
Software requirements engineering training:
problematic questions
Andrii M. Striuk1, Serhiy O. Semerikov1,2,3,4, Hanna M. Shalatska1 and
Vladyslav P. Holiver5

1Kryvyi Rih National University, 11 Vitalii Matusevych Str., Kryvyi Rih, 50027, Ukraine
2Kryvyi Rih State Pedagogical University, 54 Gagarin Ave., Kryvyi Rih, 50086, Ukraine
3Institute of Information Technologies and Learning Tools of the NAES of Ukraine, 9 M. Berlynskoho Str., Kyiv, 04060,
Ukraine
4University of Educational Management, 52A Sichovykh Striltsiv Str., Kyiv, 04053, Ukraine
5Customertimes Ukraine, 15b Leiptsyzka Str., Kyiv, 01015, Ukraine

Abstract
The key problems of training Requirement Engineering and the following ways to overcome the con-
tradiction between the crucial role of Requirement Engineering in industrial software development
and insufficient motivation to master it in the process of Software Engineering specialists professional
training were identified based on a systematic research analysis on the formation of the ability of fu-
ture software engineers to identify, classify and formulate software requirements: use of activity and
constructivist approaches, game teaching methods in the process of modeling requirements; active
involvement of stakeholders in identifying, formulating and verifying requirements at the beginning
of the project and evaluating its results at the end; application of mobile technologies for training of
geographically distributed work with requirements; implementation of interdisciplinary cross-cutting
Software Engineering projects; involvement of students in real projects; stimulating the creation of
interdisciplinary and age-old student project teams.

Keywords
software requirements, software engineering training, software engineer competencies

1. Introduction

The first course in Software Engineering was developed under the guidance of Friedrich Ludwig
Bauer [1, 2], it contained only a brief overview of the process of determining the requirements
for the software product such as functions, user needs and operating environment requirements.

Kryvyi Rih, Ukraine
" andrey.n.stryuk@gmail.com (A. M. Striuk); semerikov@gmail.com (S. O. Semerikov); shalatska@i.ua
(H. M. Shalatska); holivervlad@gmail.com (V. P. Holiver)
~ http://mpz.knu.edu.ua/pro-kafedru/vikladachi/224-andrii-striuk (A. M. Striuk); https://kdpu.edu.ua/semerikov
(S. O. Semerikov); https://scholar.google.com.ua/citations?user=vmRCFM8AAAAJ (H. M. Shalatska);
https://www.linkedin.com/in/holiver-qa/ (V. P. Holiver)
� 0000-0001-9240-1976 (A. M. Striuk); 0000-0003-0789-0272 (S. O. Semerikov); 0000-0002-1231-8847
(H. M. Shalatska); 0000-0002-8276-5992 (V. P. Holiver)

© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

3

CS&SE@SW 2021: 4th Workshop for Young Scientists in Computer Science & Software Engineering, December 18, 2021,

mailto:andrey.n.stryuk@gmail.com
mailto:semerikov@gmail.com
mailto:shalatska@i.ua
mailto:holivervlad@gmail.com
http://mpz.knu.edu.ua/pro-kafedru/vikladachi/224-andrii-striuk
https://kdpu.edu.ua/semerikov
https://scholar.google.com.ua/citations?user=vmRCFM8AAAAJ
https://www.linkedin.com/in/holiver-qa/
https://orcid.org/0000-0001-9240-1976
https://orcid.org/0000-0003-0789-0272
https://orcid.org/0000-0002-1231-8847
https://orcid.org/0000-0002-8276-5992
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org


Just as 50 years ago, defining software system requirements is the first step in development
which largely ensures its success.

Recommendations for the development of curricula for Software Engineering bachelors define
the competence to find compromises, the essence of which is to reconcile conflicting project
goals, find acceptable trade-offs for cost, time, knowledge, existing systems and organizations:
“Students should engage in exercises that expose them to conflicting and changing requirements.
... Curriculum units should address these issues, with the aim of ensuring high-quality functional
and nonfunctional requirements and a feasible software design.” [3, p. 21].

Requirements engineering is the process of identifying, formalizing and documenting require-
ments, that occurs during communication with a customer and other stakeholders who are
not typically proficient in software engineering techniques. The identification of requirements
demand from the Software Engineering specialist to apply the following general professional
competencies [4]:

• ability to think abstractly, analyze and synthesize;
• ability to apply knowledge in practical situations;
• ability to communicate orally and in writing;
• ability to search, process and analyze information from various sources;
• ability to work in a team;
• ability to act socially responsible and conscious.

