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Abstract
In this paper we report about the relationships between a multi-preferential semantics for defeasible
description logics and a deep neural network model. Weighted knowledge bases for description logics are
considered under a “concept-wise" preferential semantics, which is further extended to fuzzy interpretations
and exploited to provide a preferential interpretation of Multilayer Perceptrons.
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1. Introduction

Preferential approaches have their roots in conditional logics [1, 2] and have been used to provide
axiomatic foundations of non-monotonic and common sense reasoning [3, 4, 5, 6, 7, 8]. More
recently they have been extended to description logics (DLs) to deal with inheritance with
exceptions in ontologies, by allowing for non-strict forms of inclusions, called typicality or
defeasible inclusions, with different preferential semantics [9, 10] and closure constructions
[11, 12, 13, 14, 15, 16, 17]. This paper exploits a concept-wise multipreference semantics [18]
as a semantics for weighted knowledge bases (KBs), i.e. KBs in which defeasible or typicality
inclusions of the form T(𝐶) ⊑ 𝐷 (meaning “the typical 𝐶’s are 𝐷’s" or “normally 𝐶’s are 𝐷’s")
are given a positive or negative weight.

In this paper we report about the relationships between this logic of common sense reasoning
and Multilayer Perceptrons. From the semantic point of view, one can describe the input-
output behavior of a neural network as a multi-preferential interpretation on the domain of input
stimuli, based on the concept-wise multipreference semantics, where preferences are associated
to concepts. While in previous work [19, 20], the concept-wise multipreference semantics is
used to provide a preferential interpretation of Self-Organising Maps (SOMs) [21], which are
regarded as being psychologically and biologically plausible neural network models, in [22] we
have investigatesd its relationships with Multilayer Perceptrons (MLPs), a deep neural network
model. A deep network is considered after the training phase, when the synaptic weights have
been learned, to show that it can be associated a preferential DL interpretation with multiple
preferences, as well as a semantics based on fuzzy DL interpretations and another one combining
fuzzy interpretations with multiple preferences. The three semantics allow the input-output
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behavior of the network to be captured by interpretations built over a set of input stimuli through a
simple construction, which exploits the activity level of neurons for the stimuli. Logical properties
can be verified over such models by model checking.

The relationship between the logics of common sense reasoning and Multilayer Perceptrons
is even deeper, as a deep neural network can be regarded as a conditional knowledge base with
weighted conditionals. This has been achieved by developing a concept-wise fuzzy multiprefer-
ence semantics for a DL with weighted defeasible inclusions. In the following we recall these
results and discuss some challenges from the standpoint of explainable AI [23, 24].

2. A concept-wise multipreference semantics for weighted
KBs

A multipreference semantics, taking into account preferences with respect to different concepts,
was first introduced by the authors as a semantics for ranked DL knowledge bases [25]. A
preference relation <𝐶𝑖 on the domain ∆ of a DL interpretation can be associated to each concept
𝐶𝑖 to represent the relative typicality of domain individuals with respect to 𝐶𝑖. Preference
relations with respect to different concepts do not need to agree, as a domain element 𝑥 may be
more typical than 𝑦 as a student, but less typical as an employee. The plausibility/implausibility
of properties for a concept is represented by their (positive or negative) weight. For instance,
a weighted TBox, 𝒯𝐸𝑚𝑝𝑙𝑜𝑦𝑒𝑒, associated to concept Employee might contain the following
weighted defeasible inclusions:

(𝑑1) T(Employee) ⊑ Young , - 50
(𝑑3) T(Employee) ⊑ ∃has_classes.⊤, -70
(𝑑2) T(Employee) ⊑ ∃has_boss.Employee, 100;

meaning that, while an employee normally has a boss, he is not likely to be young or have classes.
Furthermore, between the two defeasible inclusions (𝑑1) and (𝑑3), the second one is considered
to be less plausible than the first one.

Multipreference interpretations are defined by adding to standard DL interpretations, which
are pairs ⟨∆, ·𝐼⟩, where ∆ is a domain, and ·𝐼 an interpretation function, the preference relations
<𝐶1 , . . . , <𝐶𝑛 associated with a set of distinguished concepts 𝐶1, . . . , 𝐶𝑛. Each preference
relation <𝐶𝑖 allows for a notion of typicality with respect to concept 𝐶𝑖 (e.g. the instances
of T(𝑆𝑡𝑢𝑑𝑒𝑛𝑡), the typical students, are the preferred domain elements wrt. <𝑆𝑡𝑢𝑑𝑒𝑛𝑡). The
definition of a global preference relation < from the <𝐶𝑖’s, leads to the definition of a notion
of concept-wise multipreference interpretation (cwm-interpretation), where concept T(𝐶) is
interpreted as the set of all <-minimal 𝐶-elements. A simple notion of global preference <
exploits Pareto combination of the preference relations <𝐶𝑖 , but a more sophisticated notion of
preference combination has been considered in [18], by taking into account the specificity relation
among concepts (e.g., that concept PhdStudent is more specific than concept Student). It has
been proven [18] that the global preference in a cwm-interpretation determines a KLM-style
preferential interpretation, and cwm-entailment satisfies the KLM postulates of a preferential
consequence relation [6].

