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Abstract
In this work we present an empirical study where we demonstrate the possibility of developing an

artificial agent that is capable to autonomously explore an experimental scenario. During the exploration,

the agent is able to discover and learn interesting options allowing to interact with the environment

without any assigned task, and then abstract and re-use the acquired knowledge to solve the assigned

tasks. We test the system in the so-called Treasure Game domain described in the recent literature and

we empirically demonstrate that the discovered options can be abstracted in an probabilistic symbolic

planning model (using the PPDDL language), which allowed the agent to generate symbolic plans to

achieve extrinsic goals.
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1. Introduction

If we want robots to be able to interact with complex and unstructured environments like the

real-life scenarios in which humans live, or if we want artificial agents to be able to explore

and operate in unknown environments, a crucial feature is to give these robots the ability

to autonomously acquire knowledge that can be used to solve human requests and adapt

to unpredicted new contexts and situations. At the same time, these robots should be able

to represent the acquired knowledge in structures that facilitate and speed up its reuse and

eventually facilitate human-robot interactions [1].

The field of Intrinsically Motivated Open-ended Learning (IMOL, [2]) is showing promising

results in the development of versatile and adaptive artificial agents. Intrinsic Motivations
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(IMs, [3, 4]) are a class of self-generated signals that have been used, depending on different

implementations, to provide robots with an autonomous guidance for several different processes,

from state-and-action space exploration [5], to the autonomous discovery, selection and learning

of multiple goals [6, 7, 8]. In general, IMs guide the agent in the acquisition of new knowledge

independently (or even in the absence) of any assigned task: this knowledge will then be

available to the system to solve user-assigned tasks [9] or as a scaffolding to acquire new

knowledge in a cumulative fashion (similarly to what have been called curriculum learning

[10]). Notwithstanding the advancements in this field, IMOL systems are still limited in acquiring

long sequences of skills that can generate complex action plans. In addition to the specific

complexity of the problem, this is also due to the fact that most of these systems store the

acquired knowledge (e.g., contexts, actions, goals) in low-level representations that poorly

support a higher-level reasoning that would guarantee a more effective reuse of such knowledge.

Even if some works have shown interesting results with architectural solutions [11, 12], the

use of long-term memory [13], simplified planning [14], or representational redescription [15],

the need to use constructs that ensure greater abstraction and thus higher-level reasoning still

seems crucial to exploiting the full potential of autonomous learning.

Within reinforcement learning (RL, [16]) the option framework [17] implements temporally

extended high-level actions (the options), defined as triplets composed of an initiation set (the

low-level states from which the option can be executed), the actual policy, and the termination

conditions (describing the probability of the option to end in specific low-level states). Options

can be handled at a higher level with respect to classical RL policies and, as shown within

hierarchical RL (HRL), [18]), they can be chunked together to form longer chains. Moreover,

HRL has been combined also with IMs to allow for different autonomous processes including, for

example, the formation of skill sequences [19], the learning of sub-goals [20] and, together with

deep RL techniques, to improve trajectories explorations [21]. However, despite the theoretical

and operational power of this framework, options alone do not provide a complete abstraction

of all the necessary elements to allow high-level reasoning and planning. Opposed to the

low-level processes typical of IMOL and RL approaches, in classical planning frameworks [22]

the states, actions and goals are represented as symbols that can be easily handled and composed

to perform complex sequences of behaviours to solve assigned tasks. However, in symbolic

planning systems, the knowledge on the domain is commonly fixed and provided by an expert

at design time, thus preventing the possibility of exploiting this approach in truly autonomous

systems.

Finding a bridge between autonomous approaches gathering low-level knowledge on the

basis of IMs and high-level symbolic decision making is thus a crucial research topic towards

the development of a new and more complete generation of artificial agents. In a seminal

work, Konidaris and colleagues [23] presented an algorithm for the autonomous “translation” of

low-level knowledge into symbols for a PDDL domain and then used to solve complex high-level

goal-achievement tasks such as the Treasure Game (see Figure 1), by creating sequences of

operators (or symbolic plans). However, in [23] the set of options to be abstracted into symbols

is given to the system, thus lacking to “close the loop” between the first phase of autonomous

exploration and learning, and the second phase of exploitation of the acquired knowledge.

