
Focal Methods for C/C++ via LLVM: Steps Towards
Faster Mutation Testing
Sten Vercammen1, Serge Demeyer1,2 and Lars Van Roy1

1University of Antwerp, Middelheimlaan 1, 2020 Antwerp, Belgium
2Flanders Make, Oude Diestersebaan 133, 3920 Lommel, Belgium

Abstract
Mutation testing is the state-of-the-art technique for assessing the fault detection capacity of a test suite.
Unfortunately, it is seldom applied in practice because it is computationally expensive. In this paper we
explore the use of fine-grained traceability links at the method level (named focal methods), to drastically
reduce the execution time of mutation testing, by only executing the tests relevant to each mutant. In
previous work for Java programs we achieve drastic speedups, in the range of 530x and more. In this
paper we lay the foundation for identifying such focal methods under test in C/C++ programs by relying
on the LLVM compiler infrastructure. A preliminary investigation on an 3,5 KLOC C++ project illustrates
that we can correctly identify the focal method under test for 47 out of 61 tests,
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1. Introduction

Software testing is the dominant method for quality assurance and control in software engineer-
ing [1, 2], established as a disciplined approach already in the late 1970’s. Originally, software
testing was defined as “executing a program with the intent of finding an error” [3]. In the last
decade, however, the objective of software testing has shifted considerably with the advent of
continuous integration [4]. Many software test cases are now fully automated, and serve as
quality gates to safeguard against programming faults.

Test automation is a growing phenomenon in industry, but a fundamental question remains:
How trustworthy are these automated test cases? Mutation testing is currently the state-of-
the-art technique for assessing the fault-detection capacity of a test suite [5]. The technique
systematically injects faults into the system under test and analyses how many of them are
killed by the test suite. In the academic community, mutation testing is acknowledged as the
most promising technique for automated assessment of the strength of a test suite [6]. One of
the major impediments to industrial adoption of mutation testing is the computational costs
involved: each individual mutant must be deployed and tested separately [5].

For the greatest chance of detecting a mutant, the entire test suite is executed for each and
every mutant [7]. As this consumes enormous resources, several techniques to exclude test
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cases from the test suite for an individual mutant have been proposed. First and foremost, test
prioritisation reorders the tests cases to first execute the test with the highest chance to kill the
mutants [8]. Second, program verification excludes test cases which cannot reach the mutant
and/or which cannot infect the program state [9]. Third, (static) symbolic execution techniques
identify whether a test case is capable of killing the mutant [10, 11]. This paper explores an
alternative technique: fine-grained traceability links via focal methods [12].

By using focal methods, we can establish a traceability link at method level between produc-
tion code and test code. This allows us to identify which test cases actually test which methods
and vice versa, hence drastically reduce the scope of the mutation analysis to a fraction of the
entire test suite. We refer to this as goal-oriented mutation testing, and argue that the approach
could be used to selectively target the parts of a system where mutation testing would have the
largest return on investment.

In previous work, we estimated on an open source project (Apache Ant) that such goal-
oriented mutation testing allows for drastic speedups, in the range of 530x and more [13]. In this
paper we lay the foundation for identifying such focal methods under test in C/C++ programs
by relying on the LLVM intermediate code as emitted by the CLANG compiler infrastructure.

2. Focal Methods under Test

Method invocations within a test case play different roles in the test. A majority of them are
ancillary to a few ones that are intended to be the actual (or focal) methods under test. More
particularly, unit test cases are commonly structured in three logical parts: setup, execution,
and oracle. The setup part instantiates the class under test, and includes any dependencies on
other objects that the unit under test will use. This part contains method invocations that bring
the object under test into a state required for testing. The execution part stimulates the object
under test via a method invocation, i.e., the focal method of the test case [12, 14]. This action is
then checked with a series of inspector and assert statements in the oracle part that controls
the side-effects of the focal invocation to determine whether the expected outcome is obtained.

Algorithm 1 represents a unit test case of a savings account where the intent is to test the
withdraw method. For this, an account to test the withdraw method must exist. Thus, an
account is created on line 3 (in Algorithm 1). To deposit or withdraw money to/from an account,
the user must first authenticate himself (line 4). To make sure that the account has money
to withdraw, a deposit must be made (line 5). If the savings account has a sufficient amount
of money, the withdraw method will withdraw the money from the account (line 7), and the
remaining amount of money in the savings account should be reduced. The latter is verified
using the assert statement on line 11.

