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Abstract
Attention-based deep learning models have demonstrated significant improvement over traditional algorithms in several NLP
tasks. The Transformer, for instance, is an illustrative example that generates abstract representations of tokens that are input
to an encoder based on their relationships to all tokens in a sequence. While recent studies have shown that such models are
capable of learning syntactic features purely by seeing examples, we hypothesize that explicitly feeding this information to
deep learning models can significantly enhance their performance in many cases. Leveraging syntactic information like part
of speech (POS) may be particularly beneficial in limited-training-data settings for complex models such as the Transformer.
In this paper, we verify this hypothesis by infusing syntactic knowledge into the Transformer. We find that this syntax-infused
Transformer achieves an improvement of 0.7 BLEU when trained on the full WMT ’14 English to German translation dataset
and a maximum improvement of 1.99 BLEU points when trained on a fraction of the dataset. In addition, we find that the
incorporation of syntax into BERT fine-tuning outperforms BERTBASE on all downstream tasks from the GLUE benchmark,
including an improvement of 0.8% on CoLA.
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1. Introduction
Attention-based deep learning models for natural lan-
guage processing (NLP) have shown promise for various
machine translation and natural language understanding
tasks. For word-level sequence-to-sequence tasks such
as translation, paraphrasing, and text summarization,
attention-based models allow a single token (in our case,
subwords) to be represented as a combination of all to-
kens in the sequence [1]. The distributed context allows
attention-based models to infer rich representations for
tokens, leading to more robust performance. One such
model is the Transformer, which features a multi-headed
self- and cross-attention mechanism that allows many
different representations to be learned for a given token
in parallel [2]. The encoder and decoder arms contain
several identical stacked subunits to learn embeddings
for tokens in the source and target vocabularies.

Syntax is an essential feature of grammar from ex-
ternal knowledge that facilitates generation of coherent
sentences. For instance, POS dictates how words relate to
one another (𝑒.𝑔., verbs represent the actions of nouns,
adjectives describe nouns, etc.). Studies show that when
trained for a sufficiently large number of steps, NLP mod-
els can potentially learn underlying patterns about text
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like syntax and semantics, but this knowledge is imper-
fect [3]. However, works such as [4], [5] show that NLP
models that acquire even a weak understanding of syntac-
tic structure through training demonstrate improved per-
formance relative to their baseline counterparts. Hence,
we hypothesize that explicit prior knowledge of syntactic
information can benefit NLP models in various tasks.

The Transformer relies on a significant amount of data
and extensive training to accurately pick up on syntactic
and semantic relationships [3]. Previous studies have
shown that an NLP model’s performance improves with
the ability to learn the underlying grammatical structure
of a sentence [4, 5, 6]. It has been shown that simulta-
neously training models for machine translation, part of
speech (POS) tagging, and named entity recognition pro-
vide a slight improvement over baseline on each task for
small datasets [7]. Inspired by these previous efforts, we
propose to utilize external knowledge, namely the syn-
tactic features inherent in natural language sequences,
to enhance the performance of the Transformer model.

We suggest a modification to the embeddings fed into
the Transformer architecture that allows the tokens input
to the encoder to attend not only to other tokens but also
syntactic features including POS, case (upper or lower),
and subword position [8]. Like POS, case is a categorical
feature that can allow the model to distinguish common
words from important ones. Subword tags can help bring
cohesion among subwords of a complex word (say ‘amal’,
‘ga’, ‘mation’ of “amalgamation”) so that their identity
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as a unit is not compromised by tokenization. These fea-
tures are identified using a separate model (for POS) or
are directly specified (for case and subword position) and
are appended to the one-hot vector encoding for each to-
ken. For example, the feature-augmented subword tokens
of ‘amalgamation’ would look like: ‘amal,NOUN,0,S’,
‘ga,NOUN,0,M’, ‘mation,NOUN,0,E’. Here, ‘NOUN’ in-
dicates the POS; 0 indicates lowercase; and ‘S’, ‘M’, and
‘E’ indicates that the subwords occur at the start, middle,
and end of the word, respectively. Embeddings for the
tokens and their features are learned jointly during the
training. As the embeddings pass the Transformer layers,
the representation for each token is synthesized using a
combination of subword token and syntactic features.