In this work, we will present an empirical study in which we extend the results obtained

in our previous research [24]. In particular, we deploy the data abstraction procedure on a



more complex domain characterized by a higher number of variables, hence focusing on the

probabilistic version of the PDDL (Probabilistic Planning Domain Definition Language - PPDDL

[25]), demonstrating the possibility to develop an artificial agent that is capable to autonomously

explore the experimental scenario, discover and learn interesting options allowing to interact

with the environment without any pre-assigned task, and then abstract the acquired knowledge

for potential re-utilization to reach high-level goals. In particular, we will test the system in

the so-called Treasure Game domain described in [23], where the agent can move through

corridors, climb up and down stairs, interact with handles, bolts, keys and a treasure. Two

different results have been achieved by empirically following the proposed approach: on the

one hand, we experimentally verified how the agent is able to find a set of options and generate

symbolic plans to achieve high-level goals (e.g., open a door by using a key); on the other hand,

we analyzed a number of technicalities inherently connected to the task of making explicit

abstracted knowledge while directly exploring the environment (e.g., synthesizing the correct

preconditions of a discovered option).

The paper is organized as follows: in Section 2 we introduce the basic notation and the option

framework and we describe our algorithm for automatically discovering options. Indeed, in

this paper we describe a two-step learning phases: the first, to generate options from scratch

and creating a preliminary action abstraction (Section 2), and the second, to produce a higher

representation partitioning the options and highlighting their causal effects. The latter is

described in Section 3, where we briefly describe the abstraction procedure introduced in [23].

Section 4 describes our empirical results for the Treasure Game domain; finally, in Section 5 we

give some conclusions and discuss some possible directions of future work.

2. Finding Options

Options are temporally-extended actions defined as 𝑜(𝐼, 𝜋, 𝛽) [26], in which 𝜋 is the policy

executed, 𝐼 the set of states in which the policy can run and 𝛽 the termination condition of

the option. The option’s framework revealed to be an effective tool to abstract actions and

extend them with a temporal component. The use of this kind of actions demonstrated to

improve significantly the performances of model-based Reinforcement Learning compared to

older models, such as one-step models in which the actions employed are the primitives of

the agent [27]. Intuitively, these low-level single-step actions, or primitives, can be repeatedly

exploited to create more complex behaviours.

In this section, we describe a possible way to discover and build a set of options from scratch.

using the low-level actions available in the Treasure Game environment (see Figure 1). In such

environment, an agent starts from its initial position (home), moves through corridors and

climbs ladders over different floors, while interacting with a series of objects (e.g., keys, bolts,

and levers) to the goal of reaching a treasure placed in the bottom-right corner and bringing it

back home.

In order to build new behaviours, the agent can execute the following primitives: 1)𝑔𝑜_𝑢𝑝,

2)𝑔𝑜_𝑑𝑜𝑤𝑛, 3)𝑔𝑜_𝑙𝑒𝑓𝑡, 4)𝑔𝑜_𝑟𝑖𝑔ℎ𝑡, and 5)𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡, respectively used to move the agent up,

down, left or right by 2-4 pixels (the exact value is randomly selected with a uniform distribution)

and to interact with the closest object. In particular, the interaction with a lever changes the



state (open/close) the doors associated to that lever (both on the same floor or on different

floors) while the interaction with the key and/or the treasure simply collects the key and/or the

treasure inside the agent’s bag. Once the key is collected, the interaction with the bolt unlocks

the last door, thus granting the agent the access to the treasure.

Figure 1: The Treasure Game configuration used for the experimental analysis.

In our experiment, primitives are used as building blocks in the construction of the option,

participating to the definition of 𝜋, 𝐼 and 𝛽. In more details, we create new options from scratch,

considering a slightly different definition of option 𝑜(𝑝, 𝑡, 𝐼, 𝜋, 𝛽) made up of the following

components:

• 𝑝, the primitive used by the execution of 𝜋;

• 𝑡, the primitive which, when available, stops the execution of 𝜋;

• 𝜋, the policy applied by the option, consisting in repeatedly executing 𝑝 until 𝑡 is available

or 𝑝 can no longer be executed;

• 𝐼 , the set of states from which 𝑝 can run;

• 𝛽, the termination condition of the action, corresponding to the availability of the primitive

𝑡 or to the impossibility of further executing 𝑝.

Consequently, this definition of option requires 𝑝, to describe the policy and where it can run,

and 𝑡, to define the condition stopping its execution, maintaining its characteristic temporal

abstraction. For the sake of simplicity, the option’s definition will follow the more compact

syntax 𝑜(𝑝, 𝑡) in the remainder of the paper.



