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Abstract
Unsupervised hyperspectral image (HSI) classification is an important but challenging task in the hyperspectral processing
community. Despite great success, previous HSI clustering approaches belong to offline clustering which is often performed
in a transductive scheme, thus failing to generalize to large-scale and unseen scenes. In this paper, we propose an online
and deep clustering model for large-scale HSI clustering, termed spectral-spatial contrastive clustering (SSCC). Specifically,
SSCC performs contrastive learning based on a series of semantic-preserving spectral-spatial augmentation to simultaneously
maximize the intra-class agreement and inter-class variation, which are implemented by an instance-level contrastive loss and
a cluster-level contrastive loss, respectively. The SSCC model is trained in an end-to-end fashion with minibatch, allowing
it to efficiently handle large-scale HSIs. We assess the performance of SSCC on real HSI and show that SSCC significantly
advances the state-of-the-art results with 8.41% improvement on accuracy.
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1. Introduction
Hyperspectral image (HSI) consists of hundreds of nar-
row bands with rich spectral and spatial information,
revealing the spectral property of the area or object of
interest at a nanometer resolution [1]. HSI intelligent
interpretation is one of the hot spots in the current re-
mote sensing community. With the development of deep
learning techniques, great progress has been made by
training expressive networks with massive labelled data
[2]. However, current human-annotated datasets suffer
from a large amount of manpower, leading to the limita-
tion of availability and applicability [3].

Without label information, unsupervised HSI classifi-
cation becomes a challenging task, thus leading to un-
competitive accuracy. Many efforts have been devoted to
bridging the gap between supervised models and unsu-
pervised models [4]. More recently, subspace clustering
(SC) [5, 6] and non-negative matrix factorization (NNMF)
[7, 8] were frequently adopted for HSI clustering. Despite
their promising performance, these approaches collec-
tively suffer from two drawbacks. First, they are based
on shallow feature representation and failing to capture
high-level spectral-spatial information, which results in
poorer robustness and generalization ability. Second,
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they focus on offline HSI clustering tasks, i.e., the clus-
tering is dependent upon the whole dataset, which limits
their application on large-scale online learning scenarios.

To address the first drawback, some attempts, e.g.,
[3, 9, 10], have been made to use deep clustering networks
to learn cluster-friendly deep representations. Such ap-
proaches can usually improve the clustering performance
upon the shallow ones by significant margins. However,
the second drawback remains an open problem. Zhai et al.
[11] shown that sparsity representation is useful to allevi-
ate the issue. Nonetheless, the procedure of constructing
a suitable dictionary if often heuristic and suboptimal,
particularly cannot be implemented by end-to-end. As
a result, most current works compromise on this prob-
lem by verifying on smaller scenes, lacking dependable
performance evidence from large-scale HSI data.

Fortunately, self-supervised learning (SSL) has emerged
as a powerful paradigm to circumvent human annotation
[12]. The core idea is to learn to solve a label-free pre-
text task, such as colorization [13] and inpainting [14],
enabling the model to capture semantic information. A
downstream task will benefit from the pre-trained model
by fine-tuning and transfer learning. According to their
objectives, pretext tasks can be broadly classed into three
categories [15]: generative, contrastive, and adversarial.
The tremendous success of recent contrastive learning
models including SimCLR [16], BYOL [17], MoCo [18],
and BalowTwins [19], has proven that contrastive learn-
ing tends to be a more promising branch. The pretext
in contrastive learning is to maximize the similarity be-
tween two positive views of every sample that are auto-
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Figure 1: The overall framework of our proposed SSCC. Two
augmentations are sampled from an augmentation pool 𝒯
and applied to input patches. A shared backbone encoder 𝑓 (·)
and two projection heads, i.e., instance-level projection head
𝑔𝐼 (·) and cluster-level projection head 𝑔𝐶 (·), are trained to
simultaneously maximize the agreement between instance
representations 𝑧𝑎 and 𝑧𝑏, and cluster representations 𝑦𝑎

and 𝑦𝑏 via a contrastive loss.

matically generated by data augmentation.
In this paper, we propose a spectral-spatial contrastive

clustering (SSCC) approach for large-scale HSI. The ap-
proach takes ResNet-18 as the backbone and consists of
an instance-level contrastive head and a cluster-level con-
trastive head. Considering the inherent spectral-spatial
properties of HSI, we introduce several semantic-preserved
augmentation strategies, including ResizedCrop, Hori-
zontal/Vertical Flip, and GroupBandShuffle. The pro-
posed approach has some unique advantages: 1) SSCC
performs clustering and deep feature learning simultane-
ously; 2) SSCC adopts minibatch training in an end-to-
end fashion, thus it is inherently suitable for large-scale
HSI scenes; 3) SSCC is an online clustering model and
can easily generalize to unseen data.

