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Abstract
Having the ability to quantify prediction confidence or uncertainty will greatly assist the successful integration of deep
learning methods into high-stake decision making processes. Graph-based convolutional neural networks can be trained to
perform classification of multimodal remote sensing data using a model output which represents a Dirichlet distribution
parameterization. This parameterization can then also be used to obtain measures of prediction uncertainty. By making a
correspondence between a multinomial opinion, as described by subjective logic, and a Dirichlet distribution parameterization,
a direct mapping between the two can be performed. A multinomial opinion of this kind can produce quantified measures
of uncertainty and distinguish uncertainty due to a lack of evidence (vacuity) and uncertainty due to conflicting evidence
(dissonance). With an appropriately chosen loss function, the graph-based classifier will converge to provide accurate
estimates of uncertainty. The results presented in this paper show that the measures of uncertainty provided by such models
are capable of better distinguishing out-of-distribution data samples than probabilistic measures of uncertainty produced by
equivalent deterministic neural networks.
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1. Introduction
The capability of algorithms to provide accurate measures
of confidence and uncertainty is important if they are to
be adopted in real-world scenarios where the stakes can
be high [1]. Although deep learning methods are often
capable of producing high-accuracy predictions [2, 3],
they are generally criticized for being unable to express
when to have confidence in the prediction and when
the prediction should be presented as uncertain. If deep
learning models are to be integrated reliably into real-
world decision making processes, it is of vital importance
that the methods being used are capable of accurately
expressing uncertainty [4].

With remotely-sensed data being available with ever-
greater temporal and spatial resolutions, the development
of computational processing methods which are capable
of robustly handling such large volumes of data will assist
countless earth-monitoring applications [5]. Specifically,
with data being captured now using a wide range of
techniques with complementary strengths, the ability to
combine this data into a multimodal analysis will allow
each data mode to interact synergistically to provide bet-
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ter results than any individual data mode would produce
in isolation. Each data capturing technique will natu-
rally have its own strengths and weaknesses, inherent to
the physical properties of the sensing mode [6, 7]. De-
terministic classification, while useful, is held back by
its inability to express uncertainty. Adoption of such
techniques will always be limited by the adopter’s trust
in the predictions. Uncertainty estimates, however, will
greatly assist human trust in models, as it will provide
a quantification of confidence that might indicate when
a prediction is not to be trusted, and more importantly,
when a prediction is given with great certainty [8].

In this paper, we have analyzed how well different mea-
sures of model uncertainty perform the task of identify-
ing data points which belong to a distribution other than
those observed during training (out of distribution detec-
tion). To do so, we have used graph-based neural network
architectures that are adapted to provide subjective opin-
ions (as described in the field of belief or evidence theory
[9]) through the use of Dirichlet distribution parameteri-
zations [10, 11]. The subjective opinions can be used to
measure two intuitive measures of uncertainty: vacuity
and dissonance. Vacuity is a measure of the uncertainty
related to an absence of observed evidence, i.e. a higher
measure of vacuity suggests a lack of supporting evidence
for a prediction. Dissonance is a measure of prediction
uncertainty arising due to the presence of conflicting
evidence. This approach (using graph-based neural net-
works within a subjective-logic framework) is, to the
best of our knowledge, as-yet untested as a method for
performing classification of multimodal remote sensing
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data. The performance of the adopted technique repre-
sents a promising avenue in the search for meaningful
uncertainty estimates for this task.

The remainder of this paper is organized as follows:
Section 2 describes the uncertainty framework adopted
in the methods presented, Section 3 details the construc-
tion of the graph-based neural networks used, Section
4 presents an analysis of results and Section 5 summa-
rizes and draws conclusions as well as suggests areas for
future work.

2. Uncertainty framework
The proposed uncertainty-aware framework relies on the
definition of uncertainty metrics, which in turn are based
on subjective logic and a Dirichlet mapping [11]. These
steps are detailed in this section, and have been prop-
erly adapted to the task of multimodal remote sensing
classification.