We apply our approach to English to German (EN-DE)
translation on the WMT ’14 dataset and demonstrate that
the BLEU score of the feature-rich syntax-infused Trans-
former uniformly outperforms the baseline Transformer
as a function of training data size. We also evaluate the
proposed model on two low-resource languages – Korean
and Sinhala – where the source translation language is
always English. Finally, we experiment with this modi-
fication of embeddings on the BERTBASE model on sev-
eral General Language Understanding Evaluation (GLUE)
benchmarks and observe considerable improvement in
performance on all the tasks. Examining the attention
weights learned by the proposed model indicates that the
attention is more dispersed than the baseline model.

To summarize, our contributions are as follows:

1. We propose a modification to the trainable embed-
dings of the Transformer model, incorporating
external syntax information, including POS, case,
and subword position.

2. We demonstrate superior performance on the
WMT ’14 EN-DE machine translation task and
for low-resource machine translation.

3. We infuse pre-trained BERTBASE embeddings with
syntax information and find that our model out-
performs BERTBASE on all of the GLUE benchmark
tasks.

2. Related Work
Previous works have sought to improve the self-attention
module to aid NLP models. For instance, [9] introduced
a Gaussian bias to model locality, to enhance model abil-
ity to capture local context while also maintaining the
long-range dependency. Instead of absolute positional
embeddings, [10] experimented with relative positional
embeddings or distance between sequences and found
that it led to a significant improvement in performance.

Adding linguistic structure to models like the Trans-
former can be thought of as a way of improving the
attention mechanism. The POS and subword tags act as

a form of relative positional embedding by enforcing the
sentence structure. [11] encourages different attention
heads to learn about different information like position
and output representation by introducing a disagreement
regularization. To model the local dependency between
words more efficiently, [12] introduced distance between
words and incorporated it into the self-attention.

Previous literature also has sought to incorporate syn-
tax into deep learning NLP models. [13] used syntax de-
pendency tree on a bidirectional RNN on translation sys-
tems by modeling the trees using Graph Convolutional
Networks (GCNs) [14]. Incorporating syntax informa-
tion by linearizing parse trees and adding a syntax-based
distance constraint on the attention module helped sig-
nificantly in Chinese-English and English-German trans-
lation [15].

Finally, [16] has incorporated source side syntax on
Transformer encoders in a multi-task setup with parse
trees. However, in this approach, the Transformer strug-
gles to learn to parse and decode the syntactic sequences
and only showed performance gains in low-resource
languages. We append the syntactic information as se-
quences and decode only the target sequence, thus not
complicating the Transformer’s job. These works affirm
that adding syntax information can help the NLP mod-
els translate better from one language to another and
achieve better performance measures.

3. Background

3.1. Baseline Transformer
The Transformer consists of encoder and decoder mod-
ules, each containing several subunits that act sequen-
tially to generate abstract representations for words
in the source and target sequences [2]. For all 𝑚 ∈
{1, 2, . . . , 𝑀}, where 𝑀 is the length of the source
sequence, the encoder embedding layer first converts
tokens x𝑚 into embeddings e𝑚: e𝑚 = Ex𝑚 where
E ∈ R𝐷×𝑁 is a trainable matrix with column 𝑚 consti-
tuting the embedding for token 𝑚, 𝑁 is the total number
of tokens in the shared vocabulary, and x𝑚 ∈ {0, 1}𝑁 :∑︀

𝑖 𝑥𝑚𝑖 = 1 is a one-hot vector corresponding to token
𝑚. These embeddings are passed sequentially through
six encoder subunits. Each of these subunits features a
self-attention mechanism, that allows tokens in the input
sequence to be represented as a combination of all tokens
in the sequence. Attention is accomplished using three
sets of weights: the key, query, and value matrices (K,
Q, and V, respectively). The key and query matrices
interact to score each token in relation to other tokens,
and the value matrix gives the weights to which the score
is applied to generate output embedding of a given token.