Algorithm 1 Discovery option algorithm

1: procedure DISCOVER(𝑒𝑛𝑣,𝑚𝑎𝑥_𝑒𝑝𝑠,𝑚𝑎𝑥_𝑠𝑡𝑒𝑝𝑠)

2: 𝑜𝑝𝑡𝑖𝑜𝑛𝑠← {}
3: 𝑒𝑝← 0
4: while 𝑒𝑝 < 𝑚𝑎𝑥_𝑒𝑝𝑠 do
5: 𝑇 ← 0
6: 𝑒𝑛𝑣.RESET_GAME()
7: while 𝑇 < 𝑚𝑎𝑥_𝑠𝑡𝑒𝑝𝑠 do
8: 𝑠← 𝑒𝑛𝑣.GET_STATE()
9: 𝑝← 𝑒𝑛𝑣.GET_AVAILABLE_PRIMITIVE()

10: while 𝑒𝑛𝑣.IS_AVAILABLE(p) and not (𝑒𝑛𝑣.NEW_AVAILABLE_PRIM()) do
11: 𝑒𝑛𝑣.EXECUTE(p)
12: 𝑠′ ← 𝑒𝑛𝑣.GET_STATE()
13: if 𝑠 ̸= 𝑠′ then
14: if 𝑒𝑛𝑣.NEW_AVAILABLE_PRIM() then
15: 𝑡← 𝑒𝑛𝑣.GET_NEW_AVAILABLE_PRIM()
16: 𝑜𝑝← CREATE_NEW_OPTION(p, t)
17: else
18: 𝑜𝑝← CREATE_NEW_OPTION(p, {})
19: 𝑜𝑝𝑡𝑖𝑜𝑛𝑠← 𝑜𝑝𝑡𝑖𝑜𝑛𝑠 ∪ 𝑜𝑝

20: return 𝑜𝑝𝑡𝑖𝑜𝑛𝑠

Algorithm 1 describes the process utilized to discover new options autonomously inside the

simulated environment. The procedure runs for a number of episodes 𝑚𝑎𝑥_𝑒𝑝𝑠 and 𝑚𝑎𝑥_𝑠𝑡𝑒𝑝𝑠
steps. Until the maximum of steps of the current episode is not reached, the function keeps

track of the starting state 𝑠 and randomly selects an available primitive 𝑝, such that 𝑝 can be

executed in 𝑠 (line 7-9). Then, as long as 𝑝 is available and there is no new available primitives

(line 10), the option 𝑝 is executed, and the final state 𝑠′ of the current potential option is updated.

The function NEW_AVAILABLE_PRIM returns True when a primitive which was not previously

executable becomes available while executing 𝑝; the function returns False in all the other

cases. For instance, if the agent finds out that there is a ladder over him while executing the

𝑔𝑜_𝑟𝑖𝑔ℎ𝑡 option, the primitive 𝑔𝑜_𝑢𝑝 gets available and the function return True. In other

words, NEW_AVAILABLE_PRIM detects the interesting event, thus implementing the surprise

element that catches the agent’s curiosity. For this reason, the primitive representing the

exact reverse with respect to the one currently being executed is not interesting for the agent,

i.e., the agent will not get interested in the 𝑔𝑜_𝑟𝑖𝑔ℎ𝑡 primitive while executing 𝑔𝑜_𝑙𝑒𝑓𝑡. The

same treatment applied to the (𝑔𝑜_𝑙𝑒𝑓𝑡, 𝑔𝑜_𝑟𝑖𝑔ℎ𝑡) primitive pair is also used with the pair

(𝑔𝑜_𝑢𝑝, 𝑔𝑜_𝑑𝑜𝑤𝑛).
When the stopping condition of the most inner while is verified and 𝑠 ̸= 𝑠′, a new option

can be generated according to the following rationale. In case the while exits because of the

availability of a new primitive 𝑡 in the new state 𝑠′, a new option 𝑜(𝑝, 𝑡) is created (line 16);

otherwise, if the while exits because the primitive under execution is no longer available, a new

option 𝑜(𝑝, {}) is created, meaning "execute 𝑝 while it is possible" (line 18). In either case, the

created option 𝑜𝑝 is added to the list 𝑜𝑝𝑡𝑖𝑜𝑛𝑠 (line 19), which is the output of the function.

In our test scenario, the algorithm generated 11 working options (see Section 4), suitable for

solving the environment, and collected experience data to be abstracted in PPDDL [25] format



successively. Consequently, as we introduced above, the agent performs two learning phases:

the first, to generate options from scratch and creating a preliminary action abstraction, and

the second, to produce a higher representation partitioning the options and highlighting their

causal effects. The latter phase, producing a symbolic representation suitable for planning, is

analyzed in the next section.

