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Abstract. Autonomous mobile robots are starting to be deployed in
complex built environments where they need to navigate to complete the
given tasks. In order to navigate, autonomous mobile robots often rely on
environmental maps. In this paper, we explore a novel approach to auto-
matically create topological and metric environmental maps from BIM
data exported to a graph database. We define queries on the exported
graph data-base which retrieve the data needed to create the maps auto-
matically. We validate our approach by applying standard path planning
algorithms such as A* on the generated maps showing that they are suit-
able for computing optimal paths. We regard this work as a first step
to connect linked data methods to robotics algorithms and use-cases.
The results show the feasibility and potential of exploiting the semantic
richness of the data available from BIM.

Keywords: Linked Data · Semantics · Robot navigation · 2D geometry
· mapping

1 Introduction

Autonomous mobile robots are operating more and more in complex built envi-
ronments where they need to navigate from their current position to a designated
position. To navigate, a robot often relies on an environmental map which can
take the form of an occupancy grid map [6] or, more recently, of a semantic map
in which geometrical information, as well as semantic information, is reported
[18]. In order to obtain a map, the robot needs to capture sensor data that cover
all spaces in the building. During this process, the robot scans the area around it
with its sensors, most often 2D or 3D lidars, simultaneously creating a map and
localizing within it. This is commonly called SLAM: Simultaneous Localization
And Mapping (see [9] for a comparison study of different SLAM approaches).
Alongside the obvious advantage of not relying on any prior knowledge of the
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building, SLAM has the disadvantage that it requires an operator to move the
robot around the unexplored building to construct the map. Additionally, dy-
namic elements (e.g. movable furniture) can be included in the map making it
obsolete over time (e.g., when dynamic elements change position requiring con-
stant map updates [25]). Maps generated by state-of-the-art SLAM algorithms
(i.e. GMapping [10], HectorSLAM [17] and Cartographer [15]) also lack semantic
details since environmental elements are only represented as geometric objects
without describing what such objects are. For example, a robot could scan a wall
detecting an opening without knowing that the opening represents a door.

In this paper, we propose an alternative method of automatically construct-
ing maps for robot navigation. We demonstrate how spatial and topological maps
of a building can be created by querying data from a building digital twin real-
ized in the form of a RDF graph database (see [2] for a review). The content of
the RDF graph database can be generated by exporting relevant data from the
BIM [3] of the targeted building. The approach is attractive because it has the
potential to create spatial and semantic maps for robot navigation seamlessly
from already available building data without the need of human intervention to
create such maps.

The maps derived by applying the proposed queries to extract relevant data
and subsequent algorithms for map creation are dependent only on the ontology
adopted to organize the data in the RDF graph (i.e. LBD ontologies3) but are
independent from the modelling convention adopted when creating the BIM. In
this way, knowledge of the BIM modelling convention of a particular building
is decoupled from knowledge about how these data can be used by robots. We
demonstrate the approach with a concrete use-case: plan the optimal path to
move a robot between two rooms of the Atlas building of the Eindhoven Univer-
sity of Technology campus. The RDF graph, the queries and the resulting maps
are available in a public code repository that accompanies this paper4.

The paper is organized as follows. Section 2 presents related work on the use
of BIM data for robotic navigation. Section 3 presents the queries and the algo-
rithms used to derive metric and topological maps for robot navigation. Section 4
demonstrates the outcome of the proposed methods in terms of robot path plan-
ning. Finally, Section 5 proposes a reflection on the proposed approaches and
outlines future work.

2 Related Work

In the past years there have been a few attempts to leverage the rich data that
BIM models provide to improve typical functions of autonomous robots such as
localization and navigation. With respect to localization, Acharya et al. [1] have
proposed a method to generate a data-set of synthetic images with associated
known 6-DOF camera locations and orientations that can be used to train Deep
Convolutional Neural Network (DCNN) for robot localization. Similarly, the
3 https://www.w3.org/community/lbd/
4 https://gitlab.tue.nl/et_projects/rk-semantic-queries.git
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work of [11] generates a data set of synthetic images from a BIM, trains a
DCNN on those images to extract features. Extracted features are compared
with features extracted from real images to estimate which location in the BIM
is more likely to correspond to the real images.