The definition of the concept-wise preferences starting from a weighted conditional knowledge
base exploits a closure construction in the same spirit of the one considered by Lehmann [26] to



define the lexicographic closure, but more similar to Kern-Isberner’s c-representations [27, 28], in
which the world ranks are generated as a sum of impacts of falsified conditionals. For weighted
ℰℒ⊥ knowledge bases [22], the (positive or negative) weights of the satisfied defaults are summed
in a concept-wise manner, so to determine the plausibility of a domain elements with respect
to certain concepts by considering the modular structure of the KB. Both a two-valued and a
fuzzy multipreference semantics have been considered for weighted ℰℒ⊥ knowledge bases. In
the fuzzy case, to guarantee that the preferences are coherent with the fuzzy interpretation of
concepts, a notions of coherent (fuzzy) multipreference interpretation has been introduced.

3. A multi-preferential and a fuzzy interpretation for MLPs

Let us consider a deep network after the training phase, when the synaptic weights have been
learned. One can describe the input-output behavior of the network through a multipreferential
interpretation over a (finite) domain ∆ of the input stimuli which have been presented to the
network during training (or in the generalization phase). The approach is similar to the one
proposed for developing a multipreferential interpretation of SOMs [19, 20]. While for SOMs
the learned categories are regarded as being DL concepts 𝐶1, . . . , 𝐶𝑛 and each concept 𝐶𝑖 is
associated a preference relation <𝐶𝑖 over the domain of input stimuli [19, 20] based on a notion
of relative distance of a stimulus from its Best Matching Unit [29], for MLPs, we can associate
a concept to each unit of interest, possibly including hidden units. The preference relation
associated to a unit is defined based on the activation value of that unit for the different stimuli.

Let 𝒩 be a network after training and let 𝒞 = {𝐶1, . . . , 𝐶𝑛} be the set of concept names
associated to the units in the network 𝒩 we are focusing on. In case the network is not feedforward,
we assume that, for each input vector 𝑣 in ∆, the network reaches a stationary state [30], in
which 𝑦𝑘(𝑣) is the activity level of unit 𝑘. One can associate to 𝒩 and ∆ a (two-valued) concept-
wise multipreference interpretation over a boolean fragment of 𝒜ℒ𝒞 [31] (with no roles and no
individual names).

Definition 1. The cw𝑚interpretation ℳΔ
𝒩 = ⟨∆, <𝐶1 , . . . , <𝐶𝑛 , <, ·𝐼⟩ over ∆ for network 𝒩

wrt 𝒞 is a cw𝑚-interpretation where:

• the interpretation function ·𝐼 maps each concept name 𝐶𝑘 to a set of elements 𝐶𝐼
𝑘 ⊆ ∆

and is defined as follows: for all 𝐶𝑘 ∈ 𝒞 and 𝑥 ∈ ∆, 𝑥 ∈ 𝐶𝐼
𝑘 if 𝑦𝑘(𝑥) ̸= 0, and 𝑥 ̸∈ 𝐶𝐼

𝑘 if
𝑦𝑘(𝑥) = 0;

• for 𝐶𝑘 ∈ 𝒞, relation <𝐶𝑘
is defined for 𝑥, 𝑥′ ∈ ∆ as: 𝑥 <𝐶𝑘

𝑥′ iff 𝑦𝑘(𝑥) > 𝑦𝑘(𝑥
′), where

𝑦𝑘(𝑥) is the output signal of unit 𝑘 for input vector 𝑥.

The relation <𝐶𝑘
is a strict modular partial order, and ≤𝐶𝑘

and ∼𝐶𝑘
can be defined as usual.