3. Abstracting options in PPDDL

In this section we provide a summary description of the knowledge abstraction procedure, in

order to allow the reader to get a grasp of the rationale behind the synthesis of the PPDDL

domain. A thorough description of the abstraction algorithm is beyond the scope of this paper;

for further details, the reader is referred to [28].

The procedure basically executes the following five steps:

1. Data collection: during this step, the options learned according to Section 2 are repeat-

edly executed in the environment and the information about the initial and final state

(respectively before and after the execution of each option) are collected. Such data are

successively aggregated, and two data structures are returned from the Data collection
phase: the initiation data and the transition data, both to be used in the following steps.

2. Option partition: this step is dedicated to partitioning the learned options in terms

of abstract subgoal options. This operation is necessary as the (P)PDDL operators are

characterized by a single precondition set and a single effect set; therefore, options that

have multiple termination conditions starting from the same initiation set cannot be

correctly captured in terms of (P)PDDL operators. As a consequence, before launching

the abstraction procedure it is necessary to generate a set of options each of which is

guaranteed to produce a single effect (partial subgoal option). This operation utilizes

the transition data set computed in Step 1, as they capture the information about the

domain segment the option modifies. Option partition is ultimately obtained by properly

clustering the transition data through the DBSCAN algorithm ([29]) present in the scikit-

learn toolkit ([30]).

3. Precondition estimation: this step is dedicated to learning the symbols that will consti-

tute the preconditions of the PPDDL operators associated to all the options. This operation

utilizes the initiation data set computed in Step 1, and is performed utilizing the support

vector machine ([31]) classifier implementation in scikit-learn.

4. Effect estimation: analogously, this step is dedicated to learning the symbols that

will constitute the effects of the PPDDL operators. The effect distribution was modelled

through the Kernel density estimation ([32, 33]).

5. PPDDL Domain synthesis: finally, this step is dedicated to the synthesis of the PPDDL

domain, characterized by the complete definition of all the operators associated to the

learned options, in terms of preconditions and effect symbols.

For instance, Figure 3 depicts an example operator (option-0) whose action corresponds to

modifying the agent’s position as it has to climb up a stair to reach a new location. The operator’s



(a) 𝑆𝑦𝑚𝑏𝑜𝑙_19. (b) 𝑆𝑦𝑚𝑏𝑜𝑙_29. (c) 𝑆𝑦𝑚𝑏𝑜𝑙_30.

Figure 2: Graphical representation of the symbols used in the option-0 operator. 𝑆𝑦𝑚𝑏𝑜𝑙_19 represents
the agent’s 𝑥 position; 𝑆𝑦𝑚𝑏𝑜𝑙_29 represents the agent’s 𝑦 position before the operator’s execution,
while 𝑆𝑦𝑚𝑏𝑜𝑙_30 represents the agent’s 𝑦 position after the operator’s execution.

(:action option-0
:parameters ()
:precondition (and (symbol_19) (symbol_29))
:effect (and (symbol_30) (not (symbol_29)) (decrease (reward) 17.60))
)

Figure 3: Example of autonomously produced PPDDL operator whose semantics is “climb the stairs
from the 1𝑠𝑡 to the 2𝑛𝑑 floor”.

formalization follows the standard Probabilistic PDDL (PPDDL)
1
, where the precondition set is

composed of the symbols {𝑆𝑦𝑚𝑏𝑜𝑙_19, 𝑆𝑦𝑚𝑏𝑜𝑙_29}, the effect set is composed of the symbol

{𝑆𝑦𝑚𝑏𝑜𝑙_30}, and the negative effect set contains the symbol {𝑆𝑦𝑚𝑏𝑜𝑙_29} (note that the

name of the symbols is automatically generated). The reader should also consider that the

PPDDL operators returned by the abstraction procedure are grounded; automatically abstracting

parametric PPDDL representations is beyond the scope of this work and will be the object of

future work. Finally, each PPDDL operator is associated to a reward (17.60 in this case).

In order to provide the reader with some information about the meaning of the symbols

that populate the previous operator, the semantics of all symbols is graphically presented in

Figure 2. In particular, 𝑆𝑦𝑚𝑏𝑜𝑙_19 proposition in the operator’s preconditions has the following

semantics: “the agent’s 𝑥 coordinate is vertically aligned with the stairs”, while the semantics of

𝑆𝑦𝑚𝑏𝑜𝑙_29 proposition is “the agent’s y coordinate positions it at a level equivalent to being at
the bottom of the stairs”. From the description above, it is clear that the intersection (i.e., the

logical AND) of the previous two symbols places the agent exactly at the bottom of the stairs.