The formation and development of these competencies takes place in teaching of disciplines
that do not belong to the professionally oriented, which reduces the attention of students to their
study. At the same time, software requirements engineering is perceived as an unimportant
course, which is not directly related to the activities that novice students associate with Software
Engineering, especially with the creation of software code.

The solution to this problem is possible by developing a practice-oriented methodology for
training engineering requirements based on an activity approach aimed at overcoming the
contradiction between the decisive role of requirements engineering in the practice of large software
projects industrial development and insufficient motivation to acquire essential knowledge in the
process of software engineers professional training.

2. Results

The guidelines for the development of undergraduate programs in Software Engineering (“Soft-
ware Engineering 2014” [3]) state that the requirements reflect the real needs of users, customers
and other stakeholders associated with the system being developed. Defining requirements
includes identifying and analyzing the needs of stakeholders and creating an appropriate de-
scription of the desired behavior and qualities of the system, as well as relevant limitations and
assumptions.

“Computing Curricula 2020” [5, p. 120] identifies the following competencies for defining
software requirements:

4



1. Identify and document software requirements by applying a known requirements elicita-
tion technique in work sessions with stakeholders, using facilitative skills, as a contribut-
ing member of a requirements team.

2. Analyze software requirements for consistency, completeness, and feasibility, and recom-
mend improved requirements documentation, as a contributing member of a requirements
team.

3. Specify software requirements using standard specification formats and languages that
have been selected for the project and be able to describe the requirements in an under-
standable way to non-experts such as end-users, other stakeholders, or administrative
managers, as a contributing member of a requirements team.

4. Verify and validate the requirements using standard techniques, including inspection,
modeling, prototyping, and test case development, as a contributing member of a require-
ments team.

5. Follow process and product management procedures that have been identified for the
project, as a contributing member of the requirements engineering team.

Sedelmaier and Landes [6] indicate that requirements engineering is a major component of
Software Engineering, but it is difficult to train. In training, Software Engineering is usually
limited to small “toy” projects that only partially reflect real tasks. There are several reasons for
this.

1. At the initial stage of training in Software Engineering specialists, there is a bias towards
programming training, rather than the identification, classification and formulation of
software requirements. Typically, programming tasks are small and well-defined: students
develop simple software components, often in small groups or individually, with assign-
ments focused on a specific task that demonstrates, for example, the use of loops, arrays,
or algorithms related to their processing. That is, software development tasks mainly
focus on the technical aspects of programming and specific programming languages in
an area that is familiar to students.

2. As a result, the teacher provides clearly defined and understandable requirements in
this area without the use of unfamiliar terminology or unusual concepts, which gives
students a misconception that they do not need to worry about the requirements because
they incorrectly summarize their initial programming experience in software development
projects: there is no such thing as vague requirements for stakeholders who use unfamiliar
terminology because students have never encountered them. This information is often
not readily available, and should be obtained from a number of relevant stakeholders,
who are often difficult to identify and who do not cooperate. Students underestimate
the importance of requirements engineering because its methods do not help to better
solve programming problems. In addition, programming tasks are usually separate and
unrelated to other tasks. Even if there is more than one possible way to solve the problem,
the chosen approach will not have consequences for the following tasks: students do
not need to compare the advantages and disadvantages of alternative solutions, as they
will not suffer from the consequences of error, which means it doesn’t matter if the
requirements are wrong or not.

5



3. Often students cannot even imagine the problems in Software Engineering that arise due
to errors in defining requirements, and do not trust teachers-practitioners, believing that
they are exaggerating them. Methods for determining requirements seem boring and
useless to them, because students mostly don’t know why they need them.

4. In the later stages of Software Engineering training, even when the programming bias is
shifted to Software Engineering, in particular requirements engineering, the situation
remains problematic: due to time constraints the complexity of real problems can hardly be
reproduced in university education, so students do not perceive interdependence between
requirements, mistakenly believing that complexity scales linearly, while increasing the
number of requirements exponentially increases the interdependence between them.

Given the limited training time for Software Engineering specialists, it is difficult to create
conditions for students that reflect the real problems of requirements engineering: due to
the lack of real customers, students cannot imagine the complexity and relationship between
requirements within a large Software Engineering project.

Ouhbi et al. [7] formulate recommendations for teachers on the formation of the ability to
identify, classify and formulate software requirements:

1. Learn to identify the scope of the problem, avoid general and vague specifications. To do
this, teachers should take into account the individual characteristics of students, which
can be determined, in particular, by questionnaires. This gives teachers the opportunity
to form teams that demonstrate the best results. Acuña et al. [8] have shown a significant
positive correlation between personality extraversion factor and software product quality,
including requirement satisfaction.