2.1. Subjective Logic
Subjective Logic (SL), takes an evidence-based approach
to decision making [12]. Expressing an opinion using
measured quantities of belief allows the distinction to
be made between uncertainty due to a lack of evidence
(vacuity) and uncertainty due to the presence of conflict-
ing evidence (dissonance). A multinomial opinion, 𝜔, can
be expressed as 𝜔 = (b, 𝑢,a), where b is a belief mass
vector, the scalar 𝑢 is the uncertainty mass and a is the
base rate vector. For a 𝐾-class classification problem, y,
a and b are all vectors of dimension 𝐾 . A projection of
𝜔 onto a probability distribution can be made according
to

𝑃 (𝑦 = 𝑘) = 𝑏𝑘 + 𝑎𝑘𝑢. (1)

It follows that since
∑︀𝐾

𝑘=1 𝑎𝑘 = 1 for the base rate
vector, an additivity requirement is described by

𝑢+

𝐾∑︁
𝑘=1

𝑏𝑘 = 1. (2)

2.2. Dirichlet mapping
If p is a 𝐾-dimensional random vector containing the
probability of belonging to each output class, and 𝛼 is
the strength vector which parameterizes a Dirichlet dis-
tribution, the probability density function of the Dirichlet
is given by

Dir(p|𝛼) =
Γ(
∑︀𝐾

𝑘=1 𝛼𝑘)∏︀
𝑘=1 𝛼𝑘

𝐾∏︁
𝑘=1

𝑝
𝛼𝑘−1
𝑘 , (3)

where Γ() is the gamma function. The distribution’s
expected value is given by

E [Dir(𝑝𝑘|𝛼)] =
𝛼𝑘∑︀𝐾
𝑘=1 𝛼𝑘

. (4)

If we allow the uncertainty mass and base rates to be
given by

𝑢 =
𝐾∑︀𝐾

𝑘=1 𝛼𝑘

=
𝐾

𝑆
(5)

and
𝑎𝑘 = 1/𝐾,∀𝑘 (6)

respectively, where 𝑆 refers to the Dirichlet strength,
then by equating the probability projection of (1) with
the expected value of the Dirichlet distribution given by
(4), the expression for the belief mass can be obtained as

𝑏𝑘 =
𝛼𝑘 − 1

𝑆
. (7)

This provides us with everything needed in order to map
from a Dirichlet distribution to a SL opinion and vice
versa.

2.3. Uncertainty measures
From the definitions of the evidential uncertainties pre-
sented in [9], the measures of vacuity and dissonance
have been adopted. The measure of vacuity uncertainty
is simply given by the uncertainty mass, i.e.

𝑣𝑎𝑐(𝜔) ≡ 𝑢 =
𝐾

𝑆
, (8)

and the measure of dissonance uncertainty is given by

𝑑𝑖𝑠𝑠(𝜔) =

𝐾∑︁
𝑖=1

(︃
𝑏𝑖
∑︀

𝑗 ̸=𝑖 𝑏𝑗Bal(𝑏𝑗 , 𝑏𝑖)∑︀
𝑗 ̸=𝑖 𝑏𝑗

)︃
, (9)

where Bal() is a function which gives the relative balance
between two belief masses, defined by

Bal(𝑏𝑗 , 𝑏𝑖) =

{︃
1− |𝑏𝑖−𝑏𝑗 |

𝑏𝑖+𝑏𝑗
, if 𝑏𝑖 + 𝑏𝑗 ̸= 0,

0, otherwise.
(10)

The entropy of the node-level multinomial distribu-
tions provided by the models is also computed to rep-
resent a form of uncertainty. This is done in order to
provide a comparitive metric against which the eviden-
tial uncertainties can be compared.

3. Graph network architecture
The multimodal data can be represented using a graph,
where each of the 𝑁 nodes in the graph represents a pixel
in the image. The graph’s adjacency matrix, A ∈ R𝑁×𝑁 ,



is used to represent edges between nodes deemed similar.
A set of features, X ∈ R𝑁×𝐶 , is used to assign a vector
description of each graph node, where 𝐶 denotes the
number of input features. The graph’s degree matrix,
D ∈ R𝑁×𝑁 , is a diagonal matrix with elements given
by D𝑖𝑖 =

∑︀
𝑗 A𝑖𝑗 .

The graph convolutional networks (GCNs) used are
of the form proposed by [10], where the graph convolu-
tional layer is given by

Z(𝑙+1) = 𝜎

(︂
D̃

− 1
2 ÃD̃

− 1
2Z(𝑙)𝑊 (𝑙)

)︂
, (11)

where Z(𝑙), Z(𝑙+1) and 𝑊 (𝑙) are the inputs, outputs and
weights of the 𝑙th layer respectively, and 𝜎() is a non-
linear activation function. For brevity, the tilde operator
is used to represent the inclusion of self-connection edges
in the graph, i.e. Ã = A+ I and D̃ = D+ I.