Other work has focused on using the information from BIM to derive topo-
logical maps from which paths can be planned. In [24], the authors propose to
extract information from BIM to set-up a simulation environment (VEROSIM)
for robotics development. The environment can connect the OMPL (Open Mo-
tion Planning Library [26]) to the imported BIM model to generate collision
free paths. On a similar line, [19] derives a topological graph from BIM models
upon which an A* planner can retrieve the optimal path. These works focus on
either the direct import of BIM models in simulation environments [24] or on
its direct usage for path planning [19]. Recently an automatic way of exporting
data from the Industry Foundation Classes (IFC-JSON) to metric map for robot
localization has been demonstrated by [14], the work, however does not rely on a
graph database to extract relevant information and focuses on localization only.

The novel contribution of this paper lies in the definition of queries on a
building digital twin (i.e. an RDF graph database) rather than on direct usage of
BIM or IFC exports for either localization or navigation. Contrary to a BIM or an
IFC export, a building digital twin is considered a living entity and therefore has
the potential to be updated during robot operation providing constantly updated
information which is essential for reliable long term deployment of autonomous
robots. This work furthermore aims to align as good as possible with ongoing
developments in terms of LBD ontologies, mainly because they have the potential
to provide a real-time representation of building topology and product data
linked to 2D and 3D geometric data [8, 27].

3 Method

3.1 Creation of the building digital twin

A building digital twin is a digital representation of a building with real-time
data connection. The format of the building digital twin proposed in this paper
is an RDF graph database implemented in GraphDB5. The data from the initial
BIM model is exported to an RDF graph database, following the Linked Data
approach [5, 4, 7, 13], with a custom REVIT plugin created by the authors and
available in a public code repository 6. The building chosen as use-case to create
the RDF database, apply queries and derive maps for robotic navigation is the
Atlas building of the Eindhoven University of Technology campus. A view of
Atlas and of its BIM model is shown in Figure 1.

The data exported into TTL format is used to create topological and metric
maps for robot navigation. From the exported data, only a subset is used to
create such maps which is reported in Table 1. The selected data mostly represent
5 https://graphdb.ontotext.com/
6 https://github.com/pipauwel/IFCtoLBD - development ongoing
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Fig. 1. Left: View of the Eindhoven University of Technology main building (Atlas).
Right: BIM model of Atlas (only a part of 8th floor displayed).

geometrical elements of spaces including their semantic (e.g., columns, walls,
doors and curtainwalls) and more abstract topological information such as room
identification and connectivity. Data follows the BOT [21, 22], BEO and MEP
ontologies [20] with 2D geometry represented as Well Known Text (WKT) literals
according to recommendations in [8, 27]. A snapshot of the selected RDF data
of Atlas is reported in Listing 1.1.

i n s t : space_2936
a bot : Space ;
bot : adjacentElement i n s t : wall_258992 ;
bot : adjacentElement i n s t : wall_256212 ;
bot : adjacentElement i n s t : door_283489 ;
bot : adjacentElement i n s t : door_259071 ;
props : number "10"^^xsd : s t r i n g .

i n s t : wall_258992
a bot : Element ;
a beo : Wall .

i n s t : Inter face_79
a bot : I n t e r f a c e ;
bot : i n t e r f a c eO f i n s t : space_2936 , i n s t : wall_258992 ;
geom :asWKT "LINESTRING (199140.100211374 −40973.2993467975 ,
202425.600211374 −40973.2993467975) " .

Listing 1.1. Snapshot of the Atlas data exported to the RDF database

The full RDF graph database on which this paper is based is available in a
public code repository4.

3.2 Construction of topological maps

A topological map abstracts metric information and represents, in a bidirectional
graph (unlike the RDF graphs), how spaces are connected to each other. In topo-
logical graphs for robot navigation, nodes represent spaces, edges that connect
nodes represent a direct connection between two spaces that can be navigated
by a robot. For example, when a room is connected to a corridor via a door, the
room and the corridor would be represented as nodes with a bidirectional edge.
The edges are thus identical to the bot:Interfaces in the LBD graph. Edges are
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Code in RDF Type Description
Class definitions

bot:Space node class of type space (BOT ontology)
bot:Interface node class of type Interface (BOT ontology)
bot:adjacentElement edge sub elements of a subject (BOT ontology)
beo:Wall node type definition of wall (BEO ontology)
beo:Door__DOOR node type definition of door (BEO ontology)
beo:Column__COLUMN node type definition of column (BEO ontology)
beo:CurtainWall node type definition of curtainwalls (BEO ontology)
props:number edge Identification number of a subject (e.g. space)
props:level edge Floor containing the subject
geom:asWKT edge 2D coordinates of an object (WKT representation)

