
From personalized timely notification to healthy habit
formation: A feasibility study of reinforcement
learning approaches on synthetic data
Aneta Lisowska1, Szymon Wilk1 and Mor Peleg2

1Institute of Computing Science, Poznań University of Technology, Poznań, Poland
2Department of Information Systems, University of Haifa, Haifa, Israel

Abstract
Cancer patients may struggle with mental wellbeing issues such as distress and depression. As a part
of the CAPABLE project, we aim to develop a digital behaviour-change intervention that helps them
build positive health habits and improve their wellbeing. The main challenge to the evaluation of the
system is the lack of access to real data prior to intervention start. Therefore, first, we created a simulator
that mimics patient responses to activity suggestions based on Fogg’s behaviour model. Later we used
supervised and reinforcement learning methods to learn the best time of sending the patient prompts.
We found that the reinforcement learning methods learn quickly not to over-notify patients and find
prompt policies that are more effective in facilitating users in performing target activity than a random
notification strategy, but are less effective than adaptive supervised learning method trained to predict
patient responsiveness.
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1. Introduction

Cancer patients may struggle with mental well-being issues such as distress and depression at
all stages of their cancer journey [1, 2]. Poor mental health not only impacts their quality of life
but also reduces treatment adherence and cancer survival [3].

As a part of the Horizon 2020 CAncer PAtient Better Life Experience (CAPABLE) project,
we aim to develop a digital behaviour change intervention [4] that could help cancer patients
build emotional resilience and form positive health habits. The patients will be equipped with a
coaching system (Virtual Coach), which contains three components: backend (with most of the
logic and processing), mobile health app (for functions that need to be performed in proximity
to the patient, such as supporting, and communicating) and a smartwatch (for sensing). The
Virtual Coach (VC) will have the capacity to interact with the patient through notifications and
will suggest multiple activities from the domain of mindfulness and positive psychology.

In this first proof of concept work, we focus on stimulating the development of a daily
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walking habit. We chose this activity for initial exploration because of its evidence-based
benefits to psychological wellbeing [5] and to the overall health of cancer survivors [6, 7]. We
draw inspiration from Fogg’s Behaviour Model [8] (see Section 2.1) to simulate the patients’
responses to the notification (trigger) sent by the VC (reminding the patients to perform the
daily activity), depending on the patient’s motivation and ability; these three components
are the cornerstones of Fogg’s theory. The responsiveness of the patients to the notifications
depends also on the context e.g., the time of the day [9], location of the patient [10] and
physiological state of the patient [11] (e.g. stress level).

Previously, researchers investigated the possibility of using reinforcement learning (RL)
for the identification of the appropriate time to send notifications in order to optimize user
engagement with mobile applications [12]. Our goal is to facilitate patient habit formation
through timely notification. We investigate the use of supervised and reinforcement learning
approaches to learning the best pattern of interacting with patients through notifications (see
Section 3). A starting point is constructing a simulator that would allow us to test learning-based
techniques without access to real-life data.

Thus, in this feasibility study we:

• Propose a simulator that mimics patients’ responsiveness to activity suggestions, based
on Fogg’s behaviour model and on findings from multiple health intervention studies and
mobile notification research.

• Apply supervised and reinforcement learning approaches to learn the best time of send-
ing the patient notifications in order to achieve positive habit formation and compare
the patient’s responsiveness to prompts against that achieved with randomly timed
notifications.

2. Related work

2.1. Modeling behaviour

According to Fogg, habit formation depends on three components: the person’s motivation, her
ability to perform the task, and the existence of a trigger reminding her to perform the target
behaviour [13]. Fogg expresses this dependency as "B=MAT" [8] and suggests that behaviour
occurs when the person’s level of motivation and ability and the existence of the trigger place
her above the action threshold (i.e., performing the behaviour), which we here interpret as:

𝐵𝑒ℎ𝑎𝑣𝑖𝑜𝑢𝑟 =

{︃
1 if (𝑀𝑜𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛×𝐴𝑏𝑖𝑙𝑖𝑡𝑦 × 𝑇𝑟𝑖𝑔𝑔𝑒𝑟) > action threshold

0 otherwise
(1)

Each of the three components may in turn be influenced by a range of internal (personal)
and external factors. We describe them below in the context of our digital behaviour change
intervention system.