Relatively to the operator’s effects, we see that 𝑆𝑦𝑚𝑏𝑜𝑙_29 gets negated (the agent is no longer

at the bottom of the stairs) and it is replaced by 𝑆𝑦𝑚𝑏𝑜𝑙_30 whose meaning is “the agent’s y
coordinate positions it at a level equivalent to being at the top of the stairs”. Lastly, the reader

should note that 𝑆𝑦𝑚𝑏𝑜𝑙_19 remains valid throughout the whole execution of the operator,

1

Despite the operator selected in this particular example does not make use of probabilities, it has been chosen

due to its simplicity to exemplify the utilization of the automatically generated symbols.



and that the logical intersection of 𝑆𝑦𝑚𝑏𝑜𝑙_19 and 𝑆𝑦𝑚𝑏𝑜𝑙_30 clearly describes the situation

where the agent has climbed the stairs.

4. Empirical Analysis

In this section we describe the results obtained from a preliminary empirical study, carried out

by testing the Algorithm 1 in the context of the Treasure Game domain [23]. The algorithm

was implemented in Python 3.7 under Linux Ubuntu 16.04 as an additional module of the Skill
to Symbols software

2
, using the Treasure Game Python package. As previously stated, the

Treasure Game domain defines an environment that can be explored by the agent by moving

through corridors and doors, climbing stairs, interacting with handles (necessary to open/close

the doors), bolts, keys (necessary to unlock the bolts) and a treasure.

In our experimentation, the agent starts endowed with no previous knowledge about the

possible actions that can be executed in the environment; the agent is only aware of the basic

motion primitives at his disposal, as described in Section 2. The goal of the analysis is to

assess the correctness, usability and quality of the abstract knowledge of the environment

autonomously obtained by the agent.

The experiment starts by using Algorithm 1, whose application endows the agent with the

following set of learned options (11 in total):

𝑂 ={(𝑔𝑜_𝑢𝑝, {}), (𝑔𝑜_𝑑𝑜𝑤𝑛, {}), (𝑔𝑜_𝑙𝑒𝑓𝑡, {}), (𝑔𝑜_𝑙𝑒𝑓𝑡, 𝑔𝑜_𝑢𝑝), (𝑔𝑜_𝑙𝑒𝑓𝑡, 𝑔𝑜_𝑑𝑜𝑤𝑛),

(𝑔𝑜_𝑙𝑒𝑓𝑡, 𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡), (𝑔𝑜_𝑟𝑖𝑔ℎ𝑡, {}), (𝑔𝑜_𝑟𝑖𝑔ℎ𝑡, 𝑔𝑜_𝑢𝑝), (𝑔𝑜_𝑟𝑖𝑔ℎ𝑡, 𝑔𝑜_𝑑𝑜𝑤𝑛),

(𝑔𝑜_𝑟𝑖𝑔ℎ𝑡, 𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡), (𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡, {})}
(1)

The test has been run on an Intel I7 3.4GHz machine, and the whole process took 30 minutes. All

the options are expressed in the compact syntax (𝑝, 𝑡) described in Section 2, where p represents

the primitive action corresponding to the action’s behavior, and t represents the option’s stop

condition (i.e., the new primitive action discovered, or an empty set).

Once the set of learned options has been obtained, the test proceeds by applying the knowledge

abstraction procedure described in the previous Section 3. In our specific case, the procedure

eventually generated a final PPDDL domain composed by a set of 1528 operators. In order to

empirically verify the correctness of the obtained PPDDL domain, we tested the domain with

the off-the-shelf mGPT probabilistic planner [34]. The selected planning goal was to find the

treasure, located in a hidden position of the environment (i.e., behind a locked door that could

be opened only by operating on a bolt with a key) and bring it back to the agent’s starting

position, in the upper part of the Treasure Game environment. The agent’s initial position is by

the small stairs located on the environment’s 5𝑡ℎ floor (up left).

The symbolic plan depicted in Figure 3 was successfully generated and, as readily observable,

reaches the previous goal. The plan is composed of 33 actions, which confirmed the correctness

of the proposed methodology (note that the PPDDL operators are named after their exact

semantics manually, in order to facilitate their interpretation for the reader.). We also discovered

2

We thank George Konidaris and Steve James for making both the Skills to Symbols and the Treasure Game

software available.



