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Abstract
Due to its advantages, DE has been one of the most used evolutionary algorithms (EA) for solving
complex optimization problems. Many DE variants have been proposed to enhance its performance.
Differential evolution with a multipopulation-based ensemble of mutation strategies (MPEDE) has been
considered as one of the most efficient DE variants. Mutation strategies used in MPEDE are DE/rand/1,
current-to-rand/1, current-to-pbest /1. An ameliorated multipopulation-based ensemble DE (AMPEDE) is
proposed in the present work where we try to improve the performance of MPEDE by utilizing a new
ensemble of mutation strategies and presenting a new mutation strategy called current-to-mpbest /1. In
this strategy, we are interested in escaping from the local optimum, where individuals are attracted to
the center of gravity of the pbest solutions. In our experiments, a comparison of AMPEDE with MPEDE
and other algorithms on Black Box Optimization Benchmarking (BBOB) tool has been achieved and the
results show that AMPEDE is very competitive and provides an excellent performance in dealing with
some optimization problems.

Keywords
Evolutionary algorithms, Differential evolution, Multipopulation, Ensemble of mutation strategies,
Numerical optimization.

1. Introduction

Differential evolution (DE) has been introduced initially by Storm and Price [1] to find the global
optimum of non-linear, non-convex, multi-modal and non-differentiable functions defined in
the continuous parameter space [2]. It is considered as one of the most popular evolutionary
algorithms due to its advantages (e.g., simplicity, few control parameters, efficiency in dealing
with complex optimization problems, etc.) [3, 4].

DE is a population-based stochastic optimization algorithm, which moves the population
toward the global optimum by using mutation, crossover, and selection operations at each
generation [5, 6]. Its performance depends on the configuration of mutation strategy and
control parameters, such as the population size NP, the scaling factor F and the crossover rate
Cr [7].

Many optimization problems exist in the real world [4]. For a given optimization problem,
during the search process the most suitable control parameters and the proper mutation strategy
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may not be the same [4]. Some mutation strategies are applied to improve exploitation while
others are used to enhance exploration ability [8]. It is noteworthy that some strategies can
achieve a trade-off between exploration and exploitation [9]. Concerning control parameter
settings, some can speed up the convergence [9] while others are effective for separable functions
[10].

In classical DE, only a single mutation strategy is used and the control parameters are fixed,
therefore the performance of DE may vary greatly for different optimization problems [4].
To address this issue, researchers have been more attracted to automatically tune parameters
and construct excellent ensemble of mutation strategies [4]. Consequently, many improved
DE variants have been proposed such as SaDE [11] (ensemble of two mutation strategies and
self-adapted parameters), JADE [12] (to develop an excellent mutation strategy and self-adapted
parameters), jDE [13] (self-adaptive tuning parameters), CODE [14] (composition of mutation
strategies with their own parameters), MPEDE [7] (ensemble of multiple mutation strategies),
MMRDE [4] ( multiple mutation strategies based on roulette wheel selection).

In our work, we are interested in MPEDE [4], which is a new variant of DE with a multipopulation-
based ensemble of mutation strategies. In MPEDE, the whole population is divided into four
sub-populations, three of them have the same size and they are called indicator sub-populations
and the fourth one has a different size, it is called reward sub-population. Three mutation
strategies are used in MPEDE (DE/rand/1, DE/current-to-rand/1, and DE/current-to-pbest/1 with
an archive). Each one of them is affected randomly to an indicator sub-population. At each
generation, the sub-populations are randomly sampled from the entire population. The reward
sub-population is affected to the best mutation strategy after a certain number of generations.

Nevertheless, to the best of our knowledge, MPEDE suffers from the following limitations:
1) the waste of calculation time and the non-stability of the population due to resampling of
sup-populations at each generation, 2) the lack of exploitation with the mutation strategies
regrouping and 3) the risk of premature convergence to a local optimum due to the attraction to
the best current solution or one among the group containing the pbest solutions. To overcome
these limitations, we propose a new ensemble of mutation strategies (DE/rand/1, DE/target-to-
best /1, DE/current-to-mpbest /1 without archive) providing a better balance between exploration
and exploitation. To reduce the waste of time and the non-stability of the population , the
sub-populations were resampled after a certain number of generations instead of doing it at
each generation. To reduce the risk of stagnation at a local minimum, we propose replacing
current-to-pbest /1 by a new mutation strategy: current-to-mpbest /1. In this strategy, individuals
are attracted to the center of gravity of the pbest solutions instead of being attracted to one of
them only.