Stated mathematically,

K = HW𝐾

Q = HW𝑄

V = HW𝑉

A = softmax
(︂
QK⊤
√
𝜌

)︂
V

(1)

where H = [h1 h2 · · · h𝑀 ]⊤ ∈ R𝑀×𝐷 are the 𝐷-
dimensional embeddings for a sequence of 𝑀 tokens
indexed by 𝑚; W𝐾 , W𝑄, and W𝑉 all ∈ R𝐷×𝑃 are the
projection matrices for keys, queries, and values, respec-
tively; 𝜌 is a scaling constant (here, taken to be 𝑃 ) and
A ∈ R𝑀×𝑃 is the attention-weighted representation
of each token. Note that these are subunit-specific – a
separate attention-weighted representation is generated
by each subunit and passed on to the next. Moreover, for
the first layer, h𝑚 := e𝑚.

The final subunit then passes its information to the
decoder, which also consists of six identical subunits
that behave similarly to those of the encoder. One key
difference between the encoder and decoder is that the
decoder not only features self-attention but also cross-
attention; thus, when generating new words, the decoder
pays attention to the entire input sequence as well as to
previously decoded words.

3.2. BERT
The token embeddings learned by the Transformer en-
coder can also be fine-tuned to perform a number of
different downstream tasks. Bidirectional encoder repre-
sentations of Transformers (BERT) [17] is an extension of
the Transformer model that allows for such fine-tuning.
The BERT model is essentially a Transformer encoder
(with number of layers 𝑙, embedding dimension 𝐷, and
number of attention heads 𝛼) which is pre-trained using
two methods: masked language modeling (MLM) and
next-sentence prediction (NSP). Subsequently, a softmax
layer is added, allowing the model to perform various
tasks such as classification, sequence labeling, question
answering, and language inference.

4. Knowledge-Infused Models

4.1. Syntax-infused Transformer
To aid the Transformer in acquiring and utilizing syn-
tactic information for better translation, we (𝑖) employ
a pre-trained model1 with high accuracy to tag words
in the source sequence with their POS, (𝑖𝑖) identify the
case of each word, and (𝑖𝑖𝑖) identify the position of each

1https://spacy.io/

(a) Syntax-infused Transformer

(b) Syntax-infused BERT

Figure 1: (a) Formation of attention matrices (K, Q, and V)
with syntactic information. The left column shows the token
embedding matrix; the embedding matrices for the various
features are shown on top. Embeddings for the features are
either concatenated or summed (denoted by ⊕) and finally,
concatenated to the token embeddings. Multiplication with
learned weights results in K, Q, and V. The attention matri-
ces are double shaded to indicate the mix of token and syntax
information. (b)The BERTBASE + POS model. Token embeddings
are combined with trainable POS embeddings and fed into
the BERT encoder. The final embedding of the [CLS] token is
fed into a softmax for downstream classification tasks.

subword relative to other subwords that are part of the
same word (subword tagging). We then append train-
able syntax embedding vectors to the token embeddings,
resulting in a combined representation of syntactic and
semantic elements. Specifically, each word in the source
sequence is first associated with its POS label according
to syntactic structure. We then assign each subword to-
ken the POS label of the word from which it originated.
For example, if the word sunshine is broken up into sub-
words sun, sh, and ine, each subword token would be
assigned the POS NOUN. The POS embeddings f𝑃𝑚 ∈ R𝑑

for each token (indexed by 𝑚) are then extracted from a



trainable embedding matrix using a look-up table.
In a similar manner, we extract case and subword

position features. For case, we use a binary element
𝑧𝑐𝑚 ∈ {0, 1} to look up a feature embedding f 𝑐𝑚 ∈ R𝑑

for each subword, depending on whether the original
word is capitalized. For subword position, we use a cate-
gorical element 𝑧𝑠𝑚 ∈ {𝑆,𝑀,𝐸,𝑂} to identify a feature
embedding f𝑠𝑚 ∈ R𝑑 for each subword depending on
whether the subword is at the start (𝑆), middle (𝑀 ), or
end (𝐸) of the word; if the subword comprises the full
word, it is given a tag of 𝑂. These are then added onto
the POS embedding and concatenated with the token em-
beddings e𝑚 ∈ R𝐷−𝑑 to create a combined embedding
(see Figure 1a). Mathematically, in the input stage, h𝑚

becomes:
[e⊤

𝑚 f⊤𝑚]⊤ = h′
𝑚 ∈ R𝐷

where f𝑚 = f𝑃𝑚 + f 𝑐𝑚 + f𝑠𝑚 ∈ R𝑑 is the learned em-
bedding for the syntactic features of subword 𝑚 in the
sequence of 𝑀 subwords. The augmented embeddings
are then passed through the Transformer’s multi-headed
attention, layer normalization, and feedforward modules,
resulting in a syntax-infused hidden state of each encoder
layer:

Ã = [A0 · · ·A7]W
𝑂

H̃ = [H′ · · ·H′]

Z̃ = LayerNorm(Ã+ H̃)

Z𝑙 = LayerNorm(Z̃+ FeedForward(Z̃))

(2)

where H̃ are the syntax-augmented embeddings, re-
peated eight times (once for each attention head); Ã
is the concatenation of the attention-weighted represen-
tation of the output of the eight heads; and Z𝑙 is the
output of layer 𝑙. LayerNorm and FeedForward denote
the layer normalization function and feedforward neural
network layers, respectively, and are applied separately
for each head. This is repeated 𝐿 times in 𝐿 layers, with
the output of the previous layer treated as the input to
the next. The final syntax-infused encoder output Z𝐿 is
attended to by the decoder, aiding the autoregressive text
generation process in the final layer of the Transformer:

z′𝐿,𝑡 = 𝑓(Z𝐿, 𝑤1:𝑡−1)

Scores(𝑡) = LayerNorm(z′𝐿,𝑡)W𝒱

𝑃 (𝑤𝑡|𝑤1:𝑡−1, z
′
𝐿,𝑡) = softmax(Scores(𝑡))

(3)

where 𝑓 is the decoder, which undergoes the same pro-
cess outlined in equation 2, and comprises cross-attention
with the encoder output and a causal self-attention (pa-
rameters of the decoder omitted for conciseness). 𝑡 =
1, . . . , 𝑇 indexes decoded tokens 𝑤𝑡, and W𝒱 is a linear
projection matrix mapping the decoder output to the vo-
cabulary size. The scores for output tokens are now a
function of z′𝐿,𝑡, which is aware of the source syntax.

4.2. Syntax-infused BERT
Adding syntactic features to the BERT model is a natural
extension of the above modification to the Transformer.
For a given token, its input representation is constructed
by summing the corresponding BERT token embeddings
with POS embeddings (see Figure 1b). Mathematically,
the input tokens h′

𝑚 ∈ R𝐷 are given by h′
𝑚 = e𝑚+ f𝑃𝑚 ,

where e𝑚 is the BERT token embedding and f𝑃𝑚 is the
POS embedding for token 𝑚. For single sequence tasks,
𝑚 = 1, 2, . . . ,𝑀 , where 𝑀 is the number of tokens
in the sequence; while for paired sequence tasks, 𝑚 =
1, 2, . . . ,𝑀1 +𝑀2, where 𝑀1 and 𝑀2 are the number
of tokens in each sequence. As is standard with BERT,
for downstream classification tasks, the final embedded
representation ŷ𝐶𝐿𝑆 of the first token (denoted as [CLS])
is passed through a softmax classifier to generate a label.
We modify the BERTBASE model using this approach and
denote it as BERT BASE + POS.

5. Datasets and Experimental
Details

We train our syntax-infused model on the WMT ’14 EN-
DE (German) dataset, which consists of 4.5M training
sentence pairs. Validation is performed on newstest2013
(3000 sentence pairs), and testing is on the newstest2014
dataset (2737 sentence pairs, [18]). For low-resource ma-
chine translation (1M sentence pairs or less), we employ
the OpenSubtitles EN-KO (Korean) and EN-SI (Sinhala)
datasets [19]. The latter was found by [20] to be a low-
resource language with morphology and syntax signifi-
cantly different from that of English. We subsample these
datasets from 1.3M and 601K sentence pairs, respectively,
to 500K sentence pairs, and train on 90%, validate on
9%, and test on 1%. One of the key reasons to incorpo-
rate POS features to EN sequences is that parsers that
infer syntax from EN sentences are typically trained on
a greater number and variety of sentences and are there-
fore more robust than parsers for other languages. Unlike
[16], in our experiments, we always translate sequences
from EN to other languages as the objective is to improve
the translation performance and not to decode the POS
sequences.

