
© 2021 for this paper by its authors. Use permitted under CC BY 4.0.

MetaREVEAL:
RL-based Meta-learning from Learning Curves ?

Manh Hung Nguyen1,2, Nathan Grinsztajn3, Isabelle Guyon2,4, and Lisheng
Sun-Hosoya4

1 CentraleSupélec, France, manh.nguyen@inria.fr
2 LISN/Inria/CNRS, Université Paris-Saclay, France

3 Inria, Univ. Lille, CNRS, France, nathan.grinsztajn@inria.fr
4 ChaLearn, California, USA, {guyon,sun-hosoya}@chalearn.org

Abstract. This paper addresses a cornerstone of Automated Machine
Learning: the problem of rapidly uncovering which machine learning
algorithm performs best on a new dataset. Our approach leverages perfor-
mances of such algorithms on datasets to which they have been previously
exposed, i.e., implementing a form of meta-learning. More specifically, the
problem is cast as a REVEAL Reinforcement Learning (RL) game: the
meta-learning problem is wrapped into a RL environment in which an
agent can start, pause, or resume training various machine learning algo-
rithms to progressively “reveal” their learning curves. The learned policy
is then applied to quickly uncover the best algorithm on a new dataset.
While other similar approaches, such as Freeze-Thaw, were proposed in
the past, using Bayesian optimization, our methodology is, to the best of
our knowledge, the first that trains a RL agent to do this task on previous
datasets. Using real and artificial data, we show that our new RL-based
meta-learning paradigm outperforms Free-Thaw and other baseline meth-
ods, with respect to the Area under the Learning curve metric, a form of
evaluation of Any-time learning (i.e., the capability of interrupting the
algorithm at any time while obtaining good performance).

Keywords: Meta-Learning · Learning Curves · Reinforcement Learning.

1 Introduction and related work

Meta-learning in machine learning refers to learning from prior experience on
other datasets than the current dataset of interest. There are many meta-learning
settings, including learning from Model Evaluations, learning from Task
Properties, and learning from Prior Models [31]. In this paper, we address
a particular setting of meta-learning in which the goal is to rapidly find an
algorithm that performs best on a new dataset. Since speed is of the essence,
rather than fully training all algorithms, we interrupt (then eventually resume)
training. Hence, we allow our meta-algorithm to switch between learning curves.

? The first author contributed most, the others are in alphabetical order of last name.
Supported by ANR Chair of Artificial Intelligence HUMANIA ANR-19-CHIA-00222.



2 Nguyen et al.

Our setting belongs to the family of meta-learning Model Evaluations
methods, which make use of pre-defined performance measures, e.g. test accuracy
and training time. One baseline approach is to select the algorithm performing
best on previous datasets, e.g. according to average rank [1, 17]. Other prior art
approaches include recommender systems for Meta-learning [7, 22,23,27,29,35],
largely dominated by Collaborative Filtering methods (e.g. Matrix Factorization).
In this line of work, ActivMetal [29] has inspired our approach. Our work is
mostly in line with [28], casting the problem as a REVEAL game, a subclass of
Markov Decision Processes.

Task Properties (meta-features) describe the characteristics of datasets.
They may include statistical information, information-theoretic measures, or
learned meta-features. In Meta-Regression, regression algorithms are used to
predict the performances of algorithms based on the meta-features of the prob-
lems (and meta-features of the algorithms). One could estimate a classifier’s
performance by exploiting relationships between the dataset properties and the
classifier’s performance [3]. Kopf et al. explored deeper the choices of measure-
ments for dataset characterization [11]. Another work made by Guerra et al. used
Support Vector Machines to predict the Performance of Learning Algorithms [8].
In general, meta-regression highly depends on the quality of the meta-features
used. Our present approach is not a Task property method, since it does not rely
on such meta-features, although they could be added in the future.

Learning from Prior Models usually focuses on transfer learning and few-
shot learning applied to deep learning models. While the former uses models
trained on source tasks as starting points to develop models for a new target task,
the latter aims at training a good model given very few training examples. Much
progress has been made in these settings with some state-of-the-art methods,
such as MAML [6], Reptile [24], MetaOptNet [12], and R2-D2 [4]. Our method
does not leverage prior models, although this could be done in future work.

The setting considered in this paper is active meta-learning, where an agent
actively requests to train and test algorithms to reveal their performance on a
given dataset. We fuse three ideas: (1) that of “active meta-learning” exploited in
ActivMetal [29], that of using Reinforcement Learning exploited in [28] by framing
the meta-learning problem as a REVEAL game, and that of learning from partial
learning curve information used in Freeze-Thaw, proposed for hyper-parameters
optimization and model selection [30] (without any meta-learning).

Compared to previous approaches, we gain in speed and accuracy: Both
ActivMetal and REVEAL are computationally demanding since they require
fully training and evaluating models. Our new method using partially trained
models (along the learning curve) is thus more effective. Furthermore, ActivMetal
requires multiple computationally expensive matrix factorizations using the
entire meta-dataset of past scores. Our method based on pre-trained policies
does not require storing and using past scores on other datasets at utilization
time. Finally, Freeze-Thaw, which inspired us to use learning curves, relies on
heuristic policies derived from human expertise, not trainable agents performing
meta-learning, which is the setting considered in this paper. Other learning-curve

2 M. H. Nguyen, I. Guyon, L. Sun-Hosoya, N. Grinsztajn



MetaREVEAL 3

based methods [13–15] rely on pairwise comparisons of algorithms, which would
not scale well with the number of algorithms and involve“hard-coded” policies
(no meta-learning). Our principal contributions are:

1. We introduce meta-learning environments using learning curve informa-
tion with two reward functions specifically designed for Fixed-time learning
and Any-time learning. These two types of learning are described in Section
3.1 and Section 3.2.