3.1. Subjective models
An adaptation to the GCN architecture used by [10] must
be made in order to obtain the subjective opinions that
will be used to obtain measures of vacuity and disso-
nance uncertainty. The adaptation made means that the
model will output node-level Dirichlet distribution pa-
rameters, such that the output will provide a probability
distribution over multinomial class probabilities for each
node. To do so, the softmax output activation function
used in the output layer of the GCN is substituted for a
ReLU function. In this way, the model is trained to out-
put non-negative evidence contributions, E ∈ R𝑁×𝐾 ,
where E𝑖 = 𝛼𝑖 − 1 and 𝛼𝑖 refers to the 𝐾-dimensional
concentration parameters of the 𝑖th node. In order to
train such a model, the loss function is made up of two
components: a squared error term, which is minimized
in order to classify a greater proportion of the nodes
correctly, and a variance term, which is minimized to
incentivize the model to provide confident predictions
where possible. This loss, ℒ(𝜃), is given by

ℒ(𝜃) =
∑︁
𝑖∈L

∑︁
𝑘

[︀
(𝑝𝑖𝑘 − 𝑦𝑖𝑘)

2 + Var(𝑝𝑖𝑘)
]︀
,

=
∑︁
𝑖∈L

∑︁
𝑘

[︂
(𝑝𝑖𝑘 − 𝑦𝑖𝑘)

2 +
𝛼𝑖𝑘

𝑆2
𝑖

(︂
𝑆𝑖 − 𝛼𝑖𝑘

𝑆𝑖 −𝐾

)︂]︂
,

(12)

where 𝑖 ∈ L refers to the fact that the loss is computed
using a sum only over nodes in the training set, L. Models
trained with such an output activation and loss function
will be denoted using the ‘S-’ prefix in order to indicate
they provide subjective predictions, e.g. S-GCN.

3.2. Convergence assistance techniques
In order to assist the convergence of subjective models,
two additional assistance techniques have been used:

teacher knowledge distillation and the use of a Dirichlet
prior. These have been shown to allow subjective models
to provide better uncertainty estimates [11].

3.2.1. Teacher knowledge distillation

By training a non-subjective model in advance, its out-
puts, �̂�𝑖𝑘 , can be used in order to encourage the subjective
model to converge to node Dirichlet distributions with
E[𝑝𝑖𝑘] which are close to the teacher’s deterministic esti-
mates. This is achieved using an additional term in the
loss function,

ℒT(𝜃) =
∑︁
𝑖

∑︁
𝑘

(︂
�̂�𝑖𝑘 log

�̂�𝑖𝑘
E[𝑝𝑖𝑘]

)︂
, (13)

which corresponds to the summation of Kullback-Leibler
(KL) divergence terms between the teacher output prob-
ability and the expected value of the subjective model’s
Dirichlet distribution for each node. Using 𝐷KL( || ) to
compute the KL divergence, this is stated equivalently as∑︀

𝑖 𝐷KL(�̂�𝑖𝑘 ‖ E[𝑝𝑖𝑘]). Notice that this sum is computed
over all nodes as opposed to just the nodes in L. Models
trained using a teacher are denoted using the ‘-T’ suffix
e.g. a S-BGCN-T model would indicate that a pre-trained
GCN was used as a teacher in order to assist the training
convergence of a subjective graph convolutional model.

3.2.2. Dirichlet prior

A second convergence assistance technique which can be
used involves the use of a Dirichlet prior, �̂�. The exact
method chosen to provide �̂� will depend on the nature of
the problem but we will assume nodes which are nearby
in the graph are more likely to belong to the same output
class than nodes which are far apart, a property known
as homophily [13]. Using this assumption, we can use the
computed distances on the graph to assign contributions
of evidence from observed node labels to the other nodes
in the graph using a function of our choosing. If 𝑑𝑖𝑗
denotes the shortest path distance between a given node,
indexed by 𝑖 and an observed node, indexed by 𝑗, then
the amount of evidence contributed to suggest that the
𝑖th node belongs to the 𝑘th class is given by

ℎ𝑖𝑘(𝑦𝑗 , 𝑑𝑖𝑗) =

⎧⎪⎪⎨⎪⎪⎩
exp

(︃
−𝑑2𝑖𝑗

2𝜎2

)︃
(2𝜋𝜎2)1/2

, if 𝑦𝑗𝑘 = 1,

0, otherwise,

(14)

where 𝜎 is a scale parameter which controls the order of
distance magnitude over which evidence will propagate
in the prior. The total evidence to suggest the 𝑖th node
belongs to the 𝑘th class, 𝑒𝑖𝑘 can be found by summing
these contributions over the nodes in the training set,
such that the element in the prior is given by

�̂�𝑖𝑘 = 1 + 𝑒𝑖𝑘 = 1 +
∑︁
𝑗∈L

ℎ𝑖𝑘(𝑦𝑗 , 𝑑𝑖𝑗). (15)