5.1. Machine translation
For EN-DE, we train both the baseline and syntax-infused
Transformer for 100,000 steps. All hyperparameter set-
tings of the baseline Transformer, including embedding
dimensions of the encoder and decoder, match those of
[2]. We train the syntax-infused Transformer model us-
ing 512-dimensional embedding vectors. In the encoder,
𝐷 = 492 dimensions are allocated for subword token em-



(a) Baseline (EN-DE) (b) Syntax-infused (EN-DE)

Figure 2: Comparison of attention for example sentences translated by baseline and POS Transformer models (obtained from
the last layer). Rows depict the attention score for a given target subword to each of the subwords in the source sequence. In
syntax-infused models for EN-DE translation, we find that attention is more widely distributed across subwords. For instance,
the subword “Vater” (the German word for “father”) attends mostly to the nearby subwords “his” and “father” in the base
model while “Vater” also attends to the more distant words “Bwelle” (a person) and “escorting” in the syntax-infused model.
This suggests that the syntax-infused model is able to better connect disparate parts of a sentence to aid translation. Note that
the number of rows in the baseline and syntax-infused Transformer are different because each produces different predictions.

Data Number of Baseline Syntax-infused
Fraction Sentences Transformer Transformer

1% 45k 1.10 1.67
5% 225k 8.51 10.50
10% 450k 16.28 17.28
25% 1.1M 22.72 23.24
50% 2.25M 25.41 25.74
100% 4.5M 28.94 29.64

Table 1
BLEU scores for different proportions of the data for baseline
Transformer vs syntax-infused Transformer for the EN-DE
task on newstest2014.

Transformer RNN
Lang. Baseline Syntax Baseline Syntax
EN-SI 11.12 11.73 8.24 7.95

EN-KO 3.87 4.19 2.86 1.80

Table 2
BLEU scores improvements on low resource languages includ-
ing Sinhala and Korean for the baseline and syntax-infused
models.

beddings while 𝑑 = 20 for feature embeddings (chosen
by hyperparameter tuning). In the decoder, all 512 di-
mensions are used for subword token embeddings (since
we are decoding words, not word-POS pairs).

The model architecture consists of six encoder and six

decoder layers, with eight heads for multi-headed atten-
tion. Parameters are initialized from a Glorot uniform
distribution [21]. We use a dropout rate of 0.1 and batch
size of 4096. We utilize the Adam optimizer to train the
model with 𝛽1 = 0.9 and 𝛽2 = 0.998; gradients are
accumulated for two batches before updating parameters.
A label-smoothing factor of 0.1 is employed.

The training settings are exactly the same for low-
resource translation except that we train the Transformer
models for 50,000 steps owing to the reduced data com-
plexity. The dimension 𝑑 of features f𝑚 is chosen to be
20 by doing a grid search over the range of 8 to 64.

5.2. Natural language understanding
The General Language Understanding Evaluation (GLUE)
benchmark [22] is a collection of different natural lan-
guage understanding tasks evaluated on eight datasets:
Multi-Genre Natural Language Inference (MNLI), Quora
Question Pairs (QQP), Question Natural Language Infer-
ence (QNLI), Stanford Sentiment Treebank (SST-2), the
Corpus of Linguistic Acceptability (CoLA), the Seman-
tic Textual Similarity Benchmark (STS-B), Microsoft Re-
search Paraphrase Corpus (MRPC), and Recognizing Tex-
tual Entailment (RTE). For a summary of these datasets,
see [17]. We use POS as the syntactic feature for BERT for
these tasks. Aside from the learning rate, we use identical
hyperparameter settings to fine-tune both the BERTBASE



Reference Baseline Transformer Syntax-infused Transformer
Parken in Frankfurt könnte bald empfindlich
teurer werden .

Das Personal war sehr freundlich und hilfs-
bereit .

Parken in Frankfurt könnte bald spürbar
teurer sein .

Die zurückgerufenen Modelle wurden zwis-
chen dem 1. August und 10. September
hergestellt .