The paper is organized as follows. In section 2, we explain the basic differential evolution.
Section 3 is devoted to research findings in relation with the present work. The proposed
approach is described in section 4. Section 5 presents the experiment design and discusses the
obtained results in comparison to those of some state-of-the-art algorithms. Finally, section 6
provides a conclusion and some future research directions.
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2. Basic Differential Evolution (DE)

Differential evolution (DE) belongs to the evolutionary algorithms (EA) family [3]. It provides
efficiently outstanding solutions for complex numerical optimization problems [3]. In DE,
the evolutionary process consists of four basic steps: initialization, mutation, crossover, and
selection [2]. Excluding the initialisation, the remaining steps are repeated until the satisfaction
of a given stop criteria, for instance reaching the maximum number of function evaluations [2].
In the remainder of this section, we will present more details about the aforementioned steps.

2.1. Initialization

The initial population in DE is randomly generated of 𝑁𝑝 𝑑-dimensional real-valued decision
vectors [2]. Where 𝑁𝑃 is the population size and 𝑑 is the dimensionality of problem. A decision
vector represents an individual. Each individual is composed of 𝑑 decision variables. Each one
is defined randomly and uniformly in the range [𝑋𝑚𝑖𝑛,𝑋𝑚𝑎𝑥]. So the initial population can be
expressed as shown in equation 1:

𝑋𝑖
𝑗 = 𝑋𝑚𝑖𝑛𝑗 + 𝑟𝑎𝑛𝑑(0, 1) * (𝑋𝑚𝑎𝑥𝑗 −𝑋𝑚𝑖𝑛𝑗) (1)

Where 𝑟𝑎𝑛𝑑(0, 1) is a uniformly distributed random number between 0 and 1 [7].

2.2. Mutation

After the initialization step, a donor/mutant vector is created at each generation by using one
of the mutation strategies for each parent vector 𝑋𝑖

𝑗 . These strategies include the following:
"DE/current-to-rand/1" [15] :

U𝑖,𝐺 = X𝑖,𝐺 + 𝐾.(X𝑟𝑖1,𝐺
− X𝑖,𝐺) + 𝐹.(X𝑟𝑖2,𝐺

− X𝑟𝑖3,𝐺
) (2)

"DE/rand/1" [16] :
V𝑖,𝐺 = X𝑟𝑖1,𝐺

+ 𝐹.(X𝑟𝑖2,𝐺
− X𝑟𝑖3,𝐺

) (3)

"DE/rand/2" [17] :

V𝑖,𝐺 = X𝑟𝑖1,𝐺
+ 𝐹.(X𝑟𝑖2,𝐺

− X𝑟𝑖3,𝐺
) + 𝐹.(X𝑟𝑖4,𝐺

− X𝑟𝑖5,𝐺
) (4)

"DE/best/1" [16] :
V𝑖,𝐺 = X𝑏𝑒𝑠𝑡,𝐺 + 𝐹.(X𝑟𝑖1,𝐺

− X𝑟𝑖2,𝐺
) (5)

"DE/best/2" [16] :

V𝑖,𝐺 = X𝑏𝑒𝑠𝑡,𝐺 + 𝐹.(X𝑟𝑖1,𝐺
− X𝑟𝑖2,𝐺

) + 𝐹.(X𝑟𝑖3,𝐺
− X𝑟𝑖4,𝐺

) (6)

Where the indices 𝑟1, 𝑟2, 𝑟3, 𝑟4 and 𝑟5 are randomly chosen within the range [1,𝑁𝑃 ]. These
indices are different from 𝑖 [2]. 𝐹 is a positive integer chosen randomly within the range [0,1].
It is used to scale the difference vectors. X𝑏𝑒𝑠𝑡 is the best vector according to its fitness value in
generation 𝐺 (current generation).
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2.3. Crossover