Motivation. Jowsey et al. [14] interviewed Australian patients with chronic illness to gain an
understanding of what motivates them to engage in self-management behaviours. The authors
report that maintaining a positive attitude (i.e., positive emotional valence, Valence) was one of
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the most important internal factors motivating patients to control their health. The external
factor impacting motivation was the presence of family and friends (Family). On the other hand,
the patients got demotivated when they were perceiving self-management behaviour as having
limited benefit (Perceived Benefit).

Interestingly, sleepiness might decrease motivation for behaviours that are not oriented
toward assuring sufficient sleep [15]. Conversely, sufficient sleep (Sufficient Sleep) might have a
positive effect on motivation, for example Dolsen et al. suggests that improving sleep benefits
patient adherence to treatment [16].

In our proof of concept behaviour simulator, the above mentioned factors have an equal
contribution, although we acknowledge that this is a very simplified view of motivation:

𝑀𝑜𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 = 𝑉 𝑎𝑙𝑒𝑛𝑐𝑒+ 𝐹𝑎𝑚𝑖𝑙𝑦 + Perceived Benefit + Sufficient Sleep (2)

We adopt the same simple cumulative factors representation for the remaining components
of behaviour. Note that for behaviour equation multiplication is used because it is enough that
a single component is 0 and the target behaviour will be not performed. We assume this is not
true for the computation of the components, e.g., a person might currently experience negative
valence, but the remaining motivation factors might be present and hence motivation should
not be nullified.

Ability. Chan et al. found that app users are more receptive to respond to memory-training
suggestions when they are under low cognitive load [17]. High cognitive load might suggest
that the person pays attention to another difficult task e.g., driving a car [18] and is not available
to engage with the suggested activity (Load).

The ability to perform a task can be also affected by self-efficacy, i.e., perception of one’s
capability to execute the target activity, and whether the person has performed this activity
successfully before. Self-efficacy has been shown to relate to treatment adherence [19] (Self-
efficacy).

Finally, patient’s ability to perform the target behaviour may be affected by the patient being
tired [20] or bored of [21] repeating the same activity (Strained).

𝐴𝑏𝑖𝑙𝑖𝑡𝑦 = Low Load + Self-efficacy + Unstrained (3)

Trigger. In a laboratory study, Goyal et al. [11] found that the best moment to interrupt
people is when they are in a state of increasing arousal (Arousal).

Bidargadi et al. found that the notifications delivered on weekends or during midday are more
effective [22]. On the other hand, participants in the Kunzler et al. study were more receptive to
intervention on weekdays rather than weekends between 10am-6pm[23] (Day). Saikia et al. [9]
also found that the timing of the notification is important; in their study, the largest percentage
of users engaged with notification around 11am (Time).

In addition, multiple studies considered persons’ current location and motion activity in
finding the most appropriate notification delivery context [12, 23] (Location, Motion) .

𝑇𝑟𝑖𝑔𝑔𝑒𝑟 = 𝐴𝑟𝑜𝑢𝑠𝑎𝑙 +𝐷𝑎𝑦 + 𝑇𝑖𝑚𝑒+ 𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛+𝑀𝑜𝑡𝑖𝑜𝑛 (4)

We set the trigger to zero when patient is sleeping in order not to interrupt sleep with activity
suggestions.

9



Aneta Lisowska et al. CEUR Workshop Proceedings 7–18

Table 1
Factors impacting motivation, ability and trigger

Factors States (scores) Function of Based on

Valence
positive (1),
negative (0)

sleep (last 24h)
physical activity (last 24h)
no. notifications (last 24h)

Poor sleep quality correlates with high negative and low positive emotions [26]
Physical activity has a positive within-day association with pleasant core
affects [27]
Stress is a state of high arousal and negative valence:
- physical inactivity increases chances of high stress [28]
- smartphone user experience stress from receiving frequent notifications [29]
The optimal physiological arousal resulting in flow-experience lies between
stress and relaxation [30]

Arousal low (0), mid (1),
high (0)

Cognitive
load

low (1), high (0)
notifications

timing
Notifications at detected breakpoint timing resulted in lower cognitive load
compared to randomly timed notifications [31]