2. We implement and evaluate various RL agents and baseline methods
on a meta-dataset from the AutoDL challenge [19] and a novel artificial
meta-dataset. We experimentally show that RL agents can “meta-learn” the
underlying structure of training meta-datasets to later solve similar learning
tasks more efficiently.

3. We propose a Switching Frequency (SF) metric to quantify how often an
agent pauses running an algorithm and switches to running another one during
an episode. This metric is related to the trade-offs between exploitation and
exploration. We study the correlation between this metric and the cumulative
reward achieved by the agents.

2 Mathematical statement of the problem

2.1 Meta-learning as algorithm recommendation

Meta-learning is learning to learn. In this paper, we consider the algorithm
recommendation setting of meta-learning: The goal is to find, from a set of
algorithms, the algorithm performing best on a new dataset, given the experience
of these algorithms on previous datasets. This experience can be embedded in a
meta-dataset.

Definition 1. (Meta-dataset). A meta-dataset of m algorithms on n datasets
can be expressed as a performance matrix P with a size of (m×n), where column j
(for j = 1, ..., n) corresponds to algorithm Aj , row i (for i = 1, ...,m) corresponds
to dataset Di, and P (i, j) is the performance score of Aj tested on Di.

Definition 2. (1D Meta-Learning Problem). Given a meta-dataset P with a size
of ((m− 1)× n), a new dataset Dm, and the partial performance information Im
of algorithms on this new dataset Dm (which is progressively revealed at a given
cost), the meta-learning problem is to find the best algorithm Aj∗ for Dm such
that:

j∗ = argmax
j=1,...,n

P (m, j) (1)

From Definition 1, we concentrate on zero-level meta-learning, as defined
in [18]. Meta-learning algorithms are categorized in 3 families, related to the
taxonomy of [31] into Model Evaluation, Task Properties, and Prior Models, but
based on the level of information used:

MetaREVEAL: RL-based Meta-learning from Learning Curves 3



4 Nguyen et al.

– Zero-level meta-learning, or black-box meta-learning: Only past perfor-
mances of Model Evaluations (e.g., accuracy score on datasets).

– First-level meta-learning, or gray-box meta-learning: Performance scores,
dataset meta-features (i.e. Task Properties) and/or algorithm hyper-parameters.

– Second-level meta-learning, or white-box meta-learning: First and second
level information is complemented by full knowledge of the datasets and inner
functioning of the algorithms (related to the notion of Prior Models).

From Definition 2, we concentrate on 1D meta-learning. Meta-learning was
divided into 1D meta-learning and 2D meta-learning in [28]. In 1D meta-learning,
a search for the best algorithms for a single dataset at a time is performed. In
2D meta-learning, good matches of algorithm-dataset pairs {Di, Aj} are seeked
over the 2D score matrix (initialized with many missing values).

2.2 REVEAL games

In this section, we relate meta-learning problems to REVEAL games, which has
been previously discussed in [28]. Meta-learning problems, in the recommendation
setting introduced in the previous section, can be cast as REVEAL games, a
particular class of Markov Decision Processes (MDP), amenable to Reinforcement
Learning [28]. Since we will be using this framework, we first briefly recall what
REVEAL games are.

In a REVEAL game, the agent’s action can only influence the amount of
information it can gain, not the underlying data generative process, i.e., the
agent’s actions have no influence over the course of the “world”. Consequently,
a good operational test of whether a MDP is a REVEAL game is to find out
whether it is possible to pre-compute all states and rewards a priori, before the
start of a game episode. A simple metaphor for a REVEAL game is a “game
board” covered with “cards”. Each card is associated with some information.
When the game starts, all cards are placed face down, such that the information
is hidden from game players or agents. The goal of an agent is to move around
the board and reveal the card’s information to maximize rewards received in
an episode. Examples of REVEAL games include Battleship [32], Mouse in a
maze [2], Minesweeper [33], Pacman [34] without ghosts, etc. One example of a
game that is not a REVEAL game is the Pacman but with ghosts because the
agent’s moves affect the motions of the ghosts.

Meta-learning problems can be viewed as REVEAL games where a new
dataset corresponds to a new board. An action of the agent on the board is
a choice of pair {training algorithm, dataset} yielding a reward based on the
performance achieved by the chosen algorithm on the chosen dataset. Figure
1 shows an overview of how a meta-learning problem is related to a REVEAL
game.

As an additional twist, “cards” in REVEAL games can be partially or progres-
sively revealed. This metaphor portrays well the case in which learning machines
are progressively trained, and revealing a card step-by-step corresponds to ob-
taining the next performance of the algorithm after training one more epoch.

4 M. H. Nguyen, I. Guyon, L. Sun-Hosoya, N. Grinsztajn



MetaREVEAL 5

Fig. 1: Meta-learning as a REVEAL game where agents progressively reveal
the performance of algorithms on a given new dataset and try to find the best
algorithm for that dataset as fast as possible.

Concerning the meta-datasets, this corresponds to adding one more dimension
(time or number of epochs) in the meta-dataset performance matrix to store an
entire learning curve as opposed to a single final score, as explained further in
the next section.