After mutation, the crossover step is executed to enhance diversity by generating new trial
vectors [4] from the parent vector X𝑖,𝐺, and its corresponding mutant vector V𝑖,𝐺. Two types
of crossover operation exist: the binomial crossover and the exponential crossover [2]. The
binomial crossover is generally used in DE and it is defined as follows:

U𝑗
𝑖,𝐺 =

{︃
V𝑗
𝑖,𝐺 if (𝑟𝑎𝑛𝑑𝑗 [0, 1] ≤ 𝐶𝑟) or (𝑗 = 𝑗𝑟𝑎𝑛𝑑), 𝑗 = 1, 2, ..., 𝐷

X𝑗
𝑖,𝐺 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

}︃
(7)

Where 𝐶𝑟 is a control parameter called crossover rate. 𝑖 = 1, 2, ..., 𝑁𝑃 , 𝑗 = 1, 2, ..., 𝐷 where
𝑁𝑃 is the population size and 𝐷 is the dimensionality of problem. 𝑗=𝑗𝑟𝑎𝑛𝑑 is used to ensure
that U𝑖,𝐺 is different from the target vector X𝑖,𝐺 at least in one individual.

2.4. Selection

According to the fitness value, the selection step chooses between the parent vector and the
trial vector the one which will survive in the next generation. It is defined as shown in equation 8

X𝑖,𝐺+1 =

{︂
U𝑖,𝐺 if 𝑓(U𝑖,𝐺 ≤ X𝑖,𝐺)
X𝑖,𝐺

}︂
(8)

3. Related Works

DE can be considered as one of the best evolutionary algorithms (EA) [4], mainly because of its
simplicity and robustness [7]. Nevertheless, despite these advantages, it suffers from stagnation,
premature convergence, and long calculation time [4]. The performance of DE depends on
the used mutation strategies and control parameters [18] and choosing suitable strategies and
parameters is far from being an easy task. It requires much expertise [19, 20].

Many studies have been proposed to determine the appropriate setting of the control param-
eters of DE (e.g., size 𝑁𝑃 , Crossover 𝐶𝑟, Scale factor 𝐹 , etc.) based on the properties of the
problem [7]. In DE, three main control parameters are used: 𝑁𝑃 , 𝐹 and 𝐶𝑟. 𝑁𝑃 (population
size) has a big effect on the convergence speed of DE. For separable and uni-modal functions,
we have to choose a smaller value of 𝑁𝑃 to speed up the convergence [19]. While in multi-
modal function a larger value of 𝑁𝑃 is recommended to avoid premature convergence. 𝐹 is
a positive control parameter used to scale the difference between vectors. We have to choose
carefully the initial value of 𝐹 . In [21], 0.9 is claimed to be the best value. Therefore, typical
values of 𝐹 are generated randomly in the range [0.4, 0.95] [21]. 𝐶𝑟 is called crossover rate
(crossover probability). It is used to control the ratio of genes from the mutant vectors which
will participate in the crossover step. A good choice of 𝐶𝑟 is within the range [0.3, 0.9], while a
good initial value is 0.1 [22].

As we have seen in the aforementioned studies, many conclusions were proposed for the
manual tuning of control parameters. Nevertheless, during the evolution process of DE, it
is worthy to adapt the parameters. In fact, the control parameters can be partitioned into

4



Besma Hezili et al. CEUR Workshop Proceedings 1–14

three categories: deterministic, adaptive, and self-adaptive [23]. In adaptive parameter, a fuzzy
adaptive differential evolution (FADE) has been introduced by Liu and Lampinen where 𝐹
and 𝐶𝑟 are dynamically adapted [24]. For multiobjective optimization, Zaharie and Petcu
have designed an adaptive Pareto DE algorithm and analyzed its parallel implementation [25].
Concerning self-adaptive parameters, Omran et al. proposed (SDE), where a normal distributed
N(0.5,0.15) is used to generate the 𝐶𝑟 for each individual [26]. Brest et al. [27] proposed the jDE
which considered as new variant adaptive of DE. 𝐹 and 𝐶𝑟 are adaptive during the execution
of DE.