Zwischen August 1 und September 10. Die zurückgerufenen Modelle wurden zwis-
chen dem 1. August und 10. September
gebaut

Stattdessen verbrachte Bwelle Jahre damit ,
seinen Vater in überfüllte Kliniken und Hos-
pitäler zu begleiten , um dort die Behandlung
zu bekommen , die sie zu bieten hatten .

Stattdessen verbrachte Bwelle Jahre damit
, seinen Vater mit über füllten Kliniken und
Krankenhq̈usern zu beherbergen .

Stattdessen verbrachte Bwelle Jahre damit
, seinen Vater zu überfüllten Kliniken und
Krankenhäusern zu begleiten , um jede Be-
handlung zu bekommen , die sie bekommen
konnten .

Patek kann gegen sein Urteil noch Berufung
ein legen .

Patek kann noch seinen Satz an rufen . Patek mag sein Urteil noch Berufung ein
legen .

Table 3
Translation examples of baseline Transformer vs. syntax-infused Transformer on the EN-DE dataset. The text highlighted in
blue represents words correctly predicted by the syntax-infused model but not by the baseline Transformer.

System MNLI QQP QNLI SST-2 CoLA STS-B MRPC RTE Average
392k 363k 108k 67k 8.5k 5.7k 3.5k 2.5k -

Pre-OpenAI SOTA 80.6/80.1 66.1 82.3 93.2 35.0 81.0 86.0 61.7 74.0
BiLSTM+ELMo+Attn 76.4/76.1 64.8 79.8 90.4 36.0 73.3 84.9 56.8 71.0

OpenAI GPT 82.1/81.4 70.3 87.4 91.3 45.4 80.0 82.3 56.0 75.1
BERTBASE 84.6/83.4 71.2 90.5 93.5 52.1 85.8 88.9 66.4 79.6

BERTBASE + POS 84.4/83.6 71.4 90.8 93.9 52.9 86.0 89.0 66.9 79.9

Table 4
GLUE test results scored using the GLUE evaluation server. The number below each task denotes the number of training
examples. The scores in bold denote the tasks for which BERTBASE + POS outperforms BERTBASE.

and BERTBASE + POS models for each task. This includes a
batch size of 32 and 3 epochs of training for all tasks. For
each model, we also choose a task-specific learning rate
among the values {5, 4, 3, 2} × 10−5, which is standard
for BERTBASE.

6. Experimental Results

6.1. Machine translation
We evaluate the impact of infusing syntax into the base-
line Transformer on the WMT ’14 EN-DE translation task
as well as on the low resource EN-SI and EN-KO language
pairs. There are multiple ways to incorporate feature em-
beddings into the subword token embeddings, such as
direct summation, vector projection, or concatenation.
For a fair comparison to the baseline Transformer, we
fix a total of 512 dimensions for representing both the
token embeddings and feature embeddings. One impor-
tant tradeoff is that as the dimensionality of the syntax
information increases, the dimensionality for token em-
beddings decreases. Since POS, case, and subword tags
have only a limited number of values they can take, ded-
icating a high dimensionality for each feature proves
detrimental. We find that the total feature dimension for
which the gain in BLEU score is maximized is 20 (found

through grid search). This means that (1) each feature
embedding dimension can be allocated to 20 and summed
together or (2) the feature embeddings can be concate-
nated to each other such that their total dimension is 20.
Therefore, in order to efficiently learn the feature em-
beddings while also not sacrificing the token embedding
dimensionality, we find that summing the embeddings for
all three different features of 𝑑 = 20 and concatenating
the sum to the subword token embeddings of 𝐷 = 492
gives the maximum performance on translation.

We report results on the WMT ’14 EN-DE translation
task in Table 1. We vary the proportion of data used
for training and observe the performance of both the
baseline and syntax-infused Transformer. The syntax-
infused model markedly outperforms the baseline model,
offering an improvement of 0.57, 1.99, 1, 0.52, 0.33, and
0.7 points, respectively, when trained on 1, 5, 10, 25, 50,
and 100% of the full training data. It is notable that the
syntax-infused model translates the best relative to the
baseline when only a fraction of the dataset is used for
training. Specifically, the maximum improvement is 1.99
BLEU points when only 10% of the training data is used.
This shows that explicit syntax information is most help-
ful under limited training data conditions. As shown in
Figure 2(a)-(b), the syntax-infused model is better able
to capture connections between tokens that are far apart



Sentence 1 Sentence 2 True label
The Qin (from which the name China is derived) established the approx-
imate boundaries and basic administrative system that all subsequent
dynasties were to follow .