2. Methodology
Motivated by recent contrastive clustering developments
in visual representation learning [20], which performs
clustering jointly with contrastive learning, we introduce
a novel SSCC approach for large-scale HSI clustering.

2.1. Overall
The core of SSCC is to maximize the similarity between
representations of positive pairs from both instance space
and cluster space, as shown in Fig. 1. The SSCC conducts
a spectral-spatial augmentations, then the augmented
pairs are forwarded into a weight-sharing backbone en-
coder, 𝑓 (·), resulting in deep representations ℎ𝑎 and
ℎ𝑏. Behind the encoder, projection heads consisting of
instance projection head and cluster projection head are
carried out to maximize the similarity between prediction
pairs. More specifically, we adopt ResNet-18 and MLPs

as the backbone and the projection heads respectively,
in which the instance/cluster projection head transforms
data into 128 and 𝐶 dimension, where 𝐶 denotes the
number of targets. We use the cluster projection head to
perform clustering at the inference stage.

2.2. Spectral-Spatial Augmentation
Formally, let 𝑥 be an HSI sample in R𝑛1×𝑛2×𝑚, where
𝑛1 × 𝑛2 is the spatial size and 𝑚 denotes the number of
spectral band. We construct positive pair by forwarding
𝑥 to two augmentations 𝒯𝑎 and 𝒯𝑏 sampling from an
augmentation pool 𝒯 . Formally, 𝑥𝑎 = 𝒯𝑎(𝑥) and 𝑥𝑏 =
𝒯𝑏(𝑥), where 𝒯𝑎, 𝒯𝑏 ∈ 𝒯 .

Based on the characteristics of HSI, the augmentation
pool consists of spectral augmentations and spatial aug-
mentations. The spectral augmentations include group
band permutation and band random drop, and the spa-
tial augmentations include random crop with resize and
random horizontal/vertical flip. Precisely, group band
permutation divides 𝑚 bands into 𝑘 adjacent groups and
randomly permutes spectral bands within each group.
Band random drop will mask a spectral band with a prob-
ability of 𝑝. The spatial augmentations are the same as
the pipelines defined in torchvision1.

2.3. Projection Heads
SSCC contains two projection heads. We use 𝑔𝐼 (·) and
𝑔𝐶 (·) to denote the instance-level projection head and
cluster-level projection head. Each head takes 𝑥𝑎 and 𝑥𝑏

as inputs and produces a pair of predictions, i.e., denot-
ing as 𝑧𝑎 and 𝑧𝑏 for 𝑔𝐼 (·) and 𝑦𝑎 and 𝑦𝑏 for 𝑔𝐶 (·). The
goal of 𝑔𝐼 (·) is to encourage the intra-class agreement,
instead and 𝑔𝐶 (·) aims to encourage the inter-class varia-
tion. Specifically, we achieve these by defining the follow-
ing contrastive losses. Let {𝑥(1)
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be 2𝑁 augmented samples with batch size of 𝑁 . The
instance-level contrastive loss over sample 𝑥𝑎

𝑖 is given
by
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Here, 𝒯𝐼 denotes a temperature parameter and 𝑠𝑖𝑚 is
a similarity function. We adopt cosine similarity in the
paper, i.e.,

sim
(︁
𝑧(𝑖),𝑧(𝑗)

)︁
=

(︁
𝑧(𝑖)

)︁(︁
𝑧(𝑗)

)︁𝑇

‖𝑧(𝑖)‖ ‖𝑧(𝑗)‖
(2)

1https://pytorch.org/



Similarly, we calculate the loss of 𝑥
(𝑖)
𝑏 by ℒ(𝑖)

𝑏 . The
batched instance-level contrastive loss is defined as ℒ𝐼 =

1
2𝑁

𝑁∑︀
𝑖=1

ℒ(𝑖)
𝑎 + ℒ(𝑖)

𝑏 .

Instead, the cluster-level contrastive loss is defined on
an inter-class space, i.e.,
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where 𝒯𝐶 is another temperature parameter. Further-
more, the cluster-level contrastive loss can be defined
as

ℒ𝐶 =
1

2𝐶
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𝑖=1

(︁
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where 𝐻 (𝑌 ) denotes the entropy of cluster assignment
probabilities across the whole augmented minibatch, which
is used to avoid the trivial solution, and can be computed
by
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(5)
Finally, the complete training loss function of SSCC is
indicated as

ℒ = ℒ𝐼 + ℒ𝐶 . (6)

2.4. Training and Predicting
The proposed SSCC can be trained in an end-to-end fash-
ion. Specifically, we adopt the widely-used Adam ap-
proach as the optimizer with a learning rate of 0.00002,
batch size of 128, and 𝐿2 regularizer of 0.00005. During
the inference stage, we feedforward any given sample
and lock the spectral-spatial augmentation process, the
output of the cluster-level projection head is regarded as
the prediction of the sample.

