
Extending Task Automation Systems with
Event-State-Condition-Action Capabilities

Giuseppe Desolda1, Francesco Greco1, Massimo Zancanaro2,3 and Maria F. Costabile1

1 Computer Science Department, University of Bari Aldo Moro, Italy
2 Department of Psychology and Cognitive Science, University of Trento, Italy
3 Fondazione Bruno Kessler

Abstract
Trigger-Action programming recently emerged as a paradigm for supporting end-users in

defining the behavior of Internet-of-Things devices. It is often implemented by allowing users

to define Event-Condition-Action rules visually. The possibility of using either states or events

in triggers has already been discussed in the literature and their distinction may be difficult to

understand for users. In this paper, we discuss how the definition of Event-State-Condition-

Action (ESCA) rules to customize the behavior of IoT devices could be implemented in a Task

Automation System (TAS), by adding a lay-er for monitoring events/states.

Keywords 1
End-User Development, Internet of Things, Trigger Action Programming

1. Introduction

Trigger-Action programming (TAP) is emerging as a paradigm for supporting end-users, particularly

those without programming skills, in defining the behavior of Internet-of-Things devices and digital

web services. TAP is a simplified form of the Event Condition Action (ECA), a common approach for

rule-based systems, originally employed to manage databases [1] and control industrial processes [2].

However, when applied in the form of Trigger-Action rules, the Condition part is usually left out for

the sake of simplicity, and the rules take the simple form of “IF <a trigger occurs> THEN <an action

is executed>”.

A source of complexity in the TAP paradigm derives from the fact that triggers can indicate both

instantaneous events or states [3], and users are not always able to understand the difference between

the two [4, 5]. One of the most important causes is the temporal aspect of triggers and actions [4, 5]

since users are often confused when they have to distinguish triggers based on events (i.e., that occur

in a specific moment in time) and states (i.e., that are true over a time span).

2. A middleware to Monitor Events and States

Task Automation Systems (TAS) [6] are web-based tools that support users in defining smart objects’

behavior through visual interfaces. Among the most popular ones there are IFTTT [7], Zapier [8], and

EFESTO-5W [9-11]. They typically support users in the definition of the smart object's behavior

through the visual creation of Event-Condition-Action (ECA) rules. From a technical point of view,

one of the most critical aspects of TASs is trigger monitoring. Let us consider the following ECA rule:

EMPATHY: Empowering People in Dealing with Internet of Things Ecosystems. Workshop co-located with INTERACT 2021, August 30,

2021, Bari, Italy
EMAIL: giuseppe.desolda@uniba.it (G. Desolda); francesco.greco@uniba.it (F. Greco); massimo.zancanaro@unitn.it (M. Zancanaro);
maria.costabile@uniba.it (M. F. Costabile)

ORCID: 0000-0001-9894-2116 (G. Desolda); 0000-0003-2730-7697 (F. Greco); 0000-0002-1554-5703 (M. Zancanaro); 0000-0001-8554-
0273 (M. F. Costabile)

©️ 2021 Copyright for this paper by its authors.

Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:massimo.zancanaro@unitn.it
mailto:maria.costabile@uniba.it

IF the alarm is turned on
THEN switch off all the lights

Two main solutions are currently adopted by TASs to monitor the triggering events, and this depends

on the technology implemented by the smart devices. The simplest and less effective solution consists

of periodically invoking the smart object’s API related to the triggering event. Considering the previous

rule, a TAS must invoke the API of the alarm to check if it is turned on. This is a low-effective solution

because of the overloading of connection and the overusing of device energy. A more efficient and

effective solution is the use of a Publish-Subscribe architecture, such as the MQTT protocol. In this

architecture, there are three main actors, i.e., the publisher, the subscribers, and the broker. The

publisher is an entity, a smart object in our case, that sends a message to other subscribed entities. The

subscriber is an entity, a TAS in our scenario, that receives the messages from the publisher. The broker

is a virtual component hosted on a web server that implements the publish/subscribe mechanism: the

publisher notifies the broker only when an event occurs (e.g., the alarm is turned on) and the subscribers

are notified by the broker only when the event is triggered. An advantage of this architecture is that

several entities can subscribe to the same publisher, in our case several rules can subscribe to the same

event without overloading the smart object.

Figure 1. An example of MQTT Publish/Subscribe architecture

2.1. Generate states of a smart object starting from its events

The majority of the smart objects expose sensors data to third party-applications as (instantaneous)

events. In order to allow TASs to monitor the states of those smart objects exposing only events, the

proposed solution is to create a middleware in the TAS rule engine where, for each smart object, the

internal representation of the device is extended to generate states starting from its events. As reported

in the following code, the first time a smart object is connected with the TAS, there is an initialization

phase: for each event i, its API is invoked and the variable statei is set according to a mapping between

the event values and the state values, previously defined by the TAS administrator. For example, in the

device Smart light, the API of the event “Is turned on” can return two values, i.e., true or false; these

values are mapped in the values “Is on” and “Is off” that can be associated with the variable state.