3 MetaREVEAL

In this section, we introduce RL-based meta-learning from learning curves,
which are an essential ingredient for time management in the search for the
best performing algorithm. Indeed, training all algorithms fully (to the point of
reaching asymptotic training performance) is wasteful, considering that the least
promising algorithms can be abandoned early on. Given a limited time budget,
it is therefore preferable to probe first the performance of algorithms by training
them only a few epochs, then eventually train more certain algorithms, perhaps
switching back and forth as more of the learning curve is revealed. The goal
of our RL agent is to uncover an optimal strategy, monitoring exploration and
exploitation.

We investigate two settings, which have implications in the time management
and the exploration-exploitation tradeoff: Fixed-time Learning and Any-time
Learning. In the Fixed-time Learning setting, an overall time budget is given,
and the goal of the agent is to find the best algorithm before the time is out.
The agent can therefore explore freely within this time budget, without the need
to find a good solution early on. In contrast, in the Any-time Learning setting,
the agent can be stopped and judged for its performance at any time. There is
therefore pressure on the agent that it finds a good solution early on and keeps
improving it incrementally. Figure 2 shows a concrete example of two algorithms
competing to show the difference between Fixed-time learning and Any-time
learning settings. We introduce meta-learning environments designed for each
setting.

MetaREVEAL: RL-based Meta-learning from Learning Curves 5



6 Nguyen et al.

Fig. 2: Fixed-time learning versus Any-time learning. In Fixed-time learn-
ing, within a time budget T = 180 seconds, algorithm B obtained a higher final
test accuracy score (0.9) than algorithm A (0.8), making algorithm B the winner
in this setting. However, in Any-time learning, we use the Area under the Learn-
ing Curve (ALC) metric to compare. Thus, algorithm A clearly outperformed
algorithm B in this setting. If both algorithms were to stop at any point in time,
algorithm A would most likely achieve better performance than algorithm B,
indicating that algorithm A possesses a greater capacity for any-time learning.

3.1 Fixed-time Learning

In the Fixed-time Learning scenario, an agent is given a total time budget T to
be spent on training any algorithm in the algorithm set A. The agent’s goal is
to find the best algorithm for a given dataset within the time budget. T may
be varied to have the agents exposed to different conditions (e.g., T is drawn
uniformly from a pre-defined set of time budgets).

Definition 3. (State). A state st is a matrix of dimensions 2×n, which consists
of two channels represented by two vectors with the same length of n. The first
vector T stores the amount of time that has been spent so far for each algorithm
and the second vector V represents the current test score of each algorithm
(current value on the learning curve) in the current episode:

T = [tj ] for j = 1, ..., n (2)

V = [vj ] for j = 1, ..., n (3)

where n is the number of algorithms. At the beginning of an episode, all values of
tj are initialized to 0 and vj to −1, to indicate that performances of algorithms
Aj have not been revealed yet.

Definition 4. (Action). An action is to start/continue training an algorithm in
a fixed amount of time ∆t (pre-defined by the environment creator, e.g., ∆t = 10

6 M. H. Nguyen, I. Guyon, L. Sun-Hosoya, N. Grinsztajn



MetaREVEAL 7

seconds) and then make predictions on the test data to receive the next test score.5

For simplicity, we define an action by the corresponding algorithm index:

at = j, (4)

where j is the index of the algorithm Aj which is going to be trained and tested
next. Once the action at is done, tj and vj in the state are updated to form the
next state.

Definition 5. (Fixed-time Learning Reward Function). A shaping reward func-
tion based on performance improvement, which gives rewards more frequently to
the agent and lets the agent knows that it is getting better and getting closer to
the best algorithm:

r(t) = V ∗(t)− V ∗(t−∆t) , (5)

where V ∗(t) and V ∗(t−∆t) are the best algorithm performances found in this
step and the previous step respectively:

V ∗(t) = max
k≤t

V (k) , (6)

V ∗(0) = 0 , (7)

Definition 6. (Termination condition). An episode ends when T is exhausted.

At the end of the episode, the cumulative reward is equal to V ∗(T ) −
V ∗(0) = V ∗(T ), the score of the best algorithm found within the time
budget T . Our agent therefore implements a meta-algorithm whose (meta-
)learning curve is given by V ∗(t), but it is judged only by its end result.

3.2 Any-time Learning

In the Any-time Learning setting, we want to encourage the agent to obtain
a meta-learning curve, which is steep at the beginning, i.e., to uncover good
algorithms as fast as possible. In this way, even if the agent is stopped early,
we will get as good performance as possible, thus obtaining Any-time Learning
capabilities.

States, actions, time budgets, and termination conditions are defined similarly
as in Fixed-time learning. We designed a specific reward function for this type of
learning:

5 Agents’ action are based on the test performance Vj , which is assumed to be accurate
and a good approximation of the generalization error (i.e. we assume large test
sets and very small error bars). In this work, we focus on meta-learning, hence, the
problem of possibly “overfitting/underfitting the test set” is not discussed in this
paper and left for future works.

MetaREVEAL: RL-based Meta-learning from Learning Curves 7



8 Nguyen et al.

Fig. 3: Computation of the ALC.

Definition 7. (Any-time Learning Reward Function). This function puts more
emphasis on performance improvement at the beginning of an episode. The reward
is defined by:

r(t) = [V ∗(t)− V ∗(t−∆t)] [(T − t)] (8)

The weight [(T − t)] is the only difference compared to the reward function
in Fixed-time Learning. If we scale the x-axis logarithmically then the reward
function becomes:

r(t) = [V ∗(t)− V ∗(t−∆t)] [(1− t̃)] (9)

with

t̃ =
log(1 + t/t0)

log(1 + T /t0)
(10)

The larger t0 is, the more important the beginning of the learning curve is.
If T � t0, then t̃ → 0 and the reward function becomes equivalent to that of
Fixed-time Learning (Equation 5). In our experiments, t0 is set to 50 (seconds).

