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Abstract
As one of the typical research area in unsupervised hyperspectral image learning, anomaly detection needs to accomplish the
abnormal pixels separation process without prior spectral knowledge. Recently, the representation-based detectors which can
find the spectral similarity between pixels under no statistical distribution assumption have attracted extensive attention and
been frequently used. To this end, low-rank regularization methods can approximately decompose the hyperspectral data into
a low-rank background part and a sparse anomaly part. Based on the theory of representation and self-representation, this
paper proposed a double low-rank regularization (DLRR) model for hyperspectral anomaly detection. To further explore the
reconstructed structure differences between the original data and the assumed background, the residual of their corresponding
low-rank coefficient matrices are computed and utilized as a part of the detection output together with the column-wise ℓ2
norm of the sparse matrix. Experiments carried out on two real-world hyperspectral datasets show promising performances
compared with other state-of-the-art detectors.
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1. Introduction
With continuous and redundant spectral bands, hyper-
spectral images (HSIs) carry a wealth of spectral and
spatial information of land-covers [1, 2]. This promotes
military and civilian applications utilizing the spectral
characteristics of different materials. And lots of research
works have been conducted, such as feature extraction
[3], noise reduction [4], unmixing [5], classification [6],
and detection [7], etc. As a special branch of HSIs re-
searches, anomaly detection aims to extract potential
abnormal pixels without any prior knowledge [8]. There-
fore, suitable methods need to be designed.

Traditionally, classic anomaly detectors have been de-
veloped mostly based on the assumption of data sta-
tistical distributions. The benchmark RX detector, the
cluster-based anomaly detection (CBAD) [7] algorithm,
the blocked adaptive computationally efficient outlier
nominators (BACON) [9] and the random selection-based
anomaly detector (RSAD) [10] assume that the data fol-
lows the Gaussian or Gaussian mixture distributions,
then they implement the detection task according to the
Mahalanobis distance between the pixel-under-test and
the background. However, this hypothesis has obvious
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limitations in practical applications.
To overcome the insufficient accuracy happened in

the distribution-based models, the representation-based
detectors have been proposed and shown intended per-
formances. Representative methods are the collaborative
representation detector (CRD) [11], the background joint
sparse representation detector (BJSRD) [12], etc. A dual
concentrate window is utilized to extract the possible
background information as the confidence dictionaries
of the background at each test pixel. And the detection
result is approximately derived by calculating the repre-
sentation residual of the pixel. Nowadays, the low-rank
representation is widely used in hyperspectral anomaly
detection which takes advantage of the repeatability of
the background spectrum and decomposes the original
data matrix. Considering that the anomalies are usually
rare and sparse, Chen et. al. [13] first utilized the low-
rank decomposition model for anomaly detection. Later,
many types of research have been carried out based on
the low-rankness of the background subspace and the
sparsity of the anomaly subspace [14, 15]. However, after
doing the low-rank decomposition, the detection decision
of these methods either focus on analyzing the sparse ma-
trix or back to the statistical estimation, a better combina-
tion of the assumed background component and anomaly
component may let the detection more reasonable.

As is well known, subspace clustering (SC) is gradu-
ally developed for unsupervised HSIs interpretation [16].
It can learn the similarity between pixels through self-
dictionary learning. Inspired by the sketched-SC and
representation theory, we propose a double low-rank
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regularization model for hyperspectral anomaly detec-
tion. The proposed method is solved via the alternat-
ing direction method of multipliers (ADMMs) method
[17] and the anomalies are finally detected by computing
a background-related residual matrix and an anomaly-
related distance matrix.

2. Proposed method

2.1. Related works
Let X = {x𝑖}𝑁𝑖=1 ∈ R𝐿×𝑁 denotes the data collections,
where 𝐿 is the number of bands and 𝑁 is the total pixel
number of the image. Then, the low-rank representation
model aims to decompose the data into a lowest-rank
matrix L ∈ R𝐿×𝑁 and a sparse matrix E ∈ R𝐿×𝑁 . The
optimization problem is given by:

min
L,E

||L||⋆ + 𝛼||E||0 𝑠.𝑡. X = L+ E, (1)

where 𝛼 is the regularization parameter, || · ||⋆ and || · ||0
represents the nuclear norm and the ℓ0 norm, respec-
tively.

For a given dictionary 𝐷, the low-rank matrix L can
be rewritten as a linear combination of the 𝐷 and its
corresponding coefficient matrix 𝑍 . And the NP-hard
problem eq. (1) can be represented as:

min
𝑍,E

||𝑍||⋆ + 𝛼||E||2,1 𝑠.𝑡. X = 𝐷𝑍 + E, (2)

where 𝐷 ∈ R𝐿×𝑛 has 𝑛 dictionary samples, 𝑍 ∈ R𝑛×𝑁 ,
and || · ||2,1 is the ℓ2,1 norm of the matrix. ℓ2,1 norm
can be regarded as the ℓ1 norm of the ℓ2 norm of matrix
columns.