The used mutation strategy has a big influence on the performance of DE [4]. Thus, to
enhance DE performance, some works are interested in introducing a new mutation strategy
[28]. For instance, a new variant of DE/current-to-best, called DE/current-to-pbest, with an
optional external archive is proposed by Zhang et al [12], where 𝑝 ∈ (0, 1] and any of the top
100.𝑝% individuals can be chosen to be the best. DE/current-to-pbest offers a good balance
between exploration and exploitation [7]. DE/current-to-gr-best/1 [29] is also a variant of of
DE/current-to-best/1 in which the best solution is chosen from a group that contains 𝑞% of the
population (randomly chosen).

Instead of spearing the control parameter tuning and the choice of the suitable mutation
strategy, researchers proposed to incorporate ensemble strategies and parameters into evolu-
tionary algorithms [7]. Qin et al. [17] proposed a self-adaptive DE algorithm (SaDE) in which
mutant vector generation strategies and their own control parameters are self adapted based
on their previous experiences in generating promising solutions. A hybrid mutation strategy
have been proposed by Yi et al. [30] as a new variant of DE. It uses two types of mutation
strategies and self-adapting control parameters. To solve constrained optimization problems,
Wang and co-workers [31] proposed ICDE which uses multiple mutation strategies and the
binomial crossover to generate the trial vectors.

4. The Proposed Approach

4.1. Multipopulation-based ensemble DE (MPEDE)

MPEDE [7] is a variant of DE based on multipopulation. It uses multiple strategies and par-
titions the whole population into four sub-populations. Three mutation strategies are used
in MPEDE DE/rand/1, DE/current-to-rand/1, DE/current-to-pbest with archive. Besides that,
there are three equal and small-sized sub-populations (indicator sub-populations) and a large-
sized sub-population (reward sub-population). After a given number of generations, the best
performing mutation strategy is allocated to the reward sub-population and it can win more
computational resources. Let 𝑝𝑜𝑝 determine the entire population and 𝑝𝑜𝑝𝑗 represent the jth
sub-population. we can define 𝑝𝑜𝑝 as:

𝑝𝑜𝑝 =
⋃︁

𝑗=1,...4

𝑝𝑜𝑝𝑗 (9)

Let 𝑁𝑃 be the size of 𝑝𝑜𝑝. The size of 𝑝𝑜𝑝𝑗 is 𝑁𝑃 𝑗 and it is calculated as follows:

𝑁𝑃𝑗 = 𝜆𝑗 . 𝑁𝑃 𝑗 = 1, ...4 (10)
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∑︁
𝑗=1,...4

𝜆𝑗 = 1 (11)

𝜆𝑗 is the portion between 𝑝𝑜𝑝𝑗 and 𝑝𝑜𝑝, and 𝜆1 = 𝜆2 = 𝜆3.
As we have seen before, after a certain number of generations the best performing mutation

strategy is rewarded by more computational resource (𝑝𝑜𝑝4). The performance of each mutation
strategy is calculated by the proportion of fitness improvements (Δ𝑓𝑗) and consumed function
evaluations during the last 𝑛𝑔 generations(𝑛𝑔.𝑁𝑃 𝑗). The index of the best mutation strategy
can be expressed as shown in equation 12 :

𝑘 = 𝑎𝑟𝑔

(︂
𝑚𝑎𝑥1<𝑗⩽3

(︂
Δ𝑓𝑗

𝑛𝑔.𝑁𝑃𝑗

)︂)︂
(12)

4.2. The Limitations of MPEDE and the Adopted Ensemble of Mutation
Strategies

As described above, in MPEDE sub-populations are randomly resampled from the entire popula-
tion at each generation, This can lead to a loss of computation time. Three mutation strategies
are used in MPEDE. First DE/rand/1 which is considered as the most commonly used mutation
strategy. It has a big exploration capacity [11]. Second current-to-rand/1, it is very effective in
solving multiobjective optimization problems. It is considered as a rotation-invariant strategy
[7]. Third current-to-pbest /1 which is very useful in solving complex optimization problems
. With this strategy, problems like premature convergence can be solved due to its ability to
diversify the population [12]. Current-to-rand/1 is used without crossover while DE/rand/1 and
current-to-pbest are used with the combination of binomial crossover [7]. We find there is a lack
of exploitation in this ensemble of mutation strategies.