At the end of the episode, the cumulative reward will be the Area under
the Learning Curve (ALC) within the time budget T . The computation of
the cumulative reward can be carried out by integrating the learning curve using
horizontal rectangles, in the style of Lebesgue integrals (Figure 3). The ALC
metric was used in the AutoDL challenge with the same purpose of emphasizing
Any-time Learning [20,21].

4 Experiments and Results

In this section, we first describe how the meta-datasets used in our experiments
are obtained. Then, we discuss the experimental results and findings from running
the implemented RL agents and baselines on the meta-datasets. The code for
reproducing the experiments is available on our Github repository 6.

6 https://github.com/hungnm2008/metaREVEAL.git

8 M. H. Nguyen, I. Guyon, L. Sun-Hosoya, N. Grinsztajn



MetaREVEAL 9

4.1 Meta-datasets

We use learning curves collected from the AutoDL Challenge [20] to build our first
meta-dataset. However, since this meta-dataset is quite small and not complete,
we generate artificial learning curves using parameterized sigmoid functions. Both
of them will be discussed in detail below.

Learning curves from the AutoDL challenge [20]. This meta-dataset
is made by the predictions of 13 Automated Deep Learning algorithms on 66
datasets in the AutoDL Challenge [20]. These algorithms include top 9 algorithms
and 4 baselines competed in the challenge. The fact that we use a meta-dataset
from the AutoDL challenge might cause a misunderstanding that our method is
comparable to the methods competed in the challenge. However, we are doing
one level up, meta-learning from past performances of these AutoDL methods.
The score used in the challenge is the Area under the Learning Curve (ALC)
computed using the Normalized Area Under ROC Curve (NAUC) scores gathered
during the learning process. The NAUC score is obtained by making predictions
on the test set at any timestamp during 20 minutes. One difficulty is that each
algorithm in the meta-dataset made predictions at different timestamps while
our agents do it regularly every ∆t seconds. Thus, some data points on the
learning curves at desired timestamps are not available to the agents. In this
case, the learning curve’s most recent value (data point) will be returned. The
learning curves obtained from the AutoDL challenge are not monotonic. During
the competition, some algorithms’ performances decrease after some time of
training.

Fig. 4: (AutoDL meta-dataset) Hierarchically-clustered heatmap showing
nauc mean score of algorithms on datasets in the AutoDL meta-dataset. The
figure demonstrates that there is some structure in the data, which can potentially
be exploited by the learning agents. The ‘blocks’ indicate that some algorithms
are more suitable for solving some dataset tasks. This is some transferable knowl-
edge that the agent can learn.

Artificial Learning Curves. We have created an artificial meta-dataset that
contains learning curves of 20 algorithms on 100 datasets. The purpose of creating

MetaREVEAL: RL-based Meta-learning from Learning Curves 9



10 Nguyen et al.

these curves is to have a meta-dataset with a larger size, no missing data, and
containing underlying structure indicating some groups of algorithms are good for
some groups of datasets. We assume these learning curves have the S-shape-like
sigmoid curves, hence, they are monotonically increasing by definition. Each
learning curve of algorithm Aj on dataset Di is a sigmoid function defined by
three parameters a, b and c as follows:

lcij =
a

1 + e−b∗(x−c)
(11)

These parameterized functions allow us to experiment with various learning
curves, by adjusting their asymptotic performance (specified by a), increasing rate
(specified by b), and “warm-up” time (specified by c). Values of each parameter
a, b, and c are shown in matrices in Figure 7. Each matrix was constructed from a
matrix factorization, which means it was obtained as a product of three matrices
UΣV where U and V are random orthogonal matrices and Σ is a diagonal
matrix of “singular values”. The values are then scaled to desired range for each
parameter.

(a) Parameter a (a) Parameter b (a) Parameter c

Fig. 7: (Artificial meta-dataset) Hierarchically-clustered heatmaps showing values
of the three parameters used to build the artificial learning curves. Blocks
appear, revealing that some groups of algorithms have correlated parameter
values on groups of datasets (e.g. learning curve asymptotic value, controlled by
the parameter a). The learning agents are expected to learn such properties and
output an effective search strategy.

4.2 Reinforcement Learning Agents

In Reinforcement Learning, the goal of an agent is to find a policy that maximizes
expected (discounted) rewards. Reinforcement Learning methods can be catego-
rized into value-based, policy-based, and hybrid methods. Value-based methods
learn a value function that is used to evaluate a state or a state-action pair. Then
the policy is derived directly from the value function. In contrast, policy-based

10 M. H. Nguyen, I. Guyon, L. Sun-Hosoya, N. Grinsztajn



MetaREVEAL 11

methods explicitly learn a representation of a policy and keep updating it during
learning. Many hybrid approaches learn both value function and a policy simulta-
neously gain great success in RL. Actor-Critic is a well-known architecture used
in these hybrid approaches, where the “Critic” computes estimated values and
the “Actor” updates the policy according to the values provided by the Critic.
We have chosen a diverse group of RL agents due to their characteristics and
their strategies to be evaluated in our experiments:

Double Deep Q Networks (DDQN) [10]: value-based, off-policy, ε-
exploration strategy.

Soft Actor-Critic (SAC) [9]: hybrid (actor-critic architecture), off-policy,
entropy-based exploration strategy.