Instances example
inst:space_xx node Space instance
inst:interface_xx node Interface instance
inst:wall_xx node Wall instance
inst:door_xx node Door instance
inst:column_xx node Column instance
inst:curtainWall_xx node Curtain wall instance

Table 1. Overview of the RDF classes and instances that are relevant for this paper.
Classes are either defined in a BOT ontology [21] or a BEO ontology[20]; geometry
representation is done in a simple WKT string literal with a local coordinate reference
system.

labelled with a cost which represents the effort needed to go from one space to
the other. A typical example of effort is the metric distance between two adjacent
nodes. When a topological map is available, it can be used for path planning,
i.e., a robot can compute the optimal path to go from an initial space to a target
space by minimizing the cost [23].

In order to construct a topological map from the building digital twin, we
start from the observation that two spaces are connected (i.e. they share an edge
in the topological graph) if they share a door. From this observation, the first
query reports all spaces X and Y of a certain level of the building that have as
adjacent element the same door. This is realized by the SPARQL code available
in the accompanying public code repository4 whose pseudocode is reported in
Algorithm 1. A graphical visualization of the derived topological map is shown
in Figure 2. It is important to notice that the topological map obtained is not
yet ready to be used for path planning because there is no cost associated to the
edges. By deriving a metric map of the environment we are also able to derive
such a cost based on metric distance and complete the topological map. The
method proposed to derive a metric map is described in Section 3.3.

3.3 Construction of metric maps

A metric map describes the geometrical layout of a space which is mostly defined
by structural elements such as walls, curtain walls, columns and doors. A metric
map is commonly used by robots for different purposes such as localization and
path planning [23].

It is important to notice that the metric map derived by the proposed ap-
proach incorporates structural information only and does not represent movable
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Fig. 2. Partial topological map of the Atlas building. Nodes represent rooms. Edges are
labelled with costs which represent the distance between two adjacent nodes expressed
in dm as outlined in Section 3.3.

Algorithm 1 Query for the extraction of the topological map. All spaces that
share a door are extracted. The SPARQL implementation is available in the
accompanying public code repository4.
1: Select spaceX , spaceY and door
2: Where
3: spaceX is on building level N
4: spaceX has at least one adjacent element of type ’Door’
5: geometry of ’Door’ is assigned to variable door
6: spaceY is on building level N
7: spaceY has door as adjacent element
8: If spaceX is equal to spaceY Then discard the tuple

furniture such as bookshelves, tables, chairs and beds, as this information was
not modelled nor exported from the BIM model. The latter could be included in
metric maps when a robot recognizes the presence of such objects by its percep-
tion algorithms and updates the building digital twin with this new information.
It is also important to notice that the geometry reported in a metric map can
be 2D or 3D. Data exported from a BIM model can support both types, yet,
in the research presented in this paper, we only consider 2D geometry. This 2D
geometry can easily be obtained using the Revit API by retrieving all elements
bounding a space, and then retrieving its 2D line representations.

The metric map is constructed by extracting the geometry of each space
that composes a building (= boundary lines of bot:interfaces). The SPARQL
query to retrieve such information with related geometry description per space
of the building is available in the accompanying public code repository 4. The
pseudo-code of the query is reported in Algorithm 2.
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Algorithm 2 Query for the extraction of the metric map. All structural elements
that are interfaces of a space are retrieved with their 2D geometry. The SPARQL
implementation is available in the accompanying public code repository4.
1: Select space, walls, curtainwalls, doors and columns
2: Where
3: element is a wall
4: element is an interface of the space
5: assign 2D geometry of the interface to variable walls
6: Union
7: element is a curtainwall
8: element is an interface of the space
9: assign 2D geometry of the interface to variable curtainwalls
10: Union
11: element is a door
12: element is an interface of the space
13: assign 2D geometry of the interface to variable doors
14: Union
15: element is a column
16: element is an interface of the space
17: assign 2D geometry of the interface to variable columns

A partial visualization of the metric map derived by applying Algorithm 2 to
the building digital twin of Atlas is shown in Figure 3. In this paper, the metric
map is used to assign a cost to the edges of the topological graph following the
procedure reported in Algorithm 3.