2.2. Problem formulation
Assume that the data can be self-represented:

X = X𝐶,

where 𝐶 is the coefficient matrix. Then for a sketched
data X̃ = X𝑇 , we also have:

X = X̃𝐴,

where 𝑇 ∈ R𝑁×𝑡 is defined as a random projection ma-
trix to compress X while preserving its main information,
and 𝐴 ∈ R𝑡×𝑁 .

By means of the sketched data X̃, the proposed double
low-rank regularization (DLRR) model based on sketched-
SC can be formulated as:

min
𝐴,𝑍,E

||𝐴||⋆ + 𝛽||𝑍||⋆ + 𝜆||E||2,1

𝑠.𝑡. X = X̃𝐴, X = 𝐷𝑍 + E,
(3)

where 𝛽 and 𝜆 are the regularization parameters, 𝐴 is the
self-representation coefficient matrix, 𝑍 is the assumed
background coefficient matrix, and E denotes the sparse
part indicating the anomalies.

Considering that the difference of 𝐴 and 𝑍 may reflect
the abnormal information of the image, then the residual
of these two matrices can be utilized as the reference of
detection output when 𝑡 = 𝑛. And the final detection
result is formulated by the sum of the column-wise ℓ2
norm of the low-rank coefficient matrices residual and
the sparse coefficient matrix:

𝐷𝐷𝐿𝑅𝑅(x𝑖) = ||𝐴:,𝑖 − 𝑍:,𝑖||2 + ||𝐸:,𝑖||2. (4)

2.3. Problem optimization
To solve the proposed DLRR model, the ADMM method
is employed and the detailed optimization process is de-
scribed as follows.

First, 𝐵 and𝐻 are introduced as the auxiliary variables
for the coefficient matrix 𝐴 and 𝑍 , respectively:

min
𝐵,𝐴,𝐻,𝑍,E

||𝐵||⋆ + 𝛽||𝐻||⋆ + 𝜆||E||2,1

𝑠.𝑡. X = X̃𝐴, X = 𝐷𝑍 + E,
𝐴 = 𝐵, 𝑍 = 𝐻.

(5)

Then, the augmented Lagrangian function of (5) can
be constructed:

min
𝐵,𝐴,𝐻,𝑍,E,𝑌1,𝑌2,𝑌3,𝑌4

||𝐵||⋆ + 𝛽||𝐻||⋆ + 𝜆||E||2,1

+
𝜌

2
||X− X̃𝐴+ 𝑌1/𝜌||2𝐹 +

𝜌

2
||X−𝐷𝑍 − 𝐸 + 𝑌2/𝜌||2𝐹

+
𝜌

2
||𝐴−𝐵 + 𝑌3/𝜌||2𝐹 +

𝜌

2
||𝑍 −𝐻 + 𝑌4/𝜌||2𝐹 ,

(6)

where 𝑌1 ∈ R𝐿×𝑁 , 𝑌2 ∈ R𝐿×𝑁 , 𝑌3 ∈ R𝑡×𝑁 , and
𝑌4 ∈ R𝑛×𝑁 are the Lagrangian multipliers, and 𝜌 > 0
is the penalty parameter.

Then the equation (6) can be divided into five optimiza-
tion problems and be updated one by one with iterative
procedures. The updating rules of these variables are:

1) 𝐵 step with fixed 𝐴 and 𝑌3:

min
𝐵

||𝐵||⋆ +
𝜌

2
||𝐴−𝐵 + 𝑌3/𝜌||2𝐹 . (7)

2) 𝐻 step with fixed 𝑍 and 𝑌4:

min
𝐻

𝛽||𝐻||⋆+
𝜌

2
||𝑍−𝐻(𝑘+1)+𝑌4/𝜌||2𝐹 . (8)

3) E step with fixed 𝑍 and 𝑌2:

min
E

𝜆||E||2,1+
𝜌

2
||X−𝐷𝑍−𝐸+𝑌2/𝜌||2𝐹 . (9)



4) 𝐴 step with fixed 𝐵, 𝑌1 and 𝑌3:

min
𝐴

𝜌

2
||X−X̃𝐴+𝑌1/𝜌||2𝐹+

𝜌

2
||𝐴−𝐵+𝑌3/𝜌||2𝐹 .

(10)
5) 𝑍 step with fixed 𝐻 , E, 𝑌2 and 𝑌4:

min
𝑍

𝜌

2
||X−𝐷𝑍−𝐸+𝑌2/𝜌||2𝐹+

𝜌

2
||𝑍−𝐻+𝑌4/𝜌||2𝐹 .