Proximal Policy Optimization (PPO) [26]: hybrid (actor-critic architec-
ture), on-policy, entropy-based exploration strategy.

4.3 Baselines

We compare the performance of RL agents with established baseline methods,
which allow us to select an algorithm that should perform well on a novel dataset.

Freeze-Thaw Bayesian Optimization. [30]. This method aims at efficiently
searching for good model hyper-parameters. It maintains a set of “frozen” models
that are partially trained and takes advantage of the partial information to
decide which ones to “thaw” and resume training. This avoids spending too
much time on bad models, and only promising models should be exploited more.
Freeze-Thaw requires hyper-parameters to be able to search for good models.
However, we are working on Zero-level meta-learning, hyper-parameters are not
considered in choosing an algorithm (model). We made some changes to make the
Freeze-Thaw method able to run in our experiments. The performance matrix
has been arranged so that similar algorithms are placed together. Then we use
the algorithm index as a “hyper-parameter” that describes and represents the
locality of the algorithm in the searching space.

Average Rank. Inspired by these works [1, 5, 16, 17], we build a global
ranking of algorithms across training datasets. This is done in the training phase
by running all algorithms for all training datasets and taking the average of their
ranks to form the final ranking. The global average rank for each algorithm Aj is
obtained by:

global rank(Aj) =

∑Dtrain
i=1 rankij
Dtrain

(12)

where D is the number of training datasets, and rankij is the rank of algorithm
Aj on the dataset Di. Given a new test dataset, only the algorithm with the
highest global rank is selected to run with the entire time budget T . This baseline
is very time-consuming in practice since it needs to try all algorithms on all
datasets in training.

Best on Samples. This baseline is adapted from [25] by using a fixed amount
of time tsampling instead of a fixed number of samples. At the beginning of each
episode, it trains each algorithm with the same amount of time tsampling and then

MetaREVEAL: RL-based Meta-learning from Learning Curves 11



12 Nguyen et al.

selects the one that performed best within tsampling to run with the remaining
time budget. In our experiments, we set tsampling = ∆t.

Random. This baseline performs a random search over the algorithm space.
Each action is to randomly choose an algorithm for training and testing within
∆t. This baseline has a very large variance. When we report results, we first
average results over 5 trials of the random search method, therefore reducing its
variance, and report average performance. One needs to bear in mind though
that this is just for comparison purposes and in not a realistic setting (because
in practice one would not average over several runs, this is impossible because
once the performances of algorithms are revealed, one cannot take them back).

4.4 Setup and Evaluation Metrics

We train the agents in two learning scenarios: Fixed-time Learning and Any-
time Learning using two meta-datasets: the AutoDL meta-dataset and the
Artificial meta-dataset. Since these meta-datasets are quite small, we use
k-Fold Cross-Validation with k = 4 to train and test the agents.7

To compare the agents, we use two metrics: Average Cumulative Reward
and Average Switching Frequency (defined in Definition 8). The means of
cumulative reward and switching frequency are calculated for each test fold.
The final average cumulative reward, average switching frequency, and their
corresponding standard deviations are computed over all folds.

Definition 8. (Switching Frequency). We proposed a Switching Frequency (SF)
metric for evaluating how frequently an agent switches between algorithms. In an
episode, the SF value of an agentk is defined as:

SF (agentk) =

∑T
t=1 1at 6=at−∆t

T /∆t (13)

with T is the total time budget, ∆t is the amount of time spent for an algorithm
in one step.

4.5 Results

We discuss our experimental results in two learning scenarios and focus on two
points: (i) the average cumulative reward and (ii) the correlation between average
cumulative reward and average switching frequency.

Any-time learning, (Figure 8a, 8c, 10a, 9c). The results indicate that a
good strategy to be successful in Any-time learning is to bet at the beginning
on algorithms that performed well on past datasets and stick to them to climb
the learning curve fast, then start exploring. This is illustrated by the ppo agent,
which obtained the highest cumulative reward, followed by other RL agents.

7 This violates the assumption that we have large test sets made earlier and is a
limitation of this mode of evaluation.

12 M. H. Nguyen, I. Guyon, L. Sun-Hosoya, N. Grinsztajn



MetaREVEAL 13

(a) Cumulative reward in Any-time
learning

(b) Cumulative reward in Fixed-time
learning

(c) Correlation between Switching
frequency and Cumulative reward in

Any-time learning

(d) Correlation between Switching
frequency and Cumulative reward in

Fixed-time learning

Fig. 8: Experimental results on the AutoDL meta-dataset. Time budget T is
drawn uniformly from [200, 300, 400, 500] (seconds) and ∆t is set to 10 (seconds).
From the bar plots, it can be seen that RL agents (in blue color) outperformed
baselines in both learning settings, more significantly in the Any-time learning.
These RL agents tend to have very low switching frequency, as shown in the
scatter plots. In Any-time learning, the average rank agent has a high error bar
because the algorithm chosen by the agent does not consistently perform well at
the beginning of an episode. To stress that the “random” agent is an average
over 5 random runs, we highlight its bar in gray. Its total variability is higher
than suggests the 4-fold error bar represented in sub-figures (a) and (b).

