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Abstract
The construction of intuitionistic fuzzy sets is a di!cult task. Some approaches have been proposed

in the literature and they have been used successfully in some application domains. However, these

approaches do barely take into account the representativeness of the data used to build the intuitionistic

fuzzy set. In this paper, a new approach is proposed to build intuitionistic fuzzy sets (IFS). This approach

is based on the use of a representativeness degree of the data. This approach enables to build an IFS

with an intuitionistic fuzzy index that is a good indicator of the lack of knowledge associated with the

data that make it a good approach to be used in a Machine learning setting.
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1. Introduction

(Atanassov) Intuitionistic Fuzzy Sets (IFS) [1] have been proposed to represent a kind of lack of

knowledge in the membership of elements to a set. This lack of knowledge is valued through

the margin of hesitancy. Similarly, such a representation of a lack of knowledge exists with the

Interval-Valued Fuzzy Sets that o"er a representation close to the IFS one [2]. This capacity to

associate such an information about the lack of knowledge to data is a powerful property of

this representation model that #nd a natural application domain in Machine learning.

Indeed, in Machine learning the aim is to build a model from a given training set (the inductive

reasoning approach) with the underlying hypothesis that this training set is completely repre-

sentative of the whole universe of the data. However, it is well-known that such an induction

process is often not applicable with great success in real-world problems: ”From the early days,

theoreticians of machine learning have focused on the iid assumption, which states that the test

cases are expected to come from the same distribution as the training examples. Unfortunately, this

is not a realistic assumption in the real world. [. . .] As a practical consequence, the performance

of today’s best AI systems tends to take a hit when they go from the lab to the "eld.” [3].

Using IFS to tackled this problem in Machine learning could be a very promising approach

and obtained some success till today [4, 5]. However, a weakness of the IFS approach is still

the construction of the IFS from a dataset. Even if some approaches exists [6, 7], they have not

been de#ned expressly to be used in a Machine learning setting.
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In this paper, we propose a new approach to construct IFS from a dataset that takes care of the

speci#city of the Machine learning setting. Firstly, in Section 2 a recall of existing approaches

is done. Secondly, in Section 3, the proposed approach is introduced. Thirdly, in Section 4, an

experimental study is presented to bring out some main properties of the proposed approach.

Finally, a conclusion and some future work are presented.

2. Construction of intuitionistic fuzzy sets: existing approaches

In this section, we focus on existing approaches to build IFS. The following notations are used.

Let U = {u1, . . . , un} be a discrete universe and letA be a subset of U , and letP = {p1, . . . , pn}
be a probability distribution on U with 0 ≤ pi+1 < pi ≤ 1 and

∑n
i=1

pi = 1.
The question that should be answered is “how to de"ne the intuitionistic fuzzy set A of U

from P ?” There does not exist a lot of approaches in the literature to answer this question, we

present hereafter the 2 main ones. First of all we present the approach based on the de#nition

of a mass assignment [7], and afterwards we present the approach by [6] based on the use of an

intuitionistic fuzzy generator.

2.1. Basic recalls

Intuitionistic fuzzy sets have been introduced by Atanassov [1].

An IFS A of U is de#ned as: A = {(u, µA(u), νA(u)) |u ∈ U} with µA : U → [0, 1] and
νA : U → [0, 1] such that for all u ∈ U , 0 ≤ µA(u) + νA(u) ≤ 1. The values µA(u) and νA(u)
are, respectively, the membership degree and the non-membership degree of u to A.

The margin of hesitancy (or intuitionistic fuzzy index) of u to A is de#ned as πA(u) = 1 −
(µA(u) + νA(u)), it informs about the lack of knowledge about A when it exists. When the

margin of hesitancy according toA is equal to zero for all u, that is to say when µA(u)+νA(u) =
1, ∀u ∈ U , then A is a Zadeh’s fuzzy set.

2.2. The mass assignment approach

This approach has been introduced in [7] and detailed also in [8]. It has been used in Machine

learning applications presented in [9] and [5].

