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Abstract
Recent advances in natural language processing have improved our understanding of what kind of

linguistic knowledge is encoded in modern word representations. For example, methods for testing

the ability to extract syntax trees from a language model architecture were developed by Hewitt and

Manning (2019)—they project word vectors into Euclidean subspace in such a way that the corresponding

squared Euclidean distance approximates the tree distance between words in the syntax tree. This work

proposes a method for assessing whether embedding word representations in hyperbolic space can better

reflect the graph structure of syntax trees. We show that the tree distance between words in a syntax

tree can be approximated well by the hyperbolic distance between corresponding word vectors.
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1. Introduction

Recent advances in natural language processing (NLP) such as contextualized word embed-

dings obtained from language models [1] gave significant advancements on natural language

understanding tasks. It is important to understand what kind of linguistic knowledge can

be encoded in these representations. There are several works that explore specific types of

linguistic knowledge, such as part-of-speech [2], morphology [3, 4], and syntax [5, 6, 7].

On one hand the paper is inspired by [5] and [7], who proposed a method for recovering

syntactic dependencies under squared Euclidean distance and squared Poincaré distance respec-

tively. In this work we propose methods for extracting syntactic dependencies under Poincaré

distance without squaring. On the other hand the paper is motivated by the observation that

one cannot draw a tree in the Euclidean space with unit distance between all neighboring nodes

and without overlap, since there is not enough room for nodes, see Fig. 1 for a visualization

of the problem. Mathematically, one could argue that the number of nodes in a binary tree

expands faster than the Euclidean volume as the tree depth grows, i.e. there is always a 𝑘0 such

that

2𝑘 > (2𝑘)𝑑 for all 𝑘 > 𝑘0,

where 𝑑 is the dimension of the Euclidean space.
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Figure 1: Trees cannot be drawn in the Euclidean space with constant distances between nodes.

2. Related work

A method, called structural probe, was proposed for extracting syntactic knowledge from word

representations [5]. The probe identifies a linear transformation suited to use the squared

Euclidean distances to represent the distance between words in the parse tree.

A second method, called Poincaré probe, was proposed in [7] and projects word representations

into a Poincaré subspace for revealing linguistic hierarchies encoded in BERT. It can be asserted

that linguistic information contained in BERT may be encoded in special metric spaces that are

not necessarily Euclidean. The hyperbolic space model, in particular the Poincaré ball, is a good

candidate due its tree-likeness [8, 9].

3. Methods

We start by briefly introducing hyperbolic geometry following notation from [10]. Hyperbolic

geometry is a geometry with a constant negative curvature. There are five isometric models

[11] and we choose the Poincaré ball as in [7]. The Poincaré ball with negative curvature 1 is

defined as D𝑛 =
{︀
x ∈ R𝑛 | ‖x‖2 < 1

}︀
. The distance between two points u,v ∈ D𝑛

is given

by

𝑑D(u,v) = cosh−1

(︂
1 + 2

‖u− v‖2

(1− ‖u‖2)(1− ‖v‖2)

)︂
.

For projecting points to the Poincaré ball we consider two mappings called gnomonic mapping

and hyperboloid mapping denoted by 𝑔(·) and ℎ(·), respectively. Closed-form formulas are

𝑔(x) =
x√︀

1 + ‖x‖2
, ℎ(x) =

x

1 +
√︀
1 + ‖x‖2

Both of them map points from the Euclidean space to the unit ball, which is considered as

Poincaré ball. Additionally, we use the Möbius matrix-vector multiplication defined as

M⊗ x = tanh

(︂
‖Mx‖
‖x‖

tanh−1(‖x‖)
)︂

Mx

‖Mx‖
,

which is the hyperbolic analogue of the Euclidean linear transformation.



Our method consists of three steps as in [7], but with different ways of mapping into Poincaré

ball. The method is applied to word representations h1:𝑡 obtained from one of the BERT’s layers

[1] for a sentence 𝑤1:𝑡 consisting of words [𝑤1, . . . , 𝑤𝑡] =: 𝑤1:𝑡. The first step is applying a

linear transformation B : R𝑛 ↦→ R𝑚
, where 𝑛 is the dimension of word representations and 𝑚

is the embedding dimension. Using this step we receive a set of vectors

x𝑖 = Bh𝑖

The second step is applying gnomonic or hyperboloid mapping for obtaining vector reprentations

in the Poincaré ball denoted as y𝑖:

y𝑖 = 𝑔(x𝑖) or y𝑖 = ℎ(x𝑖)

The final step is applying Möbius matrix-vector multiplication M : D𝑚 ↦→ D𝑚
for obtaining

final vector representations denoted as z𝑖:

z𝑖 = M⊗ y𝑖

Figure 2: Illustration of our method.