MetaREVEAL: RL-based Meta-learning from Learning Curves 13



14 Nguyen et al.

(a) Cumulative reward in Any-time
learning

(b) Cumulative reward in Fixed-time
learning

(c) Correlation between Switching
frequency and Cumulative reward in

Any-time learning

(d) Correlation between Switching
frequency and Cumulative reward in

Fixed-time learning

Fig. 9: Experimental results on the Artificial meta-dataset. Time budget T
is drawn uniformly from [500, 700, 900, 1100] (seconds) and ∆t is set to 20
(seconds). In Any-time learning, RL agents and average rank agent achieved
similar cumulative rewards and higher than the rest of the baselines. These agents
do not switch algorithms frequently as the others, as shown in the scatter plots.
In Fixed-time learning, within the given time budget T , all agents performed
almost the same.

14 M. H. Nguyen, I. Guyon, L. Sun-Hosoya, N. Grinsztajn



MetaREVEAL 15

They are among the algorithms with the lowest switching frequency. Their low
switching frequency can explain their success at the beginning of the learning
curve, as they favor more exploitation than exploration. In contrast, the policy
of best on samples and freeze thaw forces agents to try each algorithm at
least once at the beginning (train and test the algorithm in ∆t first seconds).
Thus, if they manage to find the best algorithm, this should happen only near
the end of the episode, which makes it less valuable in the Any-time learning
setting. This explains why they performed worst in the Any-time learning setting
in both meta-datasets. We vary the value of t0 to investigate its influence on
agents’ performances. More precisely, the value of t0 is drawn from the set:
[1, 2, 4, 8, 16, 32, 64, 128, 256, 512], while the time budget T is set to 512. The
results of this experiment are shown in Figure 10.

(a) AutoDL meta-dataset (b) Artificial meta-dataset

Fig. 10: Tuning hyperparameter t0 in Any-time learning. We compare the average
accumulated reward of RL agents (in blue) and baseline methods (in orange).
The x-axis shows the value of t0 on a log scale. In Any-time learning, changing t0
leads to changing the reward function. Thus, the purpose of these figures is not to
show that agents achieve higher rewards when t0 increases. The key finding is that
the performance difference between RL agents and baseline methods gets larger
as t0 increases, indicating that RL agents can learn better when we emphasize
more on the any-time learning capability (with a high value of t0). The difference
is more obvious in the Artificial meta-dataset, which can be explained by the
chosen time budget T . In the AutoDL meta-dataset, the time budget T of 512 is
large enough for the baseline methods to maintain the difference with the RL
agents when t0 increases, which is not the case in the Artificial meta-dataset.

Fixed-time learning, (Figure 8b, 8d 10b, 9d). In both meta-datasets, the
winner is a RL agent. In the AutoDL meta-datasets, RL agents achieved higher
cumulative rewards than the baselines. However, in the Artificial meta-dataset,
there was no significant difference between all agents. Within the given time
budget T , all agents managed to find a good algorithm at the end. This emphasizes

MetaREVEAL: RL-based Meta-learning from Learning Curves 15



16 Nguyen et al.

the fact that learned policies to manage time budget are mostly beneficial in the
Any-time learning setting, where monitoring the exploration-exploitation tradeoff
is critical.

Comparison between datasets. The AutoDL meta-dataset has a clear
block structure in the vertical (dataset) direction, which means there is some
algorithm ranking transferable across datasets in the same group. The fact that
RL agents outperform others in both any-time and fixed-time learning indicates
that the RL agents successfully meta-learn those rankings, which let them finds
the best algorithms for similar datasets with less exploration than other agents
that cannot meta-learn (best on samples, freeze-thaw, random or average-rank
that uses the same ranking for all datasets), this make RL agents shine even
more in any-time learning. The structure of the artificial dataset is more subtle
and harder to learn, as it appears. More work needs to be done to fully elucidate
this.

5 Conclusion

Meta-learning can be viewed as a sequential decision-making problem where an
agent selects and trains algorithms progressively for a given dataset. The goal
is to find the algorithm performing best within a fixed amount of time (Fixed-
time learning) or at any time (Any-time learning). We have proposed learning
environments that allow RL agents to learn policies (as opposed to hard-coding
them) using past experiences on similar datasets (meta-learning). Trained agents
operate by training algorithms step by step, thus revealing their learning curves.
By doing so, they create a meta-learning curve from the performance of the best
algorithm revealed so far.

Both knowledge from past dataset experience (captured in the learned agent
policy), and current information on the dataset at hand (embedded in the current
state) are used by agents to make decisions. By leveraging partial learning curve
information, an agent may stop training algorithms that are not promising and
concentrate hardware resources on an algorithm that has more potential to be the
best-performing one on the given dataset, which would save a huge amount of time.
In both Any-time and Fixed-time learning, the RL agents successfully acquired
two important skills: (1) Meta-learning, which allows trained RL agents to identify
good algorithms with less exploration for new datasets thanks to the previous
training, this is more prominent in Any-time learning; (2) Exploration-exploitation
trade-off, which explains the different policies they derive in Fixed-time and
Any-time settings. In Any-time learning, RL agents obtained a higher cumulative
reward (Area under Learning Curve) than the baselines. In contrast, in Fixed-
time Learning, all methods obtain a similar cumulative reward (best final score).
From a RL perspective, this outlines that the Any-time learning problem offers
more possibilities to learn clever policies monitoring the exploration-exploitation
trade-off. When the number of algorithms increases, MetaREVEAL with RL
agents would show more advantages over the baselines in terms of computational
time (e.g. the average rank agent needs to try all algorithms on the training

16 M. H. Nguyen, I. Guyon, L. Sun-Hosoya, N. Grinsztajn



MetaREVEAL 17

datasets). In addition, if we have numerous sets of hyperparameters of the same
model, we can adapt MetaREVEAL to work with continuous action spaces, which
would be more efficient in searching for the optimal set of hyperparameters.