2.2.1. Mass assignment

From a probability distribution P , a mass assignment mA of a fuzzy set A of U can be de#ned

thanks to the mass assignment theorem introduced in [10] that enables such a construction:

mA(Fi) = µi − µi+1 for i = 1, . . . , n− 1
mA(Fn) = µn

where Fi = {u ∈ U | p(u) ≥ pi} and

µi = |Fi|pi +
n∑

j=i+1

(|Fj | − |Fj−1|)pj .



2.2.2. Algorithm to build an IFS from a mass assignment

In [7], the building of an IFS A = {(u, µA(u), νA(u)) |u ∈ U} could be done from two

independent probability distributions on U : P+ the probability distribution connected to the

membership of the elements of U to the IFS A, and P− the probability distribution connected

to their non-membership to the IFS A. The process is done according to the following steps [7]:

1. On the one hand, the mass assignmentm+

A is build from P+ with the mass assignment

theorem (see Section 2.2.1). As stated in [7]: m+

A(u) is the possibility that u has the value

m+

A(u) and thus, it is considered that m+

A(u) = µA(u) + πA(u).

2. On the other hand, the mass assignment m−
A is build from P− with the mass assignment

theorem. m−
A(u) is the possibility that u has the valuem−

A(u) and it is considered that

m−
A(u) = νA(u) + πA(u).

3. Finally, the aggregation of m+

A and m−
A enables to obtain µA and νA taking into account

that, for all u ∈ U , µA(u) + νA(u) + πA(u) = 1, it gives m+

A(u) +m−
A(u) = 1 + πA(u)

and thus for all u ∈ U , πA(u) = m+

A(u) +m−
A(u)− 1 that leads to the determination of

the values µA(u) and νA(u).

By means of the above process, the IFS A ⊆ U can be completely de#ned from P+ and P−.

2.2.3. Discussion

This approach to de#ne the IFS A could have the drawback to produce a negative value for

πA(u) as there is no guarantee that m+

A(u) +m−
A(u) ≥ 1 for all u ∈ U . Indeed, an IFS could

not necessarily be build from any probability distributions and IFS could not be a convenient

model in this case.

However, one solution when facing a negative value for πA(u) is to set it to 0, it is the solution
that has been used in the experimental part of this paper.

In a Machine learning setting, this approach to de#ne the IFS A is interesting because it does

not need any hyper-parameter to be set.

2.3. The fuzzy generator approach

The fuzzy generator approach to build an IFS that is described in this section has been proposed

in [6]. This approach has been mainly used in image segmentation [11] [4], or in clustering

problems [12] to cite some examples of its use.

2.3.1. Intuitionistic fuzzy generator

The de#nition of an intuitionistic fuzzy generator (IFG) has been introduced in [6]: a function

Φ : [0, 1] → [0, 1] is called an intuitionistic fuzzy generator if Φ(x) ≤ 1− x for all x ∈ [0, 1].
An example of such a generator is:

N(x) =
1− x

1 + λx
, with λ > 0

where N(0) = 1 and N(1) = 0.



2.3.2. Construction of an IFS by means of an IFG

An IFS can be de#ned from a fuzzy set by means of an IFG [6]: let A = {(u, µA(u)) | u ∈
U} be a fuzzy sets on U , and let Φ be an intuitionistic fuzzy generator, then the set Ã =
{(u, µA(u),Φ(µA(u))) | u ∈ U} is an intuitionistic fuzzy set on U .

2.3.3. Discussion

In [4] and in [12], the IFG presented in Section 2.3.1 is used to build the IFS, but another IFG

can be used, see for instance [11].

In a Machine learning setting, this approach to build IFS is very promising, in particular

in non-supervised Machine learning problems. However, the choice of at least one hyper-

parameter, the IFG, should be done. Moreover, if the IFG given in Section 2.3.1 is used, it is also

mandatory to choose a good value for λ.

3. A new approach to build an IFS

The proposed approach is dedicated to the construction of an IFS in a machine learning setting

(but not limited to this kind of application domain). As a consequence, we consider that the

information provided to build the IFS is not only probability distributions but a complete set of

instances separated into two classes.