In the example, the intent clearly is to test the withdraw method. This method is the focal
method as it is the last method that updates the internal state of the 𝑎𝑐𝑐𝑜𝑢𝑛𝑡 object. The expected
change is then evaluated in the oracle part by observing the result of the focal method (line 10),
as well with the help of the 𝑔𝑒𝑡𝐵𝑎𝑙𝑎𝑛𝑐𝑒 method which only inspects the current balance.

Therefore, focal methods represent the core of a test scenario inside a unit test case. Their
main purpose is to affect an object’s state that is then checked by other inspector methods
whose purpose is ancillary.



Algorithm 1 Exemplary Unit Test Case for Money Withdrawal
1: function testWithdraw
2: ▷ Setup: setup environment for testing
3: 𝑎𝑐𝑐𝑜𝑢𝑛𝑡 ←createAccount(𝑎𝑐𝑐𝑜𝑢𝑛𝑡, 𝑎𝑢𝑡ℎ)
4: 𝑎𝑐𝑐𝑜𝑢𝑛𝑡.authenticate(𝑎𝑢𝑡ℎ)
5: 𝑎𝑐𝑐𝑜𝑢𝑛𝑡.deposit(10)
6: ▷ Execution: execute the focal method
7: 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 ← 𝑎𝑐𝑐𝑜𝑢𝑛𝑡.withdraw(6)
8: ▷ Oracle: verify results of the method
9: 𝑏𝑎𝑙𝑎𝑛𝑐𝑒 ← 𝑎𝑐𝑐𝑜𝑢𝑛𝑡.getBalance()

10: assertTrue(𝑠𝑢𝑐𝑐𝑒𝑠𝑠)
11: assertEqual(𝑏𝑎𝑙𝑎𝑛𝑐𝑒, 4)

2.1. Limiting Test Scope for Mutation Testing

To adopt the focal method under test heuristic for mutation testing, we assume that a given
test method does not suffer from the eager test code smell [15]. This is good practice anyway
as it increases the diagnosability of the test cases. When this assumption holds, a test method
𝑡𝑒𝑠𝑡𝐹 is specifically designed to test a method 𝑓 and not a series of other methods (𝑎, 𝑏, and 𝑐). If
method 𝑓 would be faulty (i.e. include a mutant), then 𝑡𝑒𝑠𝑡𝐹 is responsible to detect this. If 𝑓
calls methods 𝑎, 𝑏, and 𝑐, then 𝑡𝑒𝑠𝑡𝐴, 𝑡𝑒𝑠𝑡𝐵, and 𝑡𝑒𝑠𝑡𝐶 are responsible for detecting faults in their
respective methods. Therefore, 𝑡𝑒𝑠𝑡𝐹 is not required to detect a fault if the fault is inside method
𝑎, 𝑏, or 𝑐. We thus argue that given a faulty method 𝑓, it should suffice to only execute those test
cases which are responsible for testing the method 𝑓.

Under the premise that it is the responsibility of the (few) test cases that test a focal method 𝑓
to catch all faults in the method 𝑓, we can assume that it suffices to limit the test scope to these
selected test cases when we are killing mutants in method 𝑓. We assume even if we exclude
those test cases that only happen to call a method 𝑓 in one of its routines, there ought to be a
simpler test case which tests the method 𝑓 as a focal method that ought to also reveal that the
method is faulty as that test case bears the responsibility to test the method and not the more
complex test case.

Applied to mutation testing, this means that if a mutant is located in method 𝑓, we only need
to execute these (few) test cases that test the focal method under test 𝑓.