3. Experiments

3.1. Datasets and Setup
In this paper, we conduct experiments on the widely-used
Indian Pines dataset. We follow the training settings sug-
gested in [20] and the baselines reported in [11]. Several
clustering metrics are used to quantize the clustering
performance, including producer’s accuracy, overall ac-
curacy (OA), Kappa coefficient (Kappa), and purity. It
should be noted that more datasets and more extensive
experiments will be provided in our future work.
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Figure 2: Loss/ACCs curves along with model training, where
ACC is obtained under varying patch size.

3.2. Comparisons with State of the Arts
Table 1 reports the comparative results of different HSI
clustering approaches. We can see that SSCC achieves
state-of-the-art clustering results in terms of OA, Kappa,
and purity. In particular, SSCC (OA=57.07) improves
upon JSSC (OA=48.66) by a margin of 8.41 points. Fur-
thermore, SSCC accurately distinguishes class Nos. 4, 8,
13, and 15, which is remarkably better than other base-
lines. This demonstrates that SSL-based HSI clustering
not only has obvious theoretical edges but also has sig-
nificant practical effectiveness.

3.3. Ablation Studies
In Fig. 2, we show the effect of patch size and training
epoch. From the curves, we can conclude that: 1) The
clustering ACC of SSCC is dramatically increased along
with the training; 2) SSCC achieves considerable cluster-
ing ACC at a completely random initial status (epoch=0),
signifying the feature representation power of SSL; 3)
A larger patch size is often more beneficial to the SSCC
model, especially when using a small train epoch.

We further present the evolution of feature representa-
tions across the training process of SSCC, as shown in Fig.
3. It can be seen that the features tend to become more
compact within a certain class and more separable from
each other class. This proves that our SSCC can capture
the intrinsic spectral-spatial information of HSI and ob-
tain superior clustering performance and generalization
ability.

4. Conclusion
This paper presented a novel SSCC model for large-scale
HSI online clustering task. The SSCC model follows a



Table 1
Comparative results on the Indian Pines dataset.

Class No. FCM FCM-S1 SSC-S L2-SSC LRSC SGCNR FSCAG SCC JSCC SSCC

1 39.13 15.22 0 0 52.17 26.52 9.57 8.26 13.48 0
2 25.63 26.58 26.75 42.58 27.31 36.13 23.85 27.87 33.40 29.48
3 24.58 26.10 36.87 18.80 1.81 22.80 34.36 41.47 30.17 57.71
4 6.33 13.92 10.13 0 13.50 13.00 24.47 9.62 16.12 100
5 44.31 46.29 62.73 62.32 57.97 44.68 40.08 46.00 57.93 65.84
6 26.99 29.78 72.05 80.41 32.47 44.08 39.45 52.41 55.97 95.34
7 0 0 0 89.29 0 14.29 0 12.86 0.71 0
8 86.61 98.83 100 54.39 28.03 66.78 92.59 78.62 72.51 100
9 20.00 29.00 0 25.00 25.00 12.00 9.00 5.00 15.00 0
10 23.15 25.60 35.08 46.81 17.18 34.75 29.12 27.65 48.66 48.05
11 28.19 26.66 37.68 37.19 69.86 34.60 30.22 39.41 58.71 34.22
12 23.61 24.72 30.69 31.53 19.90 15.82 22.56 12.65 19.26 75.04
13 99.02 98.73 99.02 95.61 23.90 74.54 87.71 87.12 61.27 100
14 34.16 32.98 49.33 45.69 41.03 44.36 37.45 38.62 70.31 69.33
15 17.62 18.81 15.54 15.28 19.17 15.60 17.67 19.07 25.49 100
16 59.14 58.06 97.85 94.62 0 59.14 65.81 69.03 37.63 0

OA(%) 31.35 32.70 43.37 43.11 36.68 36.31 34.70 37.76 48.66 57.07
Kappa 0.2561 0.2695 0.3757 0.3667 0.2713 0.2946 0.2887 0.3091 0.4254 0.5390
Purity 0.5015 0.5082 0.5588 0.5670 0.4571 0.5105 0.5137 0.5222 0.5689 0.7475
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Figure 3: The evolution of feature representations across the training process, where the features for t-SNE are computed
from the backbone.

contrastive learning pipeline and consists of two pro-
jection heads associated with the instance-level and the
cluster-level contrasting. Furthermore, we introduced a
semantics-preserving augmentation pool based on the
characteristic of HSI. SSCC is featured by offline cluster-
ing, minibatch and end-to-end training, making it easy
to deal with large-scale HSI. Experimental results on real

HSI show that SSCC can achieve state-of-the-art cluster-
ing performance with significant margins over previous
works. The success of SSCC offers a powerful alternative
for unsupervised HSI classification. It should be noted
that this is a preliminary work and further analysis on
the proposed method will be conducted in our future
works.
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