In this paper, we propose an improved variant of MPEDE (AMPEDE) in which we try to
overcome the limitations that we find, and to enhance MPEDE results. In AMPEDE we divided
the entire population into three large equally-sized sub-populations (indicator sub-population)
and one small-sized sub-population (reward sub-population). Three mutation strategies are used
in our approach. DE/rand/1 to ensure a good exploration ability [11]. DE/target-to-best/1 [15]
to promote exploitation in our ensemble of mutation strategies. Current-to-mpbest/1 without
archive is used not to be trapped into a local optimum. In this strategy instead of choosing X𝑏𝑒𝑠𝑡

randomly one of the top 100.𝑝% individuals in the current population with 𝑝 ∈ (0, 1], we take
X𝑏𝑒𝑠𝑡 from the mean of the top 100.𝑝% individuals in the current population with 𝑝 ∈ (0, 1].
The three mutation strategies are used with the binomial crossover. As in MPEDE [7], after
every certain number of generations, the best mutation strategy performing is determined using
the ratios of fitness improvements and consumed function evaluations during the previous 𝑛𝑔
generations. According to our experimental results, as illustrated in the next section, we find
that it is not useful to resample sub-populations from the entire population at each generation.
Therefore, in our approach we choose resampling sub-populations after every 𝑛𝑔 generations
to enhance the stability and the adaptability of the algorithm.

6
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4.3. Parameter Adaptation

Because parameters during the evolution process of DE cannot be the same, we need to choose
the appropriate control parameters for different mutation strategies to enhance DE performance
[8]. Studies like [22, 11, 12] have proposed different approaches to parameter adaptation. In
our work, we used the technique defined in [12], which is the same as that used in MPEDE. A
Cauchy distribution is used to generate the scaling factor 𝐹𝑖,𝑗 of individual X𝑖 that uses the 𝑗th
mutation strategy. The scaling factor formula is shown in equation 13

𝐹𝑖,𝑗 = 𝑟𝑎𝑛𝑑𝑐𝑖,𝑗(𝜇𝐹𝑗 , 0.1) (13)

Where in this Cauchy distribution, 𝜇𝐹 𝑗 represents the location parameters, and the scale
parameter is 0.1. After the update, if 𝐹𝑖,𝑗 is greater than 1, 𝐹𝑖,𝑗 will be truncated to 1, and it will
be regenerated to a feasible value if it is smaller than 0. The initial value of 𝜇𝐹 𝑗 is set to 0.5 and
it is updated as follows:

𝜇𝐹𝑗 = (1− 𝑐) . 𝜇𝐹𝑗 + 𝑐 .𝑚𝑒𝑎𝑛𝐿(𝑆𝐹,𝑗) (14)

Where 𝑆𝐹,𝑗 is the set of 𝐹𝑖,𝑗 used by the 𝑗th mutation strategy and assists this strategy to
generate better solutions at generation g. 𝑚𝑒𝑎𝑛𝐿 is the Lehmer mean; it is calculated as below:

𝑚𝑒𝑎𝑛𝐿 =

∑︀
𝐹∈𝑆𝐹

𝐹 2∑︀
𝐹∈𝑆𝐹

𝐹
(15)

The crossover probability 𝐶𝑅𝑖,𝑗 of individual X𝑖 uses the mutation strategy 𝑗 is generated
according to a normal distribution. The crossover probability equation is defined as follows:

𝐶𝑅𝑖,𝑗 = 𝑟𝑎𝑛𝑑𝑛𝑖,𝑗(𝜇𝐶𝑅𝑗 , 0.1) (16)

Where in this normal distribution 𝜇𝐶𝑅𝑗 represents the mean value and 0.1 is the standard
deviation value. Initial value of 𝜇𝐶𝑅𝑗 is 0.5 and it is updated after each generation as:

𝜇𝐶𝑅𝑗 = (1− 𝑐) . 𝜇𝐶𝑅𝑗 + 𝑐 .𝑚𝑒𝑎𝑛𝐴(𝑆𝐶𝑅,𝑗) (17)

Where 𝑆𝐶𝑅,𝑗 is the set of 𝐶𝑅𝑖,𝑗 used by the 𝑗th mutation strategy and assists this strategy
to generate better solutions at generation 𝑔. 𝑐 is a positive constant within the range [0,1],
and 𝑚𝑒𝑎𝑛𝐴 is the arithmetic mean value of elements in the collection 𝑆𝐶𝑅,𝑗 . The schema of
AMPEDE is given in Algorithm1.