Algorithm 3 Algorithm used to assign a cost to the edges between adjacent
nodes of the topological graph. The implementation is available in the accom-
panying public code repository4.
1: find all the adjacent elements (walls, columns and curtainwalls) belonging to spaceA
2: find all the adjacent elements (walls, columns and curtainwalls) belonging to spaceB
3: Get midpoint coordinates for both spaceA (AxAy) and spaceB (BxBy) by acquiring

their average X and Y coordinates
4: find the midpoint coordinates of the door (dxdy) connecting spaceA and spaceB
5: Determine a cost by taking the shortest distance from midpoint spaceA

to the door and from the door to spaceB
√

(AX − dx)2 + (Ay − dy)2 +√
(Bx − dx)2 + (By − dy)2

4 Results

In this section, we show how the derived topological and metric maps can be
used to compute an optimal path to allow the robot to navigate between different
spaces in the building.
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Fig. 3. Partial metric map. Red dots represent the middle point of each space or door.
The dashed line indicates the Euclidean distance between points.

4.1 Computing the cost-optimal sequence of spaces

The topological map derived in Section 3.2 with related costs derived in Sec-
tion 3.3 can be used to determine the most cost effective path to navigate from
a space X to a space Y in a building as a sequence of spaces to be visited. As
an example, we compute the shortest path to go from space 3 to space 4 by
applying the A* algorithm [23] to the topological map that is (partially) shown
in Figure 2. The result is that the optimal space sequence is space 3 followed by
space 5 followed by space 4.

4.2 Computing the optimal path within a space

Once the order of spaces to be visited is known, a robot can compute an optimal
path to navigate within each space. To this end, the metric map is discretized
and converted to an occupancy grid map, i.e. the map is converted into a grid
with walls, curtain walls and columns indicating space a robot cannot traverse
and all the rest indicating space the robot can traverse. The chosen dimension
of each square cell is 1 dm. The obtained occupancy grid map is input to the A*
algorithm [12] which is used to compute the shortest path within a space pre-
venting robot collisions with structural obstacles. Note that doors are considered
traversable space.

5 Discussion and conclusion

We presented queries to extract topological and metric maps from a building
digital twin represented by an RDF graph database populated by data extracted
from a BIM model. We demonstrated that metric and topological maps can be
derived from the extracted data and used for robotic path planning.

The connection between building digital twin and robotics is still in its in-
fancy though and several aspects of the work presented call for further investi-
gation. The initial data from a BIM model might not match the actual layout of
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Metric map with rooms 3, 4 and 5 Room 3

Room 5 Room 4

Fig. 4. Sequences of generated path per space. The green circle represents the robot
starting point, the red line is the computed optimal path, the black lines are structural
obstacles, the x is the destination point. Grid discretization is set at 1 dm.

the building, small errors in dimensions as well as modelling (e.g., actual doors
are not present in the original BIM model) are to be expected. In this sense
we regard the building digital twin as a living representation of a building and
corrections from the robot are to be expected. When and how to provide such
corrections is left to future research.

The semantic information derived from the BIMmodel was used, in this work,
to enrich a purely metric map which from which paths for robot navigation were
derived. We can further exploit the semantic information for robot navigation
by, for example, make prediction of humans’ motion intentions in a similar way
as reported by Houtman et al. [16].

The data extraction from BIM to the building digital twin depends on a
REVIT plugin that was developed for this project. The plugin is dependent on
the modelling convention adopted when creating the BIM and outputs data in a
standard format. The quality of data as well as the effort needed to create such
a plugin might depend largely on the BIM modelling convention. Providing and
following specific guidelines would be beneficial to speed up the use of BIM and
building digital twins for autonomous robot navigation. Alternatively, the use
of IFC could be considered, as was previously investigated in [14], yet also the
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quality of this export depends a lot on the same modelling guidelines and does
not really resolve that specific challenge.
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