Then, every n seconds, the event value is read through the API and the state variable is updated if

differs from the previous value. The device states are made available to the TAS through MQTT APIs

automatically generated so that, if the state value changes, all the subscribers are notified.

Initialization:

Var statei = map(eventi)
loop:

if (map(eventi) != statei) then:
 statei = map(eventi);
endif;

endloop;

2.2. Generate the events of a smart object from its states

Although most of the smart objects expose their sensor data as events, in some cases, smart objects

could provide API for monitoring only their states. Similar to the solution presented in the previous

section, in the middleware the internal representation of the smart objects must be extended to provide

its states as events. In this case, to generate the eventi starting from the statei, a specific component in

the middleware has to continuously query the API of statei and, if the state value is changed with respect

to the last query, the eventi is triggered. For example, in the smart device Thermostat, the state

“Temperature hot” would be associated with the event “Temperature goes above 25°C”; if the state

changes from False to True (e.g., if the temperature goes from 24°C to 26°C), then the event is triggered.

This behavior is summarized more formally in the following pseudocode:

Initialization:
 Var eventi = map(statei)
loop:
 new_statei = API_state(i)
 if (statei != new_statei) then:
 trigger(eventi);
 statei <- new_statei;
 endif;
endloop;

3. Conclusions

In this position paper, it has been proposed an approach to enrich a TAP architecture with coordinated

states and events for a more expressive definition of ECA rules. The main goal is to inform designers

and developers of TASs of the possibilities offered by the Event-State-Condition-Action paradigm and

on the possible technical solutions to implement it in their TAS.

Acknowledgements

This work is partially supported by the Italian Ministry of University and Research (MIUR) under

grant PRIN 2017 “EMPATHY: EMpowering People in deAling with internet of THings ecosYstems.”.

References

[1] G. Ghiani, M. Manca, F. Paternò, and C. Santoro, "Personalization of Context-Dependent

Applications Through Trigger-Action Rules," ACM Transaction on Computer-Human

Interaction, vol. 24, no. 2, p. 33 pages, 2017, Art no. Article 14 (April 2017), doi:

10.1145/3057861.

[2] B. Joonsoo, B. Hyerim, K. Suk-Ho, and K. Yeongho, "Automatic control of workflow

processes using ECA rules," IEEE Transactions on Knowledge and Data Engineering, vol. 16,

no. 8, pp. 1010-1023, 2004, doi: 10.1109/TKDE.2004.20.

[3] W. Brackenbury et al., "How Users Interpret Bugs in Trigger-Action Programming," in Human
Factors in Computing Systems, Glasgow, Scotland Uk, 2019: Association for Computing

Machinery, p. Paper 552, doi: 10.1145/3290605.3300782. [Online]. Available:

https://doi.org/10.1145/3290605.3300782

[4] B. Ur et al., "Trigger-Action Programming in the Wild: An Analysis of 200,000 IFTTT

Recipes," in SIGCHI Conference on Human Factors in Computing Systems, San Jose,

California, USA, 2016, New York, NY, USA: ACM, pp. 3227-3231, doi:

10.1145/2858036.2858556.

https://doi.org/10.1145/3290605.3300782

[5] J. Huang and M. Cakmak, "Supporting mental model accuracy in trigger-action programming,"

presented at the ACM International Joint Conference on Pervasive and Ubiquitous Computing,

Osaka, Japan, 2015. [Online]. Available: https://doi.org/10.1145/2750858.2805830.

[6] M. Coronado and C. A. Iglesias, "Task Automation Services: Automation for the Masses,"

IEEE Internet Computing, vol. 20, no. 1, pp. 52-58, 2016, doi: 10.1109/MIC.2015.73.

[7] IFTTT Inc. "IFTTT." https://ifttt.com/ (accessed June 1, 2021).

[8] Zapier Inc. "Zapier." https://zapier.com/ (accessed May 9, 2021).

[9] G. Desolda, C. Ardito, and M. Matera, "Empowering end users to customize their smart

environments: model, composition paradigms and domain-specific tools," ACM Transactions

on Computer-Human Interaction, vol. 24, no. 2, p. 52 pages, 2017, Art no. Article 12 (April

2017), doi: 10.1145/3057859.

[10] C. Ardito, G. Desolda, R. Lanzilotti, A. Malizia, and M. Matera, "Analysing Trade-offs in

Frameworks for the Design of Smart Environments," Behaviour & Information Technology,
vol. 39, no. 1, pp. 47-71, 2019, doi: 10.1080/0144929X.2019.1634760.

[11] C. Ardito et al., "User-defined semantics for the design of IoT systems enabling smart

interactive experiences," Personal and Ubiquitous Computing, vol. 24, no. 6, pp. 781-796,

2020/12/01 2020, doi: 10.1007/s00779-020-01457-5.

https://doi.org/10.1145/2750858.2805830
https://ifttt.com/
https://zapier.com/