5. Experiment and Result Analysis

Our proposed algorithm is tested on the Comparing Continuous Optimizer [32] (COCO) platform.
This platform is used for the BBOB workshops. It uses 24 noiseless test functions for testing real
parameters optimization problems with single objective functions. According to their features,
the functions are partitioned into 5 sub-groups. The BBOB functions are shown in .

7
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Algorithm 1: pseudo code of AMPEDE

1 Set 𝜇𝐶𝑅𝑗 = 1.0, 𝜇𝐹𝑗= 0.5, Δ𝑓𝑗 = 0 and Δ𝑓𝑒𝑠𝑗 = 0 for each j = 1, ..., 4;
2 Initialize, NP, ng, for each j = 1,..., 4;
3 Initialize, the pop randomly distributed in the solution space;
4 Initial 𝜆𝑗 and set, 𝑁𝑃𝑗 = 𝜆𝑗 .NP;
5 Randomly partition pop into 𝑝𝑜𝑝1, 𝑝𝑜𝑝2, 𝑝𝑜𝑝3 and 𝑝𝑜𝑝4 with respect to their sizes.;
6 Randomly select a sub-population 𝑝𝑜𝑝𝑗 ( j = 1, 2, 3) and combine 𝑝𝑜𝑝𝑗 with 𝑝𝑜𝑝4. Let

𝑝𝑜𝑝𝑗 = 𝑝𝑜𝑝𝑗 ∪ 𝑝𝑜𝑝4 and 𝑁𝑃𝑗 = 𝑁𝑃𝑗 + 𝑁𝑃4 ;
7 Set g = 0;
8 while g → MaxG do
9 g = g + 1;

10 for j=1 →3 do
11 Calculate 𝜇𝐶𝑅𝑗 and 𝜇𝐹𝑗 ;
12 Calculate 𝐶𝑅𝑖,𝑗 and 𝐹𝑖,𝑗 for each individual 𝑋𝑖 in 𝑝𝑜𝑝𝑗 ;
13 Perform the jth mutation strategy and related crossover operators over

subpopulation 𝑝𝑜𝑝𝑗 ;
14 Set 𝑆𝐶𝑅,𝑗 = ∅ 𝑆𝐹,𝑗 = ∅;

15 for i=1 →NP do
16 if 𝑓(𝑋𝑖,𝑔) ≤ 𝑓(𝑢𝑖,𝑔) then
17 𝑋𝑖+1,𝑔 = 𝑋𝑖,𝑔 ;

18 else
19 𝑋𝑖+1,𝑔= 𝑢𝑖,𝑔 ;
20 𝐶𝑅𝑖,𝑗 → 𝑆𝐶𝑅,𝑗 ;
21 𝐹𝑖,𝑗 → 𝑆𝐹,𝑗 ;

22 pop=
⋃︀

𝑗=1...3 𝑝𝑜𝑝𝑗 ;
23 if mod(g,ng)==0 then
24 k= 𝑎𝑟𝑔

(︁
𝑚𝑎𝑥1<𝑗≤3

(︁
Δ𝑓𝑗

𝑛𝑔.𝑁𝑃𝑗

)︁)︁
; Δ𝑓𝑗=0;

25 Randomly partition pop into 𝑝𝑜𝑝1, 𝑝𝑜𝑝2, 𝑝𝑜𝑝3 and 𝑝𝑜𝑝4;
26 Let 𝑝𝑜𝑝𝑘 = 𝑝𝑜𝑝𝑘 ∪ 𝑝𝑜𝑝4 and 𝑁𝑃𝑘=𝑁𝑃𝑘+ 𝑝𝑜𝑝4;

5.1. Experiment Design

In the experiments, we compared our proposed approach (AMPEDE) to DE-PSO, GA, JADE,
CMAES, and MPEDE. Each of the algorithms was run on 15 instances of all the 24 functions in
dimensions 5, 10, 20. The evaluation budget was set to 104.𝑑 function evaluations for each run.
Feasible solutions during the execution are within [-5, 5]. Running algorithms is continued until
a stop criterion is satisfied: reaching the maximum number of function evaluations or getting a
solution close to the best known solution of the problem with a precision greater than 10−8 .
Many variants with different parameters values are tested in our experiments. The parameters
values used by the best variant are: population size 𝑁𝑃= 150, generation gap 𝑛𝑔=30 which is
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1 Separable Functions

f1: Sphere function
f2: Ellipsoidal Function
f3: Rastrigin Function
f4: Buche-Rastrigin Function
f5: Linear Slope