Let X be a universe of values and U = {u1, . . . , un} ⊆ X be a discrete subset of X , and let

C = {+,−} be a set of classes over the elements of X . For i = 1, . . . , n, let n+

i be the number

of instances of ui that are associated with class +, and let n−
i be the number of instances of

ui that are associated with class −. We denote by n+ =
∑n

i=1
n+

i and n− =
∑n

i=1
n−
i and we

assume in the following that n+ 6= 0 and n− 6= 0. Moreover, we denote by ni = n+

i + n−
i ,

∀i = 1, . . . , n and we assume that ni 6= 0, ∀i = 1, . . . , n.
In the following, a training set is the tuple 〈U , C, (n+

1
, . . . , n+

n ), (n
−
1
, . . . , n−

n )〉.
The set of values n+

1
, . . . , n+

n (resp. n−
1
, . . . , n−

n ) de#nes a probability distribution P+

(resp. P−) over U such that P+(ui) =
n+

i

n+ (resp. P−(ui) =
n−

i

n−
).

These two probability distributions provide us with information about the elements of U and

their membership (P+) or non-membership (P−) to a set A ⊆ U that we want to build.

Our approach aims at de#ningA as an intuitionistic fuzzy set of U according to the knowledge

that is provided by a training set. This approach is composed of two main steps. First of all,

from the training set two corresponding weighted distributions are built taking into account

the representativeness of the training set. Secondly, the IFS A is built using these two weighted

distributions. The process is detailed in the following.

3.1. Representativeness and weighted distributions

Given a training set TS = 〈U , C, (n+

1
, . . . , n+

n ), (n
−
1
, . . . , n−

n )〉, our approach aims at building

an IFS A over U . As usual in machine learning, the training set provides only a restricted view

about X , thus this brings out the question of its representativeness.



3.1.1. Representativeness degree

To highlight the representativeness of a training set, we introduce the use of a degree that

should be set either by a user that knows the problem under study, or automatically by means

of an objective decision process. This degree highlights how the training set can be considered

as su!ciently representative to infer knowledge that could be generalised to X .

The representativeness degree ρ ∈ [0, 1] of the training set 〈U , C, (n+

1
, . . . , n+

n ), (n
−
1
, . . . , n−

n )〉
is such that:

• ρ = 0 when the training set is not representative of X . In this case, the knowledge it

provides are not usable for any elements of X not in U .
• ρ = 1when the training set is completely representative ofX . In this case, the knowledge

it provides is completely usable for any elements of X .

• the greater ρ, the more representative the training set.

The representativeness degree evaluates how much we could be con#dent in the fact that

the probability distributions induced by (n+

i )i=1,..,n and (n−
i )i=1,..,n re$ects the respective

probability distributions on X . This representativeness degree is either given by the user

that appreciate how the knowledge provided by U could be generalised to X , or it could be

determined automatically (to be studied in future work).

3.1.2. Lack-of-knowledge degree

The representativeness degree is an information about the training set. It could be used to

weight the information associated with any example u ∈ U provided in the training set.

De!nition 1. Let TS = 〈U , C, (n+

1
, . . . , n+

n ), (n
−
1
, . . . , n−

n )〉 be a training set ofX , and ρ ∈ [0, 1]
be the representativeness degree of TS. The lack-of-knowledge degree of ui ∈ U is de"ned as

l(ui) = ρ ∗ ni

nmax
with nmax = sup{i=1,...,n} ni.

The lack-of-knowledge degree takes into account not only the representativeness of the

training set, but also, for a given property (membership or non-membership) the number of

elements that possess this property. This is represented by the use of nmax = sup{i=1,...,n} ni to

weight the value ni. This degree enables us to take into account the representativeness of U to

reduce the in$uence of an example used for the construction of the IFS A from P+ and P−.

It is easy to see that, for all i = 1, . . . , n, l(ui) ∈ [0, 1] as ρ ∈ [0, 1] and 0 ≤ ni

nmax
≤ 1.

3.1.3. Weighted probability distributions

The lack-of-knowledge degree is used to weight the in$uence of the information related to an

example u with regard to the global information brought out by the training set.