Future work includes performing more experiments on the artificial data,
varying its parameter settings, to elucidate relationships between data structure
and policy learning. Work is also under way to apply our method to other real-
world meta-datasets. Systematic experiments must be performed to vary values
for the parameters of our meta-learning RL environments: T and t0. Last but
not least, it would be interesting to do some theoretical research and propose
RL methods more dedicated to the meta-learning REVEAL game setting and
investigate the computational complexity of such methods. We would also like
to extend this work to the First-level meta-learning, Second-level meta-learning,
and 2D meta-learning problems.

A Appendix A - Full Experimental Results

Table 1: Average Cumulative Reward achieved by each agent in each set-
ting. Since we are using k-fold cross-validation (k=4), we compute the mean of
cumulative reward in each test fold. The final average cumulative reward and
standard deviation (represented by the error bar) are computed by taking the
average across the test folds (4 test folds in total). Bold numbers indicate the
winners in each setting. RL agents performed better than the baselines in all
settings, but more remarkably in Any-time learning.

Any-time learning

(acc reward = ALC(T ))

Fixed-time learning

(acc reward = V ∗(T ))

AutoDL Artificial AutoDL Artificial

RL

agents

ddqn 0.68± 0.03 0.59± 0.01 0.84± 0.06 0.83± 0.03

sac 0.62± 0.08 0.56± 0.03 0.84± 0.06 0.77± 0.05

ppo 0.69± 0.04 0.55± 0.04 0.85± 0.05 0.77± 0.06

Baselines

freeze-thaw 0.42± 0.05 0.41± 0.02 0.73± 0.08 0.82± 0.02

average rank 0.45± 0.25 0.57± 0.03 0.80± 0.06 0.75± 0.03

best on samples 0.38± 0.08 0.41± 0.02 0.55± 0.10 0.78± 0.02

random 0.52± 0.05 0.44± 0.02 0.78± 0.04 0.81± 0.03

Acknowledgements

We would like to thank Adrien Pavao and Michael Vaccaro for supplying us with
the AutoDL meta-dataset.

MetaREVEAL: RL-based Meta-learning from Learning Curves 17



18 Nguyen et al.

References

1. Abdulrahman, S., Brazdil, P., van Rijn, J., Vanschoren, J.: Speeding up algorithm
selection using average ranking and active testing by introducing runtime. Machine
Learning 107 (01 2018)

2. Alexander Smith: Mouse in a maze, https://videogamehistorian.wordpress.

com/tag/mouse-in-a-maze/, [Online; accessed 06-July-2021]

3. Bensusan, H., Kalousis, A.: Estimating the predictive accuracy of a classifier. In:
De Raedt, L., Flach, P. (eds.) Machine Learning: ECML 2001. pp. 25–36. Springer
Berlin Heidelberg, Berlin, Heidelberg (2001)

4. Bertinetto, L., Henriques, J.F., Torr, P., Vedaldi, A.: Meta-learning with differen-
tiable closed-form solvers. In: International Conference on Learning Representations
(2019), https://openreview.net/forum?id=HyxnZh0ct7

5. Brazdil, P.B., Soares, C.: A comparison of ranking methods for classification
algorithm selection. In: López de Mántaras, R., Plaza, E. (eds.) Machine Learning:
ECML 2000. pp. 63–75. Springer Berlin Heidelberg, Berlin, Heidelberg (2000)

6. Finn, C., Abbeel, P., Levine, S.: Model-agnostic meta-learning for fast adaptation
of deep networks. In: Proceedings of the 34th International Conference on Machine
Learning - Volume 70. p. 1126–1135. ICML’17, JMLR.org (2017)

7. Fusi, N., Sheth, R., Elibol, M.: Probabilistic matrix factorization for automated
machine learning. In: Bengio, S., Wallach, H., Larochelle, H., Grauman, K., Cesa-
Bianchi, N., Garnett, R. (eds.) Advances in Neural Information Processing Systems.
vol. 31. Curran Associates, Inc. (2018), https://proceedings.neurips.cc/paper/
2018/file/b59a51a3c0bf9c5228fde841714f523a-Paper.pdf

8. Guerra, S.B., Prudêncio, R.B.C., Ludermir, T.B.: Predicting the performance of
learning algorithms using support vector machines as meta-regressors. In: Kůrková,
V., Neruda, R., Koutńık, J. (eds.) Artificial Neural Networks - ICANN 2008. pp.
523–532. Springer Berlin Heidelberg, Berlin, Heidelberg (2008)

9. Haarnoja, T., Zhou, A., Abbeel, P., Levine, S.: Soft actor-critic: Off-policy maximum
entropy deep reinforcement learning with a stochastic actor. In: Dy, J., Krause,
A. (eds.) Proceedings of the 35th International Conference on Machine Learning.
Proceedings of Machine Learning Research, vol. 80, pp. 1861–1870. PMLR (10–15
Jul 2018), http://proceedings.mlr.press/v80/haarnoja18b.html

10. Hasselt, H.v., Guez, A., Silver, D.: Deep reinforcement learning with double q-
learning. In: Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence.
p. 2094–2100. AAAI’16, AAAI Press (2016)

11. Kopf, C., Taylor, C.: Meta-analysis: From data characterisation for meta-learning
to meta-regression (2000)

12. Lee, K., Maji, S., Ravichandran, A., Soatto, S.: Meta-learning with differentiable
convex optimization. 2019 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR) pp. 10649–10657 (2019)