Table 1
Loss function components and their weighting coefficients for
different model types

Model name ℒtotal(𝜃)

S-BGCN ℒ(𝜃)

S-BGCN-T ℒ(𝜃) + 𝜆TℒT(𝜃)

S-BGCN-K ℒ(𝜃) + 𝜆KℒK(𝜃)

S-BGCN-T-K ℒ(𝜃) + 𝜆TℒT(𝜃) + 𝜆KℒK(𝜃)

The KL divergence between the Dirichlet distribution of
the prior and the model output is given by the term

ℒK(𝜃) =
∑︁
𝑖

𝐷KL(Dir(p𝑖|𝛼𝑖) ‖ Dir(p̂𝑖|�̂�𝑖)), (16)

which can, in turn, be incorporated into the total loss
function. Models trained using a prior are denoted using
the ‘-K’ suffix.

Table 1 shows how these convergence assistance tech-
niques can be weighted and combined in various permu-
tations to provide a total loss function, ℒtotal(𝜃), as well
as the model name abbreviations used to denote which
combination has been used. The ‘B’ in the model names
of Table 1 refers to the fact that dropout inference has
been used as a Bayesian approximation. The coefficients
𝜆T and 𝜆K are used to control the relative importance of
the teacher network and the Dirichlet prior respectively
against the importance of the subjective loss function
given in (12). These have been considered as hyperpa-
rameters which are to be tuned during training.

4. Results and analysis

4.1. Data
A subsection of the 2018 IEEE GRSS Data Fusion Chal-
lenge dataset [14] ws selected for the purposes of validat-
ing the described methods. The ground truth labels in
this dataset describe 20 different urban land cover/land
use classes (i.e. 𝐾 = 20) as well as an unlabelled state,
described as Unclassified. The modes of input data repre-
sent measurements from three sensor types: LiDAR, opti-
cal and hyperspectral (HS). The LiDAR data was provided
at 0.5 m resolution, the same resolution as the ground
truth labels (GT). In order to simplify analysis, the optical
data (which was provided at 0.05 m resolution) and the
HS data (which was provided at 1.0 m resolution) were
bilinearly resampled to obtain 0.5 m resolution across
inputs and outputs.

The graph was constructed with each 0.5 m × 0.5 m
pixel representing a node in the graph. Each node has
a 52-dimensional feature vector describing it (produced
by stacking 3 optical channels, 48 HS channels and 1
LiDAR channel). The graph edges are computed using a

Figure 1: Ground truth data with colors depicting land cover
classes. This data represents a subset of the 2018 IEEE GRSS
Data Fusion Challenge dataset.

𝑘-nearest neighbors algorithm with two nodes receiving
an edge connecting them if either node was one of the
𝑘 nodes which were nearest the other. This produces a
graph which is both undirected and unweighted. The
graph, which contains approximately 2.16 million nodes,
was computed with 𝑘 = 15.

In order to measure an uncertainty output’s ability
to separate OOD nodes, a receiver operating character-
istic (ROC) curve and a precision-recall (PR) curve can
be computed. The area under the ROC curve and PR
curve (AUROC and AUPR respectively) can be used as a
single numerical representation of the detection perfor-
mance, where an area of 1.0 would represent a perfect
discriminator for both metrics.

4.2. Network training and
hyperparameters

Models were implemented and trained using the Tensor-
Flow library [15] on a personal laptop computer with
Intel Core i7 CPU and 16 GB of RAM. In order to handle
the imbalance of classes in the dataset, sample weight-
ing was used. Samples were given weights which were
inversely proportional to the number of total samples
of each class in the training set. This allows the losses
related to nodes from under-represented classes to have
an increased influence over parameter updates and vice
versa.

All GCN-based models were constructed using a
dropout layer (dropout probability 0.5), a graph con-
volutional layer, as described in (11), a second dropout
layer (dropout probability 0.5) and a second graph con-
volutional layer with the relevant output activation func-
tion. The kernel weights of the first graph convolutional
layer were regularized using an 𝐿2 penalization. Where
dropout inference has been used, the number of samples
taken was 100.

Hyperparameters including the learning rate, the
𝐿2 regularization coefficient and the number of GCN
layer output features, 𝐹 , were selected via a grid-search



Table 2
OOD detection: Ability of each uncertainty type to detect OOD nodes (measured by the AUROC and AUPR metrics). Values
shown represent the mean ± standard deviation.