De!nition 2. LetTS = 〈U , C, (n+

1
, . . . , n+

n ), (n
−
1
, . . . , n−

n )〉 be a training set ofX , and ρ ∈ [0, 1]
be the representativeness degree of TS. The weighted probability distributions over U related to

the classes C are de"ned ∀i = 1, . . . , n as: P+
w (ui) = l(ui)

n+

i

ni
and P−

w (ui) = l(ui)
n−

i

ni
.

It is easy to see that, for all i = 1, . . . , n, as l(ui) ∈ [0, 1] and
n+

i

ni
∈ [0, 1] (resp.

n−

i

ni
∈ [0, 1]),

we have P+
w (ui) ∈ [0, 1] (resp. P−

w (ui) ∈ [0, 1]).



3.2. Construction of an IFS

From a training set, associated with a representativeness degree, it is possible to de#ne an

intuitionistic fuzzy set taking into account the information related to the classes: class + repre-

senting the information related to the membership of elements to A and class − representing

the information related to their non-membership to A.

De!nition 3. LetTS = 〈U , C, (n+

1
, . . . , n+

n ), (n
−
1
, . . . , n−

n )〉 be a training set ofX , and ρ ∈ [0, 1]
be the representativeness degree of TS. The intuitionistic fuzzy set A is de"ned as

A = {(u, P+
w (u), P−

w (u)) | u ∈ U}.

Indeed, it is easy to see that A is an IFS as we have for all ui ∈ U :

• P+
w (ui) ∈ [0, 1] and P−

w (ui) ∈ [0, 1] (see Section 3.1.3);

• P+
w (ui) + P−

w (ui) = l(ui)
n+

i

ni
+ l(ui)

n−

i

ni
= l(ui) and 0 ≤ l(ui) ≤ 1 (see Section 3.1.2).

4. Experimental study

A preliminary experimental study is presented in this section to study the in$uence of the

representativeness degree, and to compare the IFS built by means of each of the presented

approaches.

The experiments are conducted on a training set proposed in [7]. The set U contains 10
elements associated with di"erent sizes ni. In [7], two probability distributions on U are

given to represent the membership and the non-membership to the IFS A to build. In our

experiments, these probability distributions have been used to generate the values (n+

1
, . . . , n+

n ),
and (n−

1
, . . . , n−

n ) by considering that the total size of the set + (resp. −) is 1000 elements. The

resulting training set is presented in the 2 #rst columns in Table 1.

A global analysis of this training set leads us to consider that, among the elements u, there

are some elements that are more representative than others. For instance, u1 has only a size of

125 where u5 is associated with a size of 351. Indeed, this highlights the fact that we could be

less con#dent in the decision that could be drawn from this training set for u1 than for u5.

4.1. Comparison of approaches

In Table 1, we present the IFS built by each of the 3 approaches presented in this paper: our

proposed approach with ρ = 1 (complete representativeness of the training set), the approach

by [7], and the approach by [6] with λ = 0.5. Concerning this last approach, as it takes into

account only one probability distribution, the given IFS is obtained with only the information

related to +.

The three IFS built by these three approaches are very di"erent. It should be seen that

• the IFS built by [6] does not provide a great hesitancy (intuitionistic indices π) unlike the

other 2 approaches. In this approach, this hesitancy is related to the choice of λ, but it

takes into account only one information from the training set: the probability distribution

associated with the membership of the elements.



Size Proposed app. (ρ = 1) Approach by [7] Approach by [6] (λ = 0.5)
+ - µA νA πA µS νS πS µB νB πB

u1 0 125 0.0 0.356 0.644 0.0 0.994 0.006 0.0 1.0 0.0

u2 0 128 0.0 0.365 0.635 0.0 1.0 0.0 0.0 1.0 0.0

u3 34 117 0.097 0.333 0.57 0.038 0.796 0.166 0.034 0.934 0.032

u4 165 80 0.47 0.228 0.302 0.26 0.272 0.468 0.165 0.717 0.118

u5 301 50 0.858 0.142 0.0 0.5 0.0 0.5 0.301 0.537 0.162

u6 301 50 0.858 0.142 0.0 0.5 0.0 0.5 0.301 0.537 0.162

u7 165 80 0.47 0.228 0.302 0.26 0.272 0.468 0.165 0.717 0.118

u8 34 117 0.097 0.333 0.57 0.038 0.796 0.166 0.034 0.934 0.032

u9 0 128 0.0 0.365 0.635 0.0 1.0 0.0 0.0 1.0 0.0

u10 0 125 0.0 0.356 0.644 0.0 0.994 0.006 0.0 1.0 0.0

Table 1

Comparison of the 3 approaches.