Awake awake (1), asleep (0)
time of the day

physical activity (last 24h)
arousal
valence

The daily amount of activity positively relates with sleep quality [32]
High arousal is associated with reductions in slow-wave sleep and negative
valence with disruptions to REM sleep [33]

Sufficient
sleep

yes (1), no (0)

Perceived
benefit

yes (1), no (0)
constant (between each

performed activity)
valence (during activity)

During-behaviour affect is predictive of concurrent and future physical activity
behaviour [34]

Self-efficacy
(confidence)

low (0), high (1) no. activity performed (overall)

Unstrained yes (1), no (0)
no. activity performed (last 24h)

time since the activity
Location home (1), other (0) time

Motion
stationary (1),

walking (0)

time
successful notification
past walking frequency

Time
of the day

morning (0), midday (1),
evening (0), night (0) time (one hour time-step)

Day
weekend(1),
week day (0)

Has family yes (1), no (0) constant

Some of the above-described factors affecting motivation, ability, and trigger are constant for
the patient (e.g., the presence of family members); others vary with time and can be obtained
through self-reporting or inferred from signals gathered by wearable devices (e.g., cognitive
load [24] or stress[25]). Table 1 lists the factors affecting behaviour along with their states. To
compute the behaviour components, we assign the value of 1 to the factor state that benefits the
behaviour and 0 otherwise. For example, motivation = 4 if the patient is in a positive valence (1),
has support from family (1), perceives benefit in performing the activity (1) and had sufficient
amount of sleep last night (1). Let’s say that the patient also has a low cognitive load (1) at the
moment and feels confident that they can perform the task (1) but by now they are tired of and
bored from repeating the activity (0) so their ability = 2. In terms of trigger the patient is in a
low arousal state (0), it is a weekday (0)1, midday (1), home (1) and the patient is sitting (1) = 3.
So we have 𝑚𝑜𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛(4)× 𝑎𝑏𝑖𝑙𝑖𝑡𝑦(2)× 𝑡𝑟𝑖𝑔𝑔𝑒𝑟(3) = 24. When the action threshold = 25
the behaviour would not be performed. But let’s say that if the patient was not yet strained
from repeating activity today their ability would be 3 and behaviour computation would result
in 36, which is above the action threshold and the behaviour would occur (activity performed).

1Trigger scores (except arousal) are affected by preference, e.g. if patient prefers to perform activity on weekday the score for
weekday will be 1 rather than 0.
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2.2. Machine learning for notifications

Ho et al. [12] framed the task of notifying users at the right time as an RL problem. In Ho’s et
al. framework, the goal is to maximize the effectiveness of the notifications. The notification
system is an agent that interacts with the app user (environment). Based on the user’s context
(the state received from the environment), the agent chooses to notify or not (action). The
agent is rewarded when the user responds to the notification. Ho et al. conclude that the
Q-Learning (QL) [35] RL method yields higher notification response rate on crowd-sourced
data than support vector machine or shallow neural network trained in a supervised fashion.
In follow up real-life five-week study, the authors compared Advance Actor Critic (A2C) RL
approach against Random Forest (RF) that has been trained on data gathered with random
notification policy in the first three weeks of the study [36]. The authors concluded that A2C
is more effective in reducing dismissed notifications, but the supervised approach achieved a
higher notification answer rate. They suggested that the benefits of RL method might be more
prominent in the context of users whose preferences change. We consider this condition in our
experiments (see Section 4).

Kunzler et al. [23] utilised RF to detect receptivity to Just-In-Time Adaptive Interventions
and showed that it increased receptivity over biased random classifier, however, they did not
consider RL based approaches. In the follow-up study Mishran et al. [37] compared the static
supervised learning approach against the adaptive approach. In adaptive set up the supervised
model is retrained every time new receptivity data are made available. Mishran et al. observes
that receptivity to notifications from the adaptive model improved over the course of the study.
We include the adaptive supervised learning method in our experiments and compare against
RL-based approaches (see Section 3.2).