13. Leite, R., Brazdil, P.: Predicting relative performance of classifiers from samples. In:
Proceedings of the 22nd International Conference on Machine Learning. p. 497–503.
ICML ’05, Association for Computing Machinery, New York, NY, USA (2005),
https://optdoi.org/10.1145/1102351.1102414

14. Leite, R., Brazdil, P.: An iterative process for building learning curves and predicting
relative performance of classifiers. In: Proceedings of the Aritficial Intelligence 13th
Portuguese Conference on Progress in Artificial Intelligence. p. 87–98. EPIA’07,
Springer-Verlag, Berlin, Heidelberg (2007)

18 M. H. Nguyen, I. Guyon, L. Sun-Hosoya, N. Grinsztajn



MetaREVEAL 19

15. Leite, R., Brazdil, P.: Active testing strategy to predict the best classification
algorithm via sampling and metalearning. p. 309–314. IOS Press, NLD (2010)

16. Leite, R., Brazdil, P., Vanschoren, J.: Selecting classification algorithms with active
testing. vol. 7376, pp. 117–131 (07 2012)

17. Lin, S.: Rank aggregation methods. Wiley Interdisciplinary Reviews: Computational
Statistics 2, 555 – 570 (09 2010)

18. Liu, Z., Guyon, I.: Asymptotic Analysis of Meta-learning as a Recommendation
Problem. In: Meta-learning Workshop @ AAAI 2021. Virtual, Canada (Feb 2021)

19. Liu, Z., Pavao, A., Xu, Z., Escalera, S., Ferreira, F., Guyon, I., Hong, S., Hutter,
F., Ji, R., Junior, J.C., Li, G., Lindauer, M., Zhipeng, L., Madadi, M., Nierhoff, T.,
Niu, K., Pan, C., Stoll, D., Treger, S., Jin, W., Wang, P., Wu, C., Xiong, Y., Zela,
A., Zhang, Y.: Winning solutions and post-challenge analyses of the chalearn autodl
challenge 2019. IEEE Transactions on Pattern Analysis and Machine Intelligence
pp. 1–1 (2021)

20. Liu, Z., Pavao, A., Xu, Z., Escalera, S., Ferreira, F., Guyon, I., Hong, S., Hutter,
F., Ji, R., Nierhoff, T., Niu, K., Pan, C., Stoll, D., Treguer, S., Wang, J., Wang, P.,
Wu, C., Xiong, Y.: Winning solutions and post-challenge analyses of the ChaLearn
AutoDL challenge 2019. IEEE Transactions on Pattern Analysis and Machine
Intelligence p. 17 (2020)

21. Liu, Z., Xu, Z., Rajaa, S., Madadi, M., Junior, J.C.S.J., Escalera, S., Pavao, A.,
Treguer, S., Tu, W.W., Guyon, I.: Towards automated deep learning: Analysis of
the autodl challenge series 2019. In: Escalante, H.J., Hadsell, R. (eds.) Proceed-
ings of the NeurIPS 2019 Competition and Demonstration Track. Proceedings
of Machine Learning Research, vol. 123, pp. 242–252. PMLR (08–14 Dec 2020),
http://proceedings.mlr.press/v123/liu20a.html

22. Misir, M., Sebag, M.: Alors: An algorithm recommender system. Artif. Intell. 244,
291–314 (2017)

23. Misir, M., Sebag, M.: Algorithm selection as a collaborative filtering problem (12
2013)

24. Nichol, A., Schulman, J.: Reptile: a scalable metalearning algorithm (03 2018)
25. Petrak, J.: Fast subsampling performance estimates for classification algorithm

selection. In: Proceedings of the ECML-00 Workshop on Meta-Learning: Building
Automatic Advice Strategies for Model Selection and Method Combination. pp.
3–14 (2000)

26. Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O.: Proximal policy
optimization algorithms (07 2017)

27. Stern, D., Samulowitz, H., Herbrich, R., Graepel, T., Pulina, L., Tacchella, A.:
Collaborative expert portfolio management. vol. 1 (12 2010)

28. Sun-Hosoya, L.: Meta-Learning as a Markov Decision Process. Theses, Univer-
sité Paris Saclay (COmUE) (Dec 2019), https://hal.archives-ouvertes.fr/

tel-02422144
29. Sun-Hosoya, L., Guyon, I., Sebag, M.: Activmetal: Algorithm recommendation with

active meta learning. In: IAL@PKDD/ECML (2018)
30. Swersky, K., Snoek, J., Adams, R.: Freeze-thaw bayesian optimization (06 2014)
31. Vanschoren, J.: Meta-learning: A survey. ArXiv abs/1810.03548 (2018)
32. Wikipedia contributors: Battleship (game), https://en.wikipedia.org/wiki/

Battleship_(game), [Online; accessed 06-July-2021]
33. Wikipedia contributors: Minesweeper (video game), https://en.wikipedia.org/

wiki/Minesweeper_(video_game), [Online; accessed 06-July-2021]
34. Wikipedia contributors: Pac-man, https://en.wikipedia.org/wiki/Pac-Man,

[Online; accessed 02-July-2021]

MetaREVEAL: RL-based Meta-learning from Learning Curves 19



20 Nguyen et al.

35. Yang, C., Akimoto, Y., Kim, D.W., Udell, M.: Oboe: Collaborative filtering for
automl model selection. In: Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. p. 1173–1183. KDD ’19,
Association for Computing Machinery, New York, NY, USA (2019), https://

optdoi.org/10.1145/3292500.3330909

20 M. H. Nguyen, I. Guyon, L. Sun-Hosoya, N. Grinsztajn