In particular, 𝑥 ∼𝐶𝑘
𝑥′ for 𝑥, 𝑥′ ̸∈ 𝐶𝐼

𝑘 . Clearly, the boundary between the domain elements
which are in 𝐶𝐼

𝑘 and those which are not could be defined differently, e.g., by letting 𝑥 ∈ 𝐶𝐼
𝑘 if

𝑦𝑘(𝑥) > 0.5, and 𝑥 ̸∈ 𝐶𝐼
𝑘 if 𝑦𝑘(𝑥) ≤ 0.5, and suitably adjusting <𝐶𝑘

.
This model provides a multipreferential interpretation of the network 𝒩 , based on the input

stimuli considered in ∆, and allows for property verification. For instance, when the neu-
ral network is used for categorization and a single output neuron is associated to each cate-
gory, each concept 𝐶ℎ associated to an output unit ℎ corresponds to a learned category. If



𝐶ℎ ∈ 𝒞, the preference relation <𝐶ℎ
determines the relative typicality of input stimuli wrt

category 𝐶ℎ. This allows to verify typicality properties concerning categories, i.e, T(𝐶ℎ) ⊑
𝐷 where 𝐷 is a boolean concept, by model checking on the model ℳΔ

𝒩 . An example is:
T(Eligible_for_Loan) ⊑ Lives_in_Town ⊓High_Salary .

Based on the activity level of neurons, a fuzzy DL interpretation can also be constructed. Let
𝑁𝐶 be the set of concept names associated to the units of interest in the network 𝒩 . In a fuzzy
DL interpretation 𝐼 = ⟨∆, ·𝐼⟩ [32] concepts are interpreted as fuzzy sets over ∆, and the fuzzy
interpretation function ·𝐼 assigns to each concept 𝐶 ∈ 𝑁𝐶 a function 𝐶𝐼 : ∆ → [0, 1]. For a
domain element 𝑥 ∈ ∆, 𝐶𝐼(𝑥) represents the degree of membership of 𝑥 in concept 𝐶.

A fuzzy interpretation 𝐼𝒩 for 𝒩 over the domain ∆ [22] is a pair ⟨∆, ·𝐼⟩ where:

(i) ∆ is a (finite) set of input stimuli;
(ii) the interpretation function ·𝐼 is defined for named concepts 𝐶𝑘 ∈ 𝑁𝐶 as: 𝐶𝐼

𝑘(𝑥) = 𝑦𝑘(𝑥),
∀𝑥 ∈ ∆; where 𝑦𝑘(𝑥) is the output signal of neuron 𝑘, for input vector 𝑥.

The verification that a fuzzy axiom ⟨𝐶 ⊑ 𝐷 ≥ 𝛼⟩ is satisfied in the model 𝐼𝒩 , can be done based
on satisfiability in fuzzy DLs, according to the choice of the fuzzy combination functions. It
requires 𝐶𝐼

𝑘(𝑥) to be recorded for all 𝑘 = 1, . . . , 𝑛 and 𝑥 ∈ ∆. Of course, one could restrict 𝑁𝐶

to the concepts associated to a subset of units, e.g. to input and output units in 𝒩 to capture the
input/output behavior of the network.

Observe that in a fuzzy interpretation, the interpretation 𝐶𝐼
ℎ of each concept 𝐶ℎ induces an

ordering <𝐶ℎ
on the domain ∆, which can be regarded as the preference relation associated to

concept 𝐶ℎ. This allows a notion of typicality to be defined in a fuzzy interpretation (in particular,
<𝐶ℎ

is well-founded when ∆ is finite). The idea underlying fuzzy-multipreference interpretations
[22] is to extend a fuzzy DL interpretations with a set of induced preferences, and to identify
typical 𝐶-elements as the preferred elements wrt. <𝐶 . Starting from the fuzzy interpretation of a
neural network 𝒩 , as defined above, a fuzzy-multipreference interpretation ℳ𝑓,Δ

𝒩 over a domain
∆ can be defined, and logical properties of the neural network (combining typicality concepts
and fuzzy axioms) can as well be verified over such an interpretations by model checking.

As mentioned in Section 2, fuzzy-multipreference interpretations provide a semantic interpreta-
tion of weighted conditional knowledge bases, based on a closure construction. It has been proven
that, also in the fuzzy case, the concept-wise multipreference semantics has interesting properties
and satisfies most of the KLM properties of a preferential consequence relation, depending of
their reformulation in the fuzzy case and on the fuzzy combination functions [33].

The three interpretations considered above for MLPs describe the input-output behavior of
the network, and allow for the verification of properties by model-checking. The interpretation
ℳ𝑓,Δ

𝒩 can be proven to be a model of the multilayer network 𝒩 when regarded as a weighted
conditional KB provided it is coherent, i.e., the fuzzy interpretation of concepts agrees with the
weights computed from the KB.