2. Teach to choose and use appropriate requirements engineering tools: students must know
the capabilities of modern tools and be able to choose the best tool for the project accord-
ing to its needs – isolation of requirements, analysis of requirements, specification of
requirements, verification and confirmation of requirements, requirements management.

3. Facilitate requirements analysis and modeling activities in addition to requirements man-
agement and implement the concept of prototyping in learning: through prototyping,
a working model of a software product can be created before the final product is imple-
mented, and prototypes presented to stakeholders are very effective for clarifying the
requirements.

4. Involve students in real projects to give them the opportunity to acquire sufficient knowl-
edge and skills. It is also advisable to invite practitioners to present real projects and
gained experience.

5. Develop the abilities, skills, and strategies needed to align engineering requirements with
modern conditions of geographically distributed (global) software development [9].

6. Teach students an approach to solve problems, methods and tools of development. Stu-
dents do not understand the importance of activities to determine the requirements and
their impact on the success or failure of projects in the lecture-laboratory form of require-
ments engineering training. Teachers are encouraged to use alternative forms of learning,
such as games.

7. Use mobile devices as learning tools in a mobile learning environment: students can
share a virtual board, e-textbooks and exchange data through a network environment

6



to actively participate in course discussions. These devices help to intensify student’s
educational and cognitive activities [10].

Mich [11] points out the contradiction between the importance of requirements isolation
activities for industrial projects and the lack of student motivation to learn requirements isolation
due to their lack or little experience in the field and the corresponding disregard for business
requirements, focusing on modeling requirements with a bias in detail instead of a preliminary
global review of the project, analysis of requirements for the implementation of “toy” projects
instead of industrial, non-involvement of stakeholders at the stages of problem statement and
evaluation of student performance, etc.

To overcome the isolated contradictions, Mich [11] suggests using CASE tools to support
modeling using UML and provides recommendations for reducing the risks of requirements
modeling in a hurry due to the desire of students to start modeling requirements, even if business
analysis and requirements detection is just beginning. The researcher developed a template for
a student project aimed at:

• demonstration the role of computer systems in solving business problems or developing
business strategies;

• integration of organizational issues into problem analysis to answer questions such as
“Who should collaborate to collect the data needed to develop the system?”;

• understanding the role of requirements analysis in the system development process,
including contractual implications;

• detection and management of conflicting requirements;
• use of UML from the very first step of requirements modeling, also for business processes

and subjects;
• documenting requirements as project specifications and their confirmation.

Mich [11] points out that thanks to the developed template, projects become more and more
connected with real organizations or companies. Initially, companies participated little in the
projects, through the initial representation of the company by its representative and the final
presentation of the results by students. Later, more and more interviews were conducted with
stakeholders representing real organizations.

Goswami and Walia [12] emphasize that requirements development is one of the earliest and
most important phases of a software development lifecycle. This is a critical phase when program
requirements are collected from a variety of stakeholders (both technical and non-technical)
and described in natural language in an official document known as the software requirements
specification. Due to the ambiguity, inaccuracy and uncertainty of the natural language, errors
are often made during the development of the specification. Therefore, the focus should be
on identifying and correcting inconsistencies in the early stages of the software development
lifecycle to avoid unnecessary effort and cost of software processing in the later stages. To
do this, researchers suggest using software assessment (inspection, survey) methods when
qualified professionals review documentation, code, and other project artifacts to identify and
report problems. Such inspection is a systematic method of detailed study of software artifacts.
The study confirmed the benefits of verifying artifacts developed at different stages of software
development (e.g. requirements, design, code, interfaces). The main stages of inspection are:

7



a) selection of qualified inspectors; b) individual examination to identify problems; c) team
meeting to systematize problems and d) further actions to eliminate them.

Ozkaya et al. [13] offer two half-semester mini-courses for students majoring in architecture
and construction.

The purpose of the first mini-course “Software Requirement Modeling” is to review the
methods of modeling software requirements and to demonstrate with the help of modeling
requirements strategies for solving problems in software development. Requirements modeling
helps engineers (not only software engineers) to better understand the task, reveals the essence of
the relationships that characterize it. Researchers emphasize that this is a significantly different
approach than considering the functionality of the final product. For specific engineering tasks,
such as building a geometric representation of information models, designing communication
programs for mobile devices or building data models for different stages in design, the engineer
must not only identify the requirements for the software being developed, but also understand
the requirements of the engineering industry for which it is being developed. In other words,
customer expectations and needs must be systematically modeled for better design of software
solutions.