2 Low or moderate conditioning

f6: Attractive Sector Function
f7: Step Ellipsoidal Function
f8: Rosenbrock Function original
f9: Rosenbrock Function rotated

3 Unimodal with high conditioning

f10: llipsoidal Function
f11: Discus Function
f12: Bent Cigar Function
f13: Sharp Bridge Function
f14: Different Power Function

4 Adequate global structure with Multi-modal

f15: Rastrigin Function
f16: Weierstrass Function
f17: Schaffers F7 function
f18: Schaffers F7 Functions moderately ill-conditioned
f19: Composite Griewank-RosenbrockFunction F8F2

5 Multi-modal function with weakglobal structure

f20: Schwefel Function
f21: Gallagher’s Guassian 101-me PeaksFunction
f22: Gallagher’s Guassian 21-hi PeaksFunction
f23: Katsuura Function
f24: Lunacek bi-Rastrigin Function

Table 1
Current BBOB Functions

used to specify the best mutation strategy periodically, proportion between indicator population
and entire population 𝜆1 (as 𝜆1=𝜆2=𝜆3)=0.3, initial value of 𝜇𝐶𝑅𝑗=1.0 and 𝜇𝐹𝑗 =0.5. The value
of p in the “Current-to-mpbest/1” is 0.1.

5.2. Result Analysis

Our experimental results are presented in Figure1 and Figure2. Despite the global superiority of
CMA-ES and JADE, results obtained show that AMPEDE has a good performance in separable
functions, functions with low or moderate conditioning, functions with high conditioning and
unimodal, especially f19 where AMPEDE shows better convergence rate and outperformed
all algorithms like GA, JADE, CMAES, MPEDE in 5D. According to the results presented in
Figure 1 and Figure2, the changes we made in MPEDE were very useful. As we see AMPEDE
has an excellent performance compared to MPEDE in all the benchmark function in 5D and
10D. Despite that AMPEDE suffers in dealing with Multi-modal functions with adequate global
structure like f15,f16,f19 in 10D and the Multi-modal functions with weak global structure like
f23 and f24.

9
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Figure 1: Bootstrapped empirical cumulative distribution of the number of objective function evaluations
divided by dimension (FEvals/DIM) for 51 targets with target precision in 10[−8] for all functions and
subgroups in different dimensions. As reference algorithm, the best algorithm from BBOB 2009

6. Conclusion

In this paper, we have presented a new DE variant, named amelioration multipopulation
ensemble DE (AMPEDE). AMPEDE is an improvement of MPEDE where we have introduced a
new ensemble of mutation strategies instead of the grouping of mutation strategies in MPEDE

10
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Figure 2: Expected running time (ERT in number of function evaluations) divided by the respective best
ERT measured during BBOB-2009 (given in the respective first row) for different Δ f values in dimension
5. The central 90% range divided by two is given in braces. The median number of conducted function
evaluations is additionally given in italics, if ERT(10−7) = ∞.# succ is the number of trials that reached
the final target fopt + 10−8. Best results are printed in bold
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and proposed a new mutation strategy.
Mutation strategies used in AMPEDE are first DE/rand/1 , second target-to-rand/1 , third

current-to-mpbest which is a new mutation strategy that we have proposed. In current-to-
mpbest individuals are attracted to the center of gravity of the pbest solutions instead of being
attracted to the a solution chosen randomly from the pbest solutions. Based on the results of
our experiments, current-to-mpbest outperforms current-to-pbest.

IMPEDE is compared to MPEDE and others algorithms on BBOB. The experimental results
show that AMPEDE provides an obvious performance improvement in comparison to the
original MPEDE especially in 2D, 3D, 5D and 20D.

In our future work, we plan to add an adaptive strategy to AMPEDE to enhance its perfor-
mance and to solve more optimization problems. In addition, we intend to combine AMPEDE
with other existing metaheuristics to improve our results.
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