Let us assume 𝑁𝐶 contains a concept name 𝐶𝑘 for each unit 𝑘 in 𝒩 . The weighted conditional
knowledge base 𝐾𝒩 defined from the network 𝒩 contains, for each neuron 𝑘, a set of weighted
defeasible inclusions. If 𝐶𝑘 is the concept name associated to unit 𝑘 and 𝐶𝑗1 , . . . , 𝐶𝑗𝑚 are the
concept names associated to units 𝑗1, . . . , 𝑗𝑚, whose output signals are the input signals for unit
𝑘, with synaptic weights 𝑤𝑘,𝑗1 , . . . , 𝑤𝑘,𝑗𝑚 , then unit 𝑘 can be associated a set 𝒯𝐶𝑘

of weighted
typicality inclusions: T(𝐶𝑘) ⊑ 𝐶𝑗1 with 𝑤𝑘,𝑗1 , . . . , T(𝐶𝑘) ⊑ 𝐶𝑗𝑚 with 𝑤𝑘,𝑗𝑚 . The fuzzy



multipreference interpretation ℳ𝑓,Δ
𝒩 built from a network 𝒩 and a domain ∆ can be proven to

be a model of the knowledge base 𝐾𝒩 under the some conditions on the activation functions.

4. Conclusions

Much work has been devoted, in recent years, to the combination of neural networks and symbolic
reasoning [34, 35, 36], leading to the definition of new computational models [37, 38, 39, 40]
and to extensions of logic programming languages with neural predicates [41, 42]. Among the
earliest systems combining logical reasoning and neural learning are the KBANN [43] and the
CLIP [44] systems and Penalty Logic [45]. The relationships between normal logic programs
and connectionist network have been investigated by Garcez and Gabbay [44, 34] and by Hitzler
et al. [46]. The correspondence between neural network models and fuzzy systems has been first
investigated by Kosko in his seminal work [47]. A fuzzy extension of preferential logics has been
studied by Casini and Straccia [48] based on a Rational Closure construction for Gödel fuzzy
logic.

The possibility of exploiting the concept-wise multipreference semantics to provide a semantic
interpretation of a neural network model has been first explored for Self-Organising Maps,
psychologically and biologically plausible neural network models [21]. A multi-preferential
semantics can be used to provide a logical model of the SOM behavior after training [19, 20],
based on the idea of associating different preference relations to categories, by exploiting the
topological organization of the network and a notion of relative distance of an input stimulus
from a category. The model can be used to learn or validate conditional knowledge from the
empirical data used for training or generalization, by model checking of logical properties. Due
to the diversity of the two neural models (MLPs and SOMs), we expect that this approach may be
extended to other neural network models and learning approaches.

A logical interpretation of a neural network can be useful from the point of view of explain-
ability, in view of a trustworthy, reliable and explainable AI [23, 24, 49]. For MLPs, the strong
relationship between a multilayer network and a weighted KB opens to the possibility of adopting
a conditional DLs as a basis for neuro-symbolic integration. While a neural network, once trained,
is able and fast in classifying the new stimuli (that is, it is able to do instance checking), all
other reasoning services such as satisfiability, entailment and model-checking are missing. These
capabilities may be needed to deal with tasks combining empirical and symbolic knowledge,
e.g., to extracting knowledge from a network; proving whether the network satisfies (strict or
conditional) properties; learning the weights of a conditional KB from empirical data and use
them for inference.

To make these tasks possible, the development of proof methods for such logics is a preliminary
step. In the two-valued case, multipreference entailment is decidable for weighted ℰℒ⊥ KBs
[22]. An open problem is whether the notion of fuzzy-multipreference entailment is decidable,
for which DLs fragments and under which choice of fuzzy logic combination functions. Undecid-
ability results for fuzzy description logics with general inclusion axioms [50, 51] motivate the
investigation of decidable multi-valued approximations of fuzzy-multipreference entailment.

While constructing a conditional interpretation of a neural network is a general approach
and can be adapted to different neural network models, it is an issue whether the mapping of



deep neural networks to weighted conditional KBs can be extended to more complex neural
network models, such as Graph neural networks [37]. Another issue is whether the fuzzy-
preferential interpretation of neural networks can be related with the probabilistic interpretation
of neural networks based on statistical AI. Indeed, interpreting concepts as fuzzy sets suggests a
probabilistic account based on Zadeh’s probability of fuzzy events [52], an approach explored by
Kosko [47] and exploited for SOMs in [20].

Our work has focused on the multipreference interpretation of MLPs after the learning phase.
However, the state of the network during the learning phase can as well be represented as a
weighted conditional KB. During training the KB is modified, as weights are updated based on
the input stimuli, and one can then regard the learning process as a belief change process. For
future work, it would be interesting to study the properties of this notion of change and compare
it with the notions of change studied in the literature [53, 54, 55].
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