Sutton et al. [38] proposed that RL could be used for management of notifications coming
from various applications. Their goal was to learn which notifications are important and which
should be blocked. They created Open AI gym environment for the training of QL and Deep QL
(DQL) agents on synthetic data. When the models were applied to real data, they could predict
a user’s action toward notifications better than a random benchmark. The authors suggested
that the synthetic data could be applied for RL training in cases where the use of real data is
not possible. Encouraged by Sutton’s et al. findings we use Open AI gym [39] to create an
environment (see Section 3.1) and synthesize patients behaviour according to the behaviour
model described in Section 2.1.

3. Methods

We draw inspiration from works described above and formulate our problem similarly to Ho
et al. [36], where the VC is an agent, a patient is an environment and the patient’s context is
the environments state. However, we use a richer description of the context which includes
the patient’s physiological data that will be captured by the smartwatch (thirteen variables
described below).

11
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3.1. Patient environment

We used Open AI gym [39] to create a patient environment and simulate patients response to
prompt according to the equation 12. We simulate a patient who has a family, prefers being
notified at midday, and does not want to receive more than 3 notifications daily. The patient’s
action threshold is set to 203 and their initial state shows issues with sleeping (less than 5h a
day), negative valence for majority of the day and no physical activity, to improve patient sleep
and mood they are recommended to develop a walking habit.

The patient state available to the VC includes thirteen variables: time of day, weekday, benefit
score (since the last action performed), location, awake state, valence, arousal, cognitive load,
motion, time since activity performed, number of hours slept (in the last 24h), number of times
notified (in the last 24h) and number of time patient performed the activity (in the last 24h).

3.2. Prompt strategies

We consider three different prompt strategies that are described below.
Random: At each time step (each hour) the VC randomly decides whether to send or not a

prompt to the patient, except at night time.
Supervised Approaches: Following [36, 23, 37] we selected RF model and train it on data

gathered during the first three weeks (as in [36]) of simulated intervention. We use scikit-learn
[40] implementation of the model with the default parameters and balanced class weighting.
The model is trained in a supervised fashion on pairs of patient states and their response to
prompt (the activity was performed or not). During the sample gathering phase, the prompts are
sent every hour except at night. After the initial training phase, the model prompts the patient
when it predicts that they will perform the activity, given their current context (the thirteen
variables). Following [37] we consider both static and adaptive model training approaches. In
the former case, the model is applied as it is and no further training after the initial training
phase is performed. In the latter case, after each prompt, a new example describing the context
and the response is added to the training set and the model is retrained.

RL Approaches: Every hour the VC decides whether to send a prompt or not using RL
model (agent). If suggested by the model, it sends the prompt to the environment (patient). The
environment calculates the value of eq. 1 based on the results simulates the action of walking
and then responds to agent with a reward. The agent always receives a reward of 20 units
for notifications which result in the target walking behaviour (even if the number of prompts
exceed the daily notification threshold), -1 in cases where the agent notified the simulated
patient but the patient did not perform the activity, -10 when the agent sent a notification which
resulted in exceeding the tolerated number of daily notifications and the patient did not perform
the activity, and 0 when the agent did not send a notification.

We employ three RL approaches: DQL, A2C and proximal policy optimization (PPO) al-
gorithm, which is the state of the art for many continuous control problems [41] . For all
we use implementation from stablebaseline3 [42] with default parameters, except that DQL

2Simulation code at https://github.com/Capable-project/capable-rl4vc.git
3At this threshold 70% of runs with hourly notification results in target behaviour being performed at least once during the

course of intervention.
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Figure 1: Comparison of the prompt strategies in terms of a number of prompts daily thought the
intervention (this excludes runs with failed training).

𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔_𝑠𝑡𝑎𝑟𝑡 = 24 (1 day of data gathering), A2C and PPO 𝑛_𝑠𝑡𝑒𝑝𝑠 = 24 (update every
day).

4. Experiments

We simulate eight week long digital intervention and compare all prompt strategies in terms
of their effectiveness (activity performed to prompt ratio) and potential annoyance to the user
(number of prompts daily) in four conditions:

• Stable responses pattern – patient preferences and activity threshold stay constant across
the intervention.

• Habituation – patient habituates to prompts (its activity threshold increases every day by
0.15). Given how we define eq. 1 and specific factors (all integers), this corresponds to
increasing the threshold by 1 after each week.