3. The LLVM Compiler Infrastructure

The original tool for identifying the focal method under test was developed for java programs [12,
14]. No such tool exists for C/C++ hence we set out to investigate whether we can adopt the
LLVM Compiler Infrastructure to expose the test-to-method relationship. LLVM is a set of
compiler and toolchain technologies which is generally used to provide an intermediary step in
a complete compiler environment. The idea is that any high level language can be converted to
an intermediary language. This intermediary language will then be further optimised using an
aggressive multi-stage optimisation provided within LLVM to then be converted to machine-



dependent assembly language code [16].
Specifically, for this research we focus on the intermediary language called LLVM IR, where

IR stands for Intermediary Representation. This is a low-level programming language, similar
to assembly, that is easily understandable and readable. Most importantly for our analysis,
the LLVM IR has explicit instructions marking the reading and writing a given variable. This
implies that it is easy to distinguish getter functions (which only read the variable, hence are
seldom focal methods under test) from mutator functions (which write to a given variable,
hence are often good candidates for serving as a focal method under test). Secondly, LLVM IR
disambiguate higher level programming constructs like function overloading. Indeed, many high
level programming languages have the concept of function overloading, where the same function
name can have different signatures for the same function name. It is not always apparent which
overload of a given function will be used and it is therefore very hard to properly disambiguate
what will happen. This in contrast to LLVM IR where every function name is unique, which is
a clear benefit when establishing fine-grained test-to-method relationship.

LLVM obviously also comes with some disadvantages. First of all, the LLVM files can only be
linked with other LLVM files, which on its own implies that we will need the source of every
library used within the project. Secondly, LLVM IR suffers from a slight loss in context. Some
high-level code constructs are not present in LLVM IR code as these are not required for the
optimisation for which LLVM IR is intended. One example –importantly for our analysis– is
the loss of public or private distinction.

4. Approach

Figure 1: Schematic Representation to Identify Focal Methods
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The following section explains the approach used in the process of identifying the focal
methods, as shown in Figure 1. The approach starts from an LLVM IR representation of the
project, and results in a mapping of test methods to their corresponding focal methods under
test.

4.1. Extracting Access Modifiers

As LLVM IR has no information about the access modifiers, we need to extract it beforehand.
For this, we use the “clang-query” tool. For each file we store all its methods together with its



acces modifier. We use this map to identify whether a method is public or private and how
we need to act on it.

4.2. Identifying Tests

There are three major types of methods we consider for this analysis, test, assertion and source
methods. A test method is distinguished from a source method by the naming convention used
by the testing framework, which can simply be passed as an argument by the user. This is a
necessary language dependent link as there is no fail proof way to distinguish test functions
from tested functions.

Once the test methods are distinguished from all other methods, we enumerate all test
methods. For each method we extract all relevant statements, in particular including all function
invocations (where overloaded functions are disambiguated) and all instructions related to
memory modifications.

4.3. Identify Assertions

To differentiate between assertions and source methods, we require a secondary input from the
user, being the naming convention for assertions. These are normally implied by the testing
framework used. This is usually a common prefix given to all assertion functions, eg. assert
<assertion type> or use the class in which all assertions are defined, such as AssertionResult for
the GTest framework.

4.4. Extract Variable Under Test

Before we can identify the focal methods for each test, we need to identify the variable under
test (VUT). These are the values that are being verified in te assert statements, which we can
extract these from the LLVM IR. Often these assert statements compare the VUT against a
constant. Then it is easy to know which on of the two is our actual VUT. Other times, it is less
obvious, as it evaluates against a variable from another class, In the latter case, we simply track
both variables.

4.5. Identify Focal Methods

We identify the focal method by tracking the VUT throughout the invoked methods. During
this process, any modification of the memory of the tracked variable will be considered a
mutator function, hence a candidate focal method under test. It is now that the differentiation
between public and private methods becomes important. We know that all candidate focal
methods within the scope of the test suite are public. If one of these methods directly changes
the VUT, then we label that method as a mutator. If the method does not directly change the
VUT, but only invokes one or more public methods, then we don’t descend deeper into the call
three according to the “no eager tests” assumption. If the method invokes one or more private
methods, then we need to analyse these private method, as one of them can become the focal
method, as in principle we cannot call private methods directly. We inspect all private methods



within private methods, but not public methods within private methods, as each public method
should be tested by its own test.

For our analysis to work with libraries for which the source code is not given, we define
a third class of invocations: uncertain. Method invocations labelled uncertain indicate that
the definition of the method is not known due to absence of the actual implementation. Our
approach resolves this by marking the function as being a potential focal method, but not the
only focal method. The implication for a mutation analysis is that we will have slightly more
tests linked to a mutant than when we would know the accessor modifier of the method.