• the IFS built by [7] provides an hesitancy, however, it does not take into account the

representativeness of each element.

• the IFS built by the proposed approach highlights the importance of the information

provided on each element. This leads to an hesitancy more important for u1 than for u5
for instance.

4.2. Influence of the representativeness degree

In order to study the in$uence of the representativeness degree, the proposed approach has

been used with di"erent values of this degree for the same training set. The training is similar

to the one detailed in the previous section. The resulting IFS obtained with the approach used

with increasing values of the representativeness degree ρ is presented in Table 2. This table

should be completed with the result for ρ = 1 given in Table 1.

These results show the great in$uence of the representativeness degree in the resulting IFS,

this in$uence can be highlighted by the values of the intuitionistic indices π of the resulting

IFS: the greater the representativeness degree, the lower the values of the intuitionistic indices.

This perfectly highlights the behaviour of the approach to build an IFS that is needed in

a Machine learning setting: the intuitionistic fuzzy index is a representation of the lack of

knowledge that is associated with the membership of an element u to the IFS A [13], therefore

the representativeness of the training set induces the lack of knowledge that is associated with

the data belonging to this training set.

A main question arises here on ”how to choose a good value for ρ?”. This value could be set by

the user if he/she has su!cient knowledge to evaluate the representativeness of the training set.

Otherwise, ρ could also be set by means of an automatic approach, for instance, by considering

the size of the training set with regard to the dimension of X .



Size Proposed app. (ρ = 0.1) Proposed app. (ρ = 0.25) Proposed app. (ρ = 0.75)
+ - µ0.1 ν0.1 π0.1 µ0.25 ν0.25 π0.25 µ0.75 ν0.75 π0.75

u1 0 125 0.0 0.036 0.964 0.0 0.089 0.911 0.0 0.267 0.733

u2 0 128 0.0 0.036 0.964 0.0 0.091 0.909 0.0 0.274 0.726

u3 34 117 0.01 0.033 0.957 0.024 0.083 0.892 0.073 0.25 0.677

u4 165 80 0.047 0.023 0.93 0.118 0.057 0.825 0.353 0.171 0.476

u5 301 50 0.086 0.014 0.9 0.214 0.036 0.75 0.643 0.107 0.25

u6 301 50 0.086 0.014 0.9 0.214 0.036 0.75 0.643 0.107 0.25

u7 165 80 0.047 0.023 0.93 0.118 0.057 0.825 0.353 0.171 0.476

u8 34 117 0.01 0.033 0.957 0.024 0.083 0.892 0.073 0.25 0.677

u9 0 128 0.0 0.036 0.964 0.0 0.091 0.909 0.0 0.274 0.726

u10 0 125 0.0 0.036 0.964 0.0 0.089 0.911 0.0 0.267 0.733

Table 2

Results with various representativeness degrees.

5. Conclusion

In this paper, the problem of building intuitionistic fuzzy sets is tackled. After a survey of the

two main existing approaches from the literature to build IFS from probability distributions, a

new approach is proposed. The aim of this new approach is to be used in a Machine learning

setting where it is important to take into account the representativeness of the training set.

The proposed approach is based on the use of a representativeness degree of the given training

set and the determination of a lack-of-knowledge degree to weight the importance of each

element of the training set. This approach enables to build an IFS where the intuitionistic fuzzy

index is a good indicator of the lack of knowledge associated with the given training set.

In future work, even if a good choice could be to set ρ to 1, a #rst study to conduct will be to

#nd a way to make the choice of a good value for ρ, for instance by means of some automatic

ways to set this value. Secondly, the resulting IFS will be used in a complete Machine learning

approach, to build a classi#cation model from a given training set. Moreover, future work

will also deepen the study on the proposed approach in term of convergence property and the

complexity
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