Qin Shi Huang was the first Chinese Em-
peror .

Not entailment

Steve Jobs was attacked by Sculley and other Apple executives for not
delivering enough hot new products and resigned from the company a
few weeks later.

Steve Jobs worked for Apple. Entailment

Table 5
Examples of randomly chosen sentences from the RTE dataset (for evaluation of entailment between pairs of sentences) that
were classified by BERTBASE + POS but not by BERTBASE.

yet semantically related, resulting in improved transla-
tion performance. In addition, Table 3 shows a set of
sample German predictions made by the baseline and
syntax-infused Transformer.

In Table 2, we compare the performance of baseline
and syntax-infused Transformers on low resource lan-
guages, namely Korean and Sinhala. These languages
are often under represented in the NLP literature and
fall under categories of languages with limited training
data. Results confirm the effectiveness of our method-
ology of adding syntax to source sequences to improve
efficiency, irrespective of the training data size. In ad-
dition, while we find there are improvements in BLEU
scores with the syntax-infused Transformer, Table 2 also
shows the effect of addition of syntax to RNN-based net-
works for the same translation tasks leads to a drop in
performance. For this experiment, we employed an 2-
layer LSTM encoder and 2-layer LSTM decoder with 500
hidden states each and augmented encoder tokens with
syntax features in the same way as for the Transformer.
[5] confirms our observation that recurrent structures
struggle to learn the subject-verb agreement and that
better architectures may be required to retain the com-
plex syntactic structures present in the languages. On
the other hand, Transformers have been known to learn
syntax with sufficient training and an increased amount
of data. Studies [23] have also shown that explicit syntax
supervision in Transformers yield superior results.

6.2. Natural language understanding
Results obtained for the BERTBASE + POS model on the
GLUE benchmark test set are presented in Table 4.
BERTBASE + POS outperforms BERTBASE on all tasks, with
the exception of matched MNLI. The improvements range
from marginal to significant, with a maximum improve-
ment of 0.8 points of the POS model over BERTBASE on
CoLA. Fittingly, CoLA is a task which assesses the linguis-
tic structure of a sentence, which is explicitly informed by
POS embeddings. Moreover, BERTBASE + POS outperforms
BERTBASE on tasks that are concerned with evaluating
semantic relatedness. For examples of predictions where
BERTBASE + POS performs better than BERTBASE made on

the RTE dataset, see Table 5.

7. Conclusions
Infusing external syntax into NLP models has proven to
be an effective method to improve performance on gener-
ation as well as classification tasks. In this work, we have
infused the Transformer and BERT models with syntactic
features including POS, word case, and subword position
using a simple concatenation of token embeddings and
trainable feature embeddings from external knowledge.
We conducted experiments on the large-scale WMT ’14
EN-DE translation task and low-resource EN-KO and
EN-SI OpenSubtitles datasets. We found significant im-
provements in EN-DE translation, especially as the size
of the training dataset is reduced. These results were
confirmed in the low-resource setting, suggesting that
our method performs well regardless of the training data
size, a feature that makes it less rely on the training
data. We then modified BERT by adding trainable syn-
tactic embeddings directly to the input and found that
our BERTBASE + POS model performs better than baseline
on a number of GLUE downstream tasks. Thus, we have
proven both the text generation and classification appli-
cations benefits from knowledge injection.

While many existing works either suggest that Trans-
formers are capable of learning syntax implicitly or at-
tempt to train Transformers to predict syntax in a multi-
task setting, our results suggest that, when available, it
is preferable to directly incorporate syntactic features as
inputs to the NLP model to improve performance. As
a next step, we plan to study the alignment of tokens
between source and target sequences to determine the
effect of adding syntax into the model. In addition, we
plan to investigate syntax infusion into other NLP tasks
such as co-reference resolution. In this context, syntactic
information could be helpful in matching tokens to their
antecedents by virtue of parts of speech, for instance.
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