1. go_down [to 5th floor]; 2. go_left [to handle];
3. interact(handle); 4. go_right [to wall];
5. go_down [to 4th floor]; 6. go_right [to handle];
7. interact(handle); 8. go_left [to key]; 9. interact(key);
10. go_right [to stairs]; 11. go_down [to 3rd floor];
12. go_left [to stairs]; 13. go_down [to 1st floor];
14. go_left [to bolt]; 15. interact(bolt, key);
16. go_right [to wall]; 17. go_up [to 2nd floor];
18. go_right [to treasure]; 19. interact(treasure);
20. go_left [to stairs]; 21. go_down [to 1st floor];
22. go_left [to bolt]; 23. go_right [to stairs];
24. go_up [to 3rd floor]; 25. go_right [to wall];
26. go_left [to stairs]; 27. go_up [to 4th floor];
28. go_right [to handle]; 29. interact(handle)
30. go_left [to stairs]; 31. go_up [to 5th floor];
32. go_left [to stairs]; 33. go_up [home];

Figure 4: Plan generated by the mGPT planner with our autonomously synthesized PPDDL domain.
The goal of the plan is to (i) find the treasure located behind a closed door that can only be opened by
finding a key and then using it to unlock a bolt, and (ii) bringing it to the agent’s initial position.

a number of difficulties inherently connected to the task of explicitly abstracting the knowledge

by means of a direct exploration of the environment. One consequence of such difficulties

is evident from the quality of the plan outlined above. In fact, it is clear that the plan is

not optimal, as the agent performs sometime useless actions, such as going left to the bolt

and then right to the stairs (22. 𝑔𝑜_𝑙𝑒𝑓𝑡[𝑡𝑜 𝑏𝑜𝑙𝑡] and 23. 𝑔𝑜_𝑟𝑖𝑔ℎ𝑡[𝑡𝑜 𝑠𝑡𝑎𝑖𝑟𝑠], respectively)

instead of directly executing a 𝑔𝑜_𝑙𝑒𝑓𝑡[𝑡𝑜 𝑠𝑡𝑎𝑖𝑟𝑠]. Another examples of redundant actions are

25. 𝑔𝑜_𝑟𝑖𝑔ℎ𝑡[𝑡𝑜 𝑤𝑎𝑙𝑙], 26. 𝑔𝑜_𝑙𝑒𝑓𝑡[𝑡𝑜 𝑠𝑡𝑎𝑖𝑟𝑠] instead of directly executing a 𝑔𝑜_𝑟𝑖𝑔ℎ𝑡[𝑡𝑜 𝑠𝑡𝑎𝑖𝑟𝑠].
It can be easily seen that the optimal plan is composed of 31 actions.

The previous analysis is still ongoing work. In this paper, we are presenting the encouraging

results obtained so far, though we have observed that a number of improvements are worth being

studied. One observation can be made about the quality of the obtained PPDDL domain; despite

we have demonstrated that such domain can be successfully used for automated planning,

we have also observed that it contains a number of infeasible operators (i.e., characterized

by mutually conflicting preconditions) as well as operators characterized by a high failure

probability. Of course, the presence of such operators does not hinder the feasibility of the

produced plan (i.e., the former operators will always be discarded by the planner, while the

latter will at most make the planning process more demanding, thus decreasing the probability

of obtaining an optimal solution) yet, further work must be done to arrive to “crisper” domain

representations.

In this respect, there are at least two research lines to investigate. The first line entails

the study of different fine-tuning strategies of all the parameters utilized in the previously

mentioned Machine Learning tools (such as DBSCAN, SVM, Kernel Density Estimator) involved

in the knowledge-abstraction process. The second line is about analyzing the most efficient

environment exploration strategy used to collect all the transition data that will be used for



the classification tasks that are part of the abstraction procedure, as both the quantity and the

quality of the collected data may be essential at this stage.

5. Conclusions and Future Work

In this paper we tested an option discovery algorithm driven by intrinsic motivations for an

agent operating in the Treasure Game domain [23]. We experimentally demonstrated that the

discovered options can be abstracted in an probabilistic symbolic planning model (using the

PPDDL language), which allowed the agent to generate symbolic plans to achieve extrinsic

goals. One of the possible direction of future work will be the exploration of innovative iterative

procedures to incrementally refine [35] the generated PPDDL model.
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