Model
AUROC AUPR

Vacuity Dissonance Entropy Vacuity Dissonance Entropy

S-BGCN-T-K 0.882 ± 0.085 0.605 ± 0.197 0.878 ± 0.089 0.318 ± 0.289 0.132 ± 0.184 0.316 ± 0.306

S-BGCN-T 0.588 ± 0.147 0.664 ± 0.133 0.578 ± 0.186 0.128 ± 0.187 0.137 ± 0.192 0.143 ± 0.208

S-BGCN 0.586 ± 0.147 0.666 ± 0.132 0.580 ± 0.191 0.127 ± 0.186 0.139 ± 0.190 0.145 ± 0.209

S-GCN 0.580 ± 0.145 0.650 ± 0.120 0.586 ± 0.181 0.125 ± 0.185 0.130 ± 0.191 0.143 ± 0.207

S-MLP 0.767 ± 0.152 0.805 ± 0.114 0.787 ± 0.125 0.245 ± 0.214 0.233 ± 0.170 0.219 ± 0.201

GCN - - 0.538 ± 0.188 - - 0.116 ± 0.179

method. Where used, 𝜆T and 𝜆K were also found using a
grid-search.

Learning was performed for a maximum of 400 epochs,
but was stopped early if the validation loss failed to de-
crease further for 60 consecutive epochs. If stopped early,
model weights were returned to the settings which pro-
vided the lowest validation set loss upon the termination
of training.

Each test was performed for different random dataset
splits and model weight initializations to obtain mean
and standard deviation measures of performance.

A benchmark has been provided by training ‘standard’
GCNs which provide prediction entropy as a form of
uncertainty estimate.

4.3. Out of distribution detection
It would be reasonable to expect that uncertainty should
be higher when the model is asked to make a prediction
using an input which does not resemble the inputs upon
which it was trained. The relative inability of neural
networks to successfully extrapolate beyond the support
of the training data is a well-known weakness of these
methods [16]. By training models using only a subset of
the classes provided by the GT, with the other classes
acting as out of distribution (OOD) samples, the OOD
detection ability of the uncertainty metrics can be mea-
sured. The AUROC and AUPR can be calculated for each
uncertainty output provided by each model type, in order
to determine the relative performance of the respective
metrics for this task.

In the results presented, two classes were randomly
selected to act as OOD. This was repeated 10 times, with
two new randomly sampled classes selected for each
training and evaluation loop in order that the variation
in OOD detection performance due to the nature of the
classes selected as OOD could be averaged out and the
mean and standard deviation computed. Each model type
was assessed over the same 10 sampled OOD class pairs
for fairness. The AUROC and AUPR values measured
can be found in Table 2.

For the task of OOD detection, the S-BGCN-T-K model
is the highest ranked model. Its measure of vacuity un-
certainty provided the best distinguishing metric, with
mean AUROC and AUPR of 0.882 and 0.318 respec-
tively, closely followed by performance from the measure
of entropy (AUROC and AUPR of 0.878 and 0.316 re-
spectively). The performance of the S-BGCN-T-K model
stands out above the performance of other models trained.
This highlights the importance of the convergence assis-
tance techniques used, particularly the use of a meaning-
ful prior.

The fact that vacuity is the uncertainty measure which
best distinguishes OOD nodes reflects intuition. Since
vacuity measures the absence of evidence for a prediction,
it is natural to expect that it would better distinguish
OOD nodes for which the model ought to have little
evidence to support its classification.

5. Conclusion
In this paper we have adapted a novel classification
method capable of providing uncertainty estimates to the
task of multi-class classification of multimodal remote
sensing data. The adopted framework, based upon the
theory of Subjective Logic, provides measures of vacuity
and dissonance uncertainty. Of the types of uncertainty
assessed, the measure of vacuity was the best metric to
perform identification of OOD samples. Experimental
results have shown the performance of the S-BGCN-T-
K model in the task of OOD detection to be improved
against baseline methods. This represents a promising
avenue for uncertainty-aware learning in the task of mul-
timodal remote sensing classification.

The presented results illustrate the importance of con-
vergence assistance techniques as a means for improving
the quality of uncertainty estimates, particularly through
the use of a prior. This can be seen by comparing the S-
BGCN-T-K OOD detection performance with equivalent
models which do not use a prior, e.g. S-BGCN-T.

Future work should consider the generalisation poten-



tial of this method by assessing performance on other
challenging remote sensing classification datasets. The
analysis could also be extended to assess whether the
presented uncertainty measures could be used to detect
model misclassifications. Additionally, there is scope for
research into how the choice of method for computing
the �̂� prior affects the quality of uncertainty estimates,
either by varying the scale parameter, 𝜎, or considering
different prior computation methods entirely.
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