The matrices B and M are trained in such way that the hyperbolic distance 𝑑D(z𝑖, z𝑗)
resembles the graph distance 𝑑𝑇 (𝑤𝑖, 𝑤𝑗) between 𝑤𝑖 and 𝑤𝑗 in a syntax tree. The training

objective for one sentence is

ℓ(𝑤1:𝑡;B,M) :=
1

𝑡2

∑︁
𝑖,𝑗

|𝑑𝑇 (𝑤𝑖, 𝑤𝑗)− 𝑑D(z𝑖, z𝑗)|. (1)

Our approach is illustrated in Fig. 2.



4. Experiments

The main purpose of the performed experiments is to show that the usual (non-squared) Poincaré

distances can encode tree distances
1
.

4.1. Setup

The training objective (1) is averaged over a set of sentences (corpus) and is minimized w.r.t.

B and M in the same way as in [7]. We use the Adam optimizer [12] with the learning rate

0.001. In this work we use the English Universal Dependencies dataset [13] for optimizing

(1). For evaluation of the performance we report Undirected Unlabeled Attachment Score

(UUAS) and average Spearman correlation (DSpr.). UUAS is the percentage of undirected edges

placed correctly against the syntax tree and DSpr. is the Spearman correlation between true

and predicted distances for each word in each sentence.

4.2. Results

Results for different embedding dimensionalities 𝑚, and for different layers of BERT are given in

Fig. 3, where we also show the results of the Poincaré probe from [7] trained without squaring

for comparison. Table 1 shows the best result per each method.

Figure 3: Probing results with respect to embedding dimensionality (left) and with respect to BERT’s
layer index.

Table 1
Best results per each method.

Structural probe Gnomonic mapping Hyperboloid mapping Exponential mapping

UUAS 79.17 78.51 78.51 78.82
DSpr. 80.94 83.79 83.93 83.96

We can see that the newly proposed methods with gnomonic and hyperboloid mappings gave

results that are competitive to state-of-the-art. These methods outperform the structural probes

1

Results can be reproduced at https://github.com/TemirlanAuyespek/HyperbolicEmbedding

https://github.com/TemirlanAuyespek/HyperbolicEmbedding


in lower dimensions. However, for dimensions higher than 16 the results become more and

more similar. Results of the exponential mapping from [7] without squaring show scores similar

to gnomonic and hyperboloid mappings, but there was a subsidence at embedding dimensions

16 and 32.

Fig. 3 (right) shows results of UUAS for different BERT layers with embedding dimension

128, which we consider as a trade-off between performance and computational complexity.

4.3. Visualization

We visualize recovered dependency trees in Fig. 4 using PCA projection as [7]. The results of

the two methods have a similar structure, also very similar to the original syntax tree. There

can be a certain level of distortion, but there is no good analogy of PCA in hyperbolic space

[14].

Along with the competitive performance of our method, another important contribution of our

work is the interpretability of the obtained Poincaré ball distances because they themselves—and

not their squares—approximate syntax tree distances.

(a) True syntax tree

(b) Gnomonic mapping (c) Hyperboloid mapping

(d) True syntax tree

(e) Gnomonic mapping (f) Hyperboloid mapping

Figure 4: Examples of mapping using new methods. Yellow lines/geodesics show the ground truth.
Blue dashed lines/geodesics show predicted dependencies and hyperbolic distances along these
lines/geodesics approximate the syntax tree distances. Background gray curves are geodesics of the
Poincaré ball.



5. Conclusion

In this work, we introduced two methods for embedding word representations in the hyperbolic

space model, specifically the Poincaré ball. These methods were able to recover syntactic

knowledge from word representation space. The obtained results are comparable to the results

by Chen et al. [7] and are sometimes better. More importantly, we showed that hyperbolic

distances can encode tree distances without any squaring. These results also confirm that the

hyperbolic spaces fit tree-structured data better than the Euclidean spaces.

Future research will be dedicated to the investigation of other configurations of the BERT

model such as BERT Large and extracting other kinds of linguistic knowledge.
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