(11)
6) The Lagrangian multipliers and the penalty pa-

rameter are updated as:

𝑌1 = 𝑌1 + 𝜌(X− X̃𝐴), (12)

𝑌2 + 𝜌(X−𝐷𝑍 − 𝐸), (13)

𝑌3 = 𝑌3 + 𝜌(𝐴−𝐵), (14)

𝑌4 = 𝑌4 + 𝜌(𝑍 −𝐻), (15)

𝜌 = min{1.1𝜌, 𝜌𝑚𝑎𝑥}. (16)

The solutions of (7) and (8) are calculated by 𝐵 =
Θ(1/𝜌)(𝐴+ 𝑌3/𝜌) and 𝐻 = Θ(𝛽/𝜌)(𝑍 + 𝑌4/𝜌), respec-
tively, where Θ is the singular value thresholding (SVT)
operator. Then E is updated by 𝒮(𝜆/𝜌)(X−𝐷𝑍 +𝑌2/𝜌)
where 𝒮 is a ℓ2,1-min thresholding operator [18]. 𝐴 and
𝑍 are respectively solved by finding the partial deriva-
tive and setting it to zero. Their optimized solutions are
𝐴 = (𝐼 + X̃⊤X̃)−1(X̃⊤X+ X̃⊤

𝑌1/𝜌+𝐵 − 𝑌3/𝜌) and
𝑍 = (𝐼 +𝐷⊤𝐷)−1(𝐷⊤X−𝐷⊤E+𝐷⊤𝑌2/𝜌+𝐻 −
𝑌4/𝜌).

The initial settings of this optimization process are:
𝐴0 = 𝑍0 = 𝐻0 = 0, E0 = 0, 𝑌0 = 𝑌1 = 0, 𝑌3 =
𝑌4 = 0, 𝜌0 = 0.01, 𝜌𝑚𝑎𝑥 = 106. And the convergence
conditions are ||𝑋 − X̃𝐴||𝐹 < 𝜖, ||𝑋 −𝐷𝑍 + 𝐸||𝐹 <
𝜖, ||𝐴 − 𝐵||𝐹 < 𝜖, ||𝑍 − 𝐻||𝐹 < 𝜖, or the iteration
times exceeds the predefined upper limit. Empirically,
the predefined value of the error tolerance is 𝜖 = 10−6

and the maximum iteration time is 100.

3. Experiments
In this section, the performance of the proposed DLRR
method is assessed on two real-world HSI scenes: the
San Diego dataset and the Urban dataset. Four classi-
cal anomaly detection methods, which are RX, BACON,
Kernel-RX (KRX) [19], and the low probability anomaly
detector (LPAD) [20], respectively, are applied for com-
parable analysis. The regularization parameters 𝛽 and 𝜆
are set as 5 and 10, respectively. The background dictio-
naries are collected by the mean vector of the K-means
clusters, and the dictionary number 𝑛 is set as 400.

1) San Diego dataset: This dataset was captured by
the AVIRIS sensor, which has a spatial resolution
of 3.5 m and a spectral resolution of 10 nm. This
dataset has 224 original spectral bands in total,

(a) (b)

Figure 1: The San Diego dataset. (a) Image scene. (b) Ground-
truth.

(a) (b)

Figure 2: The Urban dataset. (a) Image scene. (b) Ground-
truth.

and 189 bands are utilized for the detection task
after eliminating the noisy bands. It records the
area of the San Diego airport, CA, USA in 100×
100 pixels, three aircrafts including 58 pixels are
selected as the anomaly target. The visualized
2-D image scene and the ground-truth map of
this dataset are shown in Figure 1.

2) Urban dataset: This dataset was collected by the
HYDICE airborne sensor, which has a spatial res-
olution of 1 m and a spectral resolution of 10 nm.
After removing low quality bands, 162 bands are
left for anomaly detection. This image scene con-
tains 80 × 100 pixels, and 17 small objects are
considered as anomaly targets. The 2-D visual-
ization map and the ground-truth of this dataset
are shown in Figure 2.
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Figure 3: The San Diego dataset. (a) ROC curves. (b) Normal-
ized background-anomaly statistical range.

The proposed DLRR model together with other com-
parable algorithms are conducted in the aforementioned



San Diego and Urban datasets, and the detection perfor-
mances evaluated by the ROC curves and the normalized
background-anomaly statistical range are shown in Fig-
ure 3 and Figure 4, respectively. It can be seen that in
the San Diego dataset, the proposed DLRR model has the
smallest false alarm rate when the detection probability
reaches 1. And for the Urban dataset, our method has
the largest separation range between the backgrounds
and the anomalies. For further evaluation, the area under
ROC curve (AUC) values are computed and the results
are shown in Table 1. The results show that the proposed
DLRR method has the largest AUC values compared with
other methods in both two datasets.
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Figure 4: The Urban dataset. (a) ROC curves. (b) Normalized
background-anomaly statistical range.

Table 1
The AUC Values of Five Algorithms in Two Datasets

Methods San Diego Dataset Urban Dataset

RX 0.8742 0.9919
BACON 0.8768 0.9720
KRX 0.7490 0.7836
LPAD 0.8973 0.8137
DLRR 0.9261 0.9927
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