• Preference shift – patient changes their preferred time of notification to the evening after
week 5.

• Preference shift + Habituation – patient habituates to prompts and changes their preferred
time of notification to the evening after week 5.

Given the variation in the results between runs, we ran each strategy 500 times. Figure 1 shows
the algorithms’ learning of the number of daily notifications (fewer notifications are desirable
to patients) and Figure 2 shows the mean prompt effectiveness across all runs.

After 3 weeks (21 days) of initial training, the supervised approaches (both static and adaptive)
send the prompts at more appropriate times than other methods, which manifest in the higher
prompt effectiveness (Fig. 2). The main disadvantage of the supervised learning methods is
that they might be causing annoyance to the user at the initial stage of the intervention as
they require frequent prompts to gather positive and negative training samples. The model
performance also depends on how many positive samples have been gathered during that initial
training phase. Runs in which none of the prompts resulted in an activity being performed in
first 21 days lead to failed model training (no convergence) and the model always predicting
not to prompt the user (these runs are excluded from Fig. 1 and 2).

13
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(a) Stable response pattern (b) Preference shift

(c) Habituation (d) Habituation + Preference shift

Figure 2: Comparison of the prompt strategies in terms of prompt effectiveness. Note the mean is
computed from runs when at least 1 prompt has been sent.

All the reinforcement learning approaches learned to prompt the user less than 3 times daily
in the course of the intervention (Fig. 1). DQN reaches desired number of prompts the fastest
within around 9 days and the ratio of prompts that results in the activity performed is higher
than in the case of randomly timed prompts (Fig. 2a). The best reinforcement learning method
in our experiments is PPO which slowly reaches the prompt effectiveness of supervised model
but requires fewer prompts in the initial three weeks of intervention.

Changes in simulated patients’ prompt response patterns (Fig. 2b,c,d) have the most visible
impact on supervised models. Nevertheless, if initially successfully trained, the supervised
methods remain more effective in prompting patients than other approaches. The drop in the
response effectiveness in the case of the adaptive supervised training approach is due to reusing
the training samples gathered before the simulated patient preferences shift. There were not
enough samples to train the new model after detecting performance drop. Up-weighting of the
more recent samples during model retraining or use of ensemble learning method designed to
tackle concept drift[43] could lead to better prompt strategy adaptation.

We also checked if the simulated patient environment, even in the hardest simulation con-
ditions (habituated + preference shift), captures the better habit formation and consequently
results in improvements in patients’ state when interventions are administered. Fig. 3 shows
patient state without intervention, with intervention when the prompts are sent hourly during
the day and intervention with timely notifications using PPO. The simulated patient changed
their state as a result of intervention with walking activity, sparking improvements in mood
and number of hours slept. Note that in our simulation positive valence depends on both the
physical activity and the number of notifications (Table 1), therefore the timely notification
causes a longer time of being in a positive mood than randomly timed prompts.

14
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Figure 3: Effect of intervention on simulated patient.

5. Discussion

The comparison of different prompt strategies in a simulated patient environment suggests that
the supervised learning approaches to patient’s notifications might send the most appropriately
timed prompts. However, their training could potentially tire patients with a large number of
prompts during the initial intervention stage. It might be interesting to investigate if a smart
sampling strategy, such as diversity sampling could reduce the notification burden in the initial
intervention stage but keep model performance high in the remainder of the intervention.

In our experiments, PPO was the most effective RL-based prompting method. It almost
reached activity performed to prompt ratio of supervised models at the end of the intervention
period, and it required sending fewer prompts than supervised trained models overall, which
might burden less patients. PPO displayed stable improvement in prompt effectiveness over
time, regardless of the simulated patient prompt habituation or preference shift, making it
potentially an interesting candidate approach for real-life study.

All learning methods considered in this study could benefit from a larger number of training
samples, especially those capturing the context in which prompt results in the performed
activity. Here we simulated a single patient but in reality, there might be multiple patients with
similar behaviour patterns and leveraging learning from them could provide a boost in model
performance. Currently, one limitation of our simulated environment is that we do not capture
personality differences, which have been shown to impact user receptivity to notification [23].
In future work, we aim to include this information in our simulation and investigate learning
from multiple different users.
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