLS OLS Co-I TLS OLS Co-I TLS OLS
Profit (thousand) 727.67 -458.33 -254.02 1284.95 -439.49 -173.00 101.24 -140.05 72.60
Win rate (%) 67 44 57 67 43 53 65 44 55
Normal close rate (%) 66 50 62 67 52 62 67 49 60
Total open number 18627 3073 3826 15440 3390 3767 16388 2579 2954
SR (daily based) 2.5716 -7.0078 -4.0312 4.2652 -5.9474 -3.0189 0.1114 -0.4528 0.2577
SR (pair based) 0.1099 -0.2138 -0.0662 0.1113 -0.2151 -0.0831 0.0688 -0.0531 0.0141
MDD 103 46 50 52 64 28 382 68 35
Trade capital (thousand) 57155.256 10235.96 10572.52 62088.118 28371.28 23257.66 86349.235 15632.03 15781.25
Profit per open (thousand) 0.0390 -0.1491 -0.0664 0.0832 -0.1296 -0.0459 0.0061 -0.0543 0.0246

The training period, the validation period, and the testing period are listed in the first, second, and the third row, respectively.
We compare the performance among TLS , OLS , and the co-integration method (Co-I) by using the deep reinforcement method

proposed in Kim and Kim [3] to select actions (thresholds) for PTS .

Table 4
Comparisons among Different Threshold Selection Methods for PTS .

Train Period Jan. 2014 - Oct. 2015. Jan. 2015 - Oct. 2016. Jan. 2016 - Oct. 2017.
Validation Period Nov. 2015 - Dec. 2015. Nov. 2016 - Dec. 2016. Nov. 2017 - Dec. 2017.
Test Period 2016 2017 2018
Method 1 2 3 4 1 2 3 4 1 2 3 4
Profit (thousand) -1908.02 2269.83 1943.04 727.67 -2087.61 2232.66 1804.02 1284.95 -2395.03 2289.50 1756.73 101.24
Win rate (%) 40 79 79 67 41 77 75 67 46 75 75 65
Normal close rate (%) 38 81 78 66 40 76 77 67 47 77 78 67
Total open number 11977 16776 13733 18627 10955 11900 11384 15440 16072 13149 12092 16388
SR (daily based) -9.17 8.1789 7.5343 2.5716 -10.83 7.4381 6.4397 4.2652 -3.24 2.2287 1.8119 0.1114
SR (pair based) -0.20 0.2415 0.2340 0.1099 -0.21 0.2188 0.1866 0.1113 -0.09 0.1422 0.1336 0.0688
MDD 225 66 49 103 300 76 53 52 290 344 505 382
Trade capital (thousand) 45874 50542 44146 57155 58641 50783 47308 62088 67905 80291 68093 86349
Profit per open (thousand) -0.1593 0.1353 0.1415 0.0390 -0.1906 0.1876 0.1593 0.0832 -0.1490 0.1741 0.1453 0.0061

The performance indicators (listed in the first columns) for the reinforcement learning method proposed in Fallahpour et al.
[2] with 39 actions (method 1), our HighFreq with 25 representative thresholds (method 2), our HighFreq with 6 representative
thresholds (method 3), and the deep reinforcement method proposed in Kim and Kim [3] with 6 heuristic actions (method 4)

are listed for comparisons.

fer from the training non-convergence problem described
in Section 3.3. However, limiting the number of actions
(or threshold choices) also limits PTS performance.

For a fair comparison with the six actions of the DRL
approach [3], we add the HighFreq performance with six
representative thresholds as method 3: HighFreq outper-
forms DRL in almost every aspect, even though DRL rec-
ommends more trading opportunities (i.e., has a higher
total open number) which requires higher (daily) trade
capital. However DRL’s low win rate translates to lower
overall profits and SR metrics than HighFreq with six
representative thresholds. Increasing the number of rep-
resentative thresholds from 6 to 25 (denoted as method
2) increases both the win rate and the total open number,
and also improves profit and SR, and reduces risk (proxied
by MDD). In addition, the naive reinforcement learning
model proposed by Fallahpour et al. [2] performs poorly
with a win rate lower than 50% and negative profits. If
transaction costs are ignored, as in their experiments,
the profit of their RL model becomes positive; thus their
model fails to find proper thresholds to filter out unprof-
itable trades due to transaction costs. Generally speaking,
the proposed representative threshold mechanism out-
performs other relevant work.

6. Conclusions
To improve PTS investment performance, we adopt a su-
pervised learning paradigm to recommend feasible open-
ing and stop-loss triggers that differ greatly from existing
RL-based approaches. To address the lack of convergence
during training when using regression-based DL models
to learn trigger thresholds, we reformulate the problem
as a classification problem as follows. We first label each
spread process with an optimal trigger pair that max-
imizes the trading profit. To avoid a huge number of
labels from harming training performance, we relabel
each spread process with our proposed representative la-
beling mechanism. Then we train the multi-scale ResNet
with stock pairs relabeled by representative thresholds.
Experimental results show that our proposed approach
outperforms other existing approaches in terms of invest-
ment performance measures.
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