4.6. Filter

Finally, an optional focal method conformance filter can be used. Without a means for filtering,
functions defined within language specific libraries would be considered as being potential
focal methods, which greatly reduces the effectiveness of the tool. For example, in C++, an
assignments of string would be replaced by an assignment function defined within the standard
C++ library. This function will never be the intended function under test, but considering a case
where strings are compared in an assertion, the last function that will be used to assign said
string to a variable will be this string assignment function defined within the std namespace.
To prevent this function from being marked as the focal method, analysis of C++ code would
benefit greatly from having the std namespace filtered from the set of focal methods. In our
analysis, we would then still consider std library functions as functions leading to a mutation,
but not as the focal methods itself.

5. Proof-of-Concept and Findings

We did a preliminary investigation with our proof-of-concept tool on an extended version1 of
the Stride project (version 1.18.062). The details of which are in Table 1.

Table 1
Details Stride Project

Lines of code 3,776,986
Number of functions 54,811
Number of test functions 222

This project was chosen because it is written in a layered manner, where only the most outer
layer is accessible. The classes located on the most outer layer are responsible for all classes
directly below them, the classes below the outer classes will be responsible for the classes below
those and so on. This structure is interesting, as it implies that test cases testing lower layers
must traverse several other classes before arriving at the actual mutation which we want to
test, making it an ideal candidate for our approach, as the method under test of those tests will
be a private function.

1https://github.com/larsvanroy/stride
2https://github.com/broeckho/stride



A manual inspection of the test code revealed that of the 222 tests, 77 serve as utility tests, 59
as i/o tests, 61 as population and generation tests and 25 as scenario tests. We list these in Table
2. Note that considering the size of the project, the test size may seem very limited, however,
many of the functionalities part of the project are not testable on their own (as one would do
with a unit test), due to the design choices made.

For now, we focused on the population and generation tests, as these adhere to the “no eager
tests” assumption. More importantly, these 61 tests are tests in which the method under test is
a private function in a lower layer. This selection allows us to more precisely determine the
percentage of focal methods we can correctly identify in case a private method is the method
under test. If we would not make this selection, the majority of the tests would be tests where
the focal method is public. These tests are less interesting for our approach as we already
demonstrated that the approach is capable of detecting the mutations in such instances.

Furthermore, a part of the utility tests were tests in which an inspector method was tested.
Such tests directly test getters and might not even contain any mutations at all. Our approach
cannot currently identify such tests correctly. We also disregarded scenario tests, as our approach
is specifically intended to identify the method under test in unit tests, as scenario tests often
test a list of methods, rather than one single method. We will have to investigate later whether
our approach can be used for scenario tests.

Table 2
Test classification Stride project

Utility tests 77
Input/Output tests 59
Population and generation tests 61
Scenario tests 25

For 47 of our 61 tests, we identified the correct focal methods. Of the remaining 14 tests,
8 were misclassified because they corresponded with “no throw assertion tests”. Such tests
only confirm that no exception is thrown when the object under test is manipulated. For the
remaining 6, we identified the wrong focal method because the variable under test (VUT) where
manipulated via pointers and this was not yet included in our LLVM IR Analysis.

5.1. Current Limitations

Library functions will be labeled as uncertain. This can negatively impact the speedup of a
mutation testing analysis using focal methods.

Inspector test are currently not supported. We should be able to remedy this by taking
into account that when no mutators are present, the last accessor method of the VUT, i.e. the
inspector method should be considered as the focal method.

No throw assertion tests are currently not supported as they do not have actual VUTs. We
should however be able to detect these scenarios. We will need to investigate how or which
mutants we best link to them.



Pointer support in LLVM is something we have not yet implemented into our detection
algorithm. Adding this should allow us to more accurately detect the focal methods.

5.2. Future Work

This proof-of-concept illustrates that it is feasible to implement the focal method under test
heuristic on top of the LLVM compiler infrastructure. However, some extensions are needed
to improve the accuracy of the tool. Most importantly, we need to expand the analysis to deal
with assertions and pointers. Next, we need to automatically assess whether a given test case
indeed satisfies the “no eager test” assumption. If we see that the assumption does not hold
for a given test case, we should just revert to full scope mutation analysis. Last but not least,
we need to test the tool on a larger scope of projects to see whether we can achieve similar
speed-ups as what we estimated on java projects.
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