The content of the first mini-course is purposefully focused on the development of software
for automated architectural and engineering design. It offers a study of several methods for
identifying requirements and ways to obtain basic information that will help in software
development. The application of the discussed methods of determining the requirements for the
software project should take place with the participation of stakeholders: some real stakeholders,
usually with customers. Upon completion of the first mini-course, students acquire the ability
to develop a prototype of the designed system and specification of software requirements.

The program results of the proposed course are:

• ability to correctly use basic terminology for identifying and specifying software require-
ments;

• ability to choose different data collection methods to identify software requirements;
• ability to distinguish types of requirements and classify relevant information;
• ability to document requirements in various forms;
• ability to use information about software requirements to improve design;
• ability to evaluate different methods of identifying requirements and develop strategies

for selecting the most appropriate [13, p. 5].

The purpose of the second mini-course “Software Requirement Application” is to teach the
application of certain requirements to solve practical problems. Researchers point out that it is
not enough to just define software requirements, typically in design, requirements relate to the
context in which the problem is solved. The designer produces various drawings, notes and
diagrams as part of the solution aimed to meet these requirements. The step of transforming
requirements into a project is crucial, and mistakes made in processing of requirements during
the design become a source of many software projects failure.

The program results of the second mini-course are:

• ability to build charts, in particular UML, to represent requirements;

8



• ability to use needs management in the software development life cycle;
• ability to choose software development method suitable for managing specified require-

ments;
• ability to apply methods of validation, verification and tracking of requirements;
• ability to develop strategies for transferring information about needs to high-level design

[13, pp. 6-7].

The program results of the “Software Modeling” course, developed by Sedelmaier and Landes
[6], are:

• deepening the understanding of the term “requirements” and their role in software
development;

• ability to use specification of functional and non-functional requirements methods and
determination of their priorities;

• understanding the role of communication with other parties involved in the development
of requirements;

• understanding the role of business processes as a source of requirements;
• ability to jointly apply appropriate methods and designations to determine the require-

ments for software product example;
• ability to use methods to assess the complexity and cost of software systems.

The objectives of the “Software Modeling” course are:

1) forming student understanding of the role and importance of requirements for their future
careers – students must know the problems of requirements development, recognize their
importance and difficulties in their formation; students must be able to extract requirements
from future users, model business processes and create documents with requirements;

2) improvement of specific communication skills demanded for requirements development
– students must be able to meet with customers for identify requirements that they did
not invent themselves, but formulated in collaboration with a real customer, learn to ask
customers about information that can be the basis for requirements, document requirements,
assign roles, etc.;

3) strengthening self-reflection, self-organization and responsibility of students as a basis for
development of appropriate competence.

The learning environment for such course is proposed by Sedelmaier and Landes [6] on the
basis of a constructivist approach, in which teachers act as trainers, creating conditions for
students to gain individual learning experience. Without determining the special ability to
identify, classify and formulate software requirements, the researchers highlight following 4
groups of competencies necessary for the formation of such ability [6]:

1) problem awareness: knowledge of the subject area, ability to abstract;
2) context sensitivity: ability to moderate and present, meet with customers, integrate into a

team, empathy, endurance;
3) personal competencies: methods of work, self-organization, role distribution, time manage-

ment, personal involvement, purposefulness, ability to self-reflection;

9



4) creativity, variety of techniques.

The main components of the approach proposed in [6] are the broad, active student participa-
tion in learning and a realistic, integrated environment, which includes writing a document with
requirements for a complex project and extracting requirements from real clients, as they play
a dual role in addition to the source of requirements, they also act as external communication
experts.

3. Conclusions

1. An overview of the sources on the research problem show the commonality of problems
in teaching requirement engineering of future Software Engineering specialists:

• student lack of understanding of the importance of requirement engineering due to
insufficient experience in working with real customers;

• insufficient attention to the process of identifying interrelated requirements in
communication with stakeholders who do not interact with each other;

• bias in learning languages and means of modeling requirements, in which their
detailing precedes detection;

• high clarity of requirements for training projects with Software Engineering in
comparison with real ones;

• nonlinear dependence of the software project complexity on the growth of the
number of requirements.

2. The ways to overcome these problems in teaching requirement engineering for training
Software Engineering specialists:

• use of activity and constructivist approaches, game teaching methods in the process
of modeling requirements;

• active involvement of stakeholders in identifying, formulating and verifying require-
ments at the beginning of the project and evaluating its results at the end;

• application of mobile technologies for training of geographically distributed work
with requirements;

• implementation of interdisciplinary cross-cutting Software Engineering projects;
• involvement of students in real projects;
• stimulating the creation of interdisciplinary and age-old student project teams.

References

[1] A. Striuk, “Advanced course on software engineering” as the first model for training of
software engineers, Journal of Information Technologies in Education (ITE) (2019) 48–67.
URL: http://ite.kspu.edu/index.php/ite/article/view/732. doi:10.14308/ite000702.

[2] A. Striuk, S. Semerikov, The dawn of software engineering education, CEUR Workshop
Proceedings 2546 (2019) 35–57.

10

http://ite.kspu.edu/index.php/ite/article/view/732
http://dx.doi.org/10.14308/ite000702


[3] Software Engineering 2014, Software Engineering 2014: Curriculum Guidelines for Under-
graduate Degree Programs in Software Engineering, A Volume of the Computing Curricula
Series, 2015. URL: https://www.acm.org/binaries/content/assets/education/se2014.pdf.

[4] S. Semerikov, A. Striuk, L. Striuk, M. Striuk, H. Shalatska, Sustainability in Software Engi-
neering Education: a case of general professional competencies, E3S Web of Conferences
166 (2020) 10036. doi:10.1051/e3sconf/202016610036.

[5] CC2020 Task Force, Computing Curricula 2020: Paradigms for Global Computing Edu-
cation, A Computing Curricula Series Report, 2020. URL: https://www.acm.org/binaries/
content/assets/education/curricula-recommendations/cc2020.pdf.

[6] Y. Sedelmaier, D. Landes, A multi-level didactical approach to build up competencies in
requirements engineering, CEUR Workshop Proceedings 1217 (2014) 26–34.

[7] S. Ouhbi, A. Idri, J. Fernández-Alemán, A. Toval, Requirements engineering education: a
systematic mapping study, Requirements Engineering 20 (2015) 119–138. doi:10.1007/
s00766-013-0192-5.

[8] S. T. Acuña, M. Gómez, N. Juristo, How do personality, team processes and task character-
istics relate to job satisfaction and software quality?, Information and Software Technology
51 (2009) 627–639. doi:10.1016/j.infsof.2008.08.006.

[9] D. Damian, A. Hadwin, B. Al-Ani, Instructional Design and Assessment Strategies for Teach-
ing Global Software Development: A Framework, Association for Computing Machinery,
New York, NY, USA, 2006, p. 685–690. URL: https://doi.org/10.1145/1134285.1134391.

[10] V. Tkachuk, S. Semerikov, Y. Yechkalo, S. Khotskina, V. Soloviev, Selection of mobile ICT
for learning informatics of future professionals in engineering pedagogy, CEUR Workshop
Proceedings 2732 (2020) 1058–1068. URL: http://ceur-ws.org/Vol-2732/20201058.pdf.

[11] L. Mich, Teaching requirements analysis: A student project framework to bridge the gap
between business analysis and software engineering, CEUR Workshop Proceedings 1217
(2014) 20–25.

[12] A. Goswami, G. Walia, Teaching software requirements inspections to software engineering
students through practical training and reflection, Computers in Education Journal 16
(2016) 2–10.

[13] I. Ozkaya, Ömer Akin, J. E. Tomayko, Teaching to Think in Software Terms: An
Interdisciplinary Graduate Software Requirement Engineering Course for AEC Stu-
dents, 2005, pp. 1–10. URL: https://ascelibrary.org/doi/abs/10.1061/40794%28179%298.
doi:10.1061/40794(179)8.

11

https://www.acm.org/binaries/content/assets/education/se2014.pdf
http://dx.doi.org/10.1051/e3sconf/202016610036
https://www.acm.org/binaries/content/assets/education/curricula-recommendations/cc2020.pdf
https://www.acm.org/binaries/content/assets/education/curricula-recommendations/cc2020.pdf
http://dx.doi.org/10.1007/s00766-013-0192-5
http://dx.doi.org/10.1007/s00766-013-0192-5
http://dx.doi.org/10.1016/j.infsof.2008.08.006
https://doi.org/10.1145/1134285.1134391
http://ceur-ws.org/Vol-2732/20201058.pdf
https://ascelibrary.org/doi/abs/10.1061/40794%28179%298
http://dx.doi.org/10.1061/40794(179)8

	1 Introduction
	2 Results
	3 Conclusions

