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Abstract

With the widespread application of fingerprint identification systems, fraudulent attacks based on forged fingerprints have
gradually increased, so it is very important to distinguish the authenticity of fingerprints. Fingerprint liveness detection tech-
nology was proposed to slove this problem. In order to effectively integrate advantages of existing algorithms, this paper
proposes an adaptive feature optimization module filtering distinctive multi-modal features. Firstly, we extract the ROI of fin-
gerprint images and unify them to the same size as subsequent input. Secondly, three convolutional neural networks(CNN)-
AlexNet, VGG16 and ResNet, are trained through processed images, whose the last fully connected layer as fingerprint
feature. Then genetic algorithm is used to assign different weights to extracted features through these networks, which
retain distinctive parts and eliminate invalid parts. Finally, considering that the features are extracted from CNN, optimized
features are input to the fully connected layer, and then fake fingerprints are identified by softmax function. Experiments
show that when feature dimensions of three networks output are 512, feature optimization module proposed can improve
the detection accuracy by an average of 1.0% in the 2011 Livdet database, which finds out the more different parts of features

extracted by the multi-modal network, enhancing fingerprint liveness detection performance.
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1. Introduction

In a highly information-based modern society, peo-
ple often need to use passwords for identity authentica-
tion to obtain access to various accounts. Therefore, the
password has become direct target of numerous hack-
ers [1]. News about economic losses of users caused
by theft of various passwords is endless, which means
this traditional identity authentication scheme has se-
rious security risks. In order to solve this problem,
many new methods have been proposed and adopted,
such as USB KEY, SMS password, dynamic password,
etc. Among them, the authentication method based on
biometrics has been favored by people. Compared with
other identity authentication methods, this method is
simple, fast and reliable, so it has been used widely in
all aspects of people’s social life. For instance, lots of
business units check attendance of employees through
fingerprint, customs in many countries will utilize fin-
gerprints to authenticate immigrants, and smartphones
use fingerprints to authenticate their identity or achieve
quick payment [2, 3, 4, 5].

However, fingerprint authentication also has certain
security risks [6]. For the one hand, human fingerprints
are easily stolen and counterfeiters can imitate user fin-
gerprints to achieve illegal authentication; For the other
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Figure 1: The process of making fake fingerprints. The left
picture is collaborative, requiring the cooperation of the user;
the right picture is non-cooperative, where fingerprints are
forged by stealing fingerprint traces left by the user. Gener-
ally, collaborative methods can obtain higher-quality forged
fingerprints.

hand, people also can copy fake fingerprints for them-
selves to deceive the attendance system, as shown in
Fig.1. These fake fingerprints can be made of silica gel,
gelatin, EcoFlex, Modasil and other materials. In addi-
tion, with the development of deep learning technology,
generative adversarial network can also generate suffi-
ciently realistic fingerprint images. Forged fingerprint
attacks are one of the biggest threats to fingerprint iden-
tification systems, which greatly reduce the reliability
of the system and put users’ private information at risk.
Hence, as an important auxiliary algorithm of finger-
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print identification system to identify authentic finger-
prints, fingerprint liveness detection has become an aca-
demic research hotspot now.

2. Related Work

Nowadays, fingerprint liveness detection(FLD) al-
gorithms are mainly divided into two categories:
hardware-based FLD and software-based FLD [7]. The
former uses additional professional equipment to iden-
tify the authenticity of fingerprint images by measuring
skin temperature, conductivity, blood pressure, blood
oxygen and other vital signs. Although this method
can achieve great detection accuracy, expensive equip-
ment is easy for illegal users to find loopholes because
of single identification method. With image process-
ing technology, the latter analyze the difference be-
tween real and fake fingerprint images for identification.
Compared with the former, the latter is more flexible,
save costs, simplify operations and minimize additional
equipment [8, 9, 10]. Therefore, this method is also the
current research focus of fingerprint liveness detection.
Existing software-based algorithms can be divided into
three categories: traditional FLD, FLD based on texture
features and FLD based on deep learning.

2.1. Traditional FLD

The traditional fingerprint liveness detection algorithm
designs an descriptor to extract distinctive features be-
tween real and fake fingerprint images through the
heuristic algorithm. FLD based on sweat hole is the ear-
liest proposed fingerprint liveness detection algorithm.
While recognizing high-resolution fingerprint images,
the quality of artificial fingerprint images is often worse
than that of the real. On account of rougher surface, de-
tail of fake fingerprints is much weaker than the real. In
consequence, Moon [11] et al proposed an idea of FLD
based on image quality, which denoises and reconstructs
fingerprint images by wavelet. The noise residuals be-
tween reconstructed and original images are calculated
to authenticate fingerprints. When the finger presses
and rotates on the sensor, real fingerprints can produce
better elastic deformation than the fake. In consequence,
Antonelli [12] et al proposed FLD based on fingerprint
skin elastic deformation for the first time. In the process
of imitating fingerprints, sweat holes on the ridge of the
finger’s epidermis are difficult to replicate. Accordingly,
FLD based on sweat holes is proposed. Manivanan [13]
et al used a high-pass filter to extract effective sweat hole
features and a correlation filter to locate sweat holes.

2.2. FLD based on texture features

Although fingerprint texture cannot be distinguished by
human eyes, it is a common feature in fingerprint im-
ages and represented by the gray distribution of center
pixels and neighboring pixels. Common texture feature
descriptors include Local Binary Pattern(LBP) [14], Bi-
nary Statistical Image Feature(BSIF) [15], Local Phase
Quantization(LPQ) [16], Histogram of Gradient Direc-
tion(HOG) [17], etc. Jhat [18] et al proposed FLD based
on gray-level independence to verify and distinguish the
liveness of fingerprints. Yuan [19] et al calculated pa-
rameters of the co-occurrence matrix as features of the
fingerprint image to authenticate fingerprints.

2.3. FLD based on deep learning

According to different classification tasks, deep neu-
ral networks can complete complex mapping and fea-
ture extraction through self-learning, which is simpler.
Nogueira [20] et al introduced Convolutional Neural
Network (CNN) technology to fingerprint liveness de-
tection. They designed a random model based on CNN
as the feature extractor, took the preprocessed images
as the input and obtained the best detection results at
the time. While achieving better accuracy, CNN mod-
els also have some shortcomings. For example, a fixed-
scale input image must be used in the input layer. Al-
though cropping or scaling can solve the scale problem
well, they can easily lead to the loss of some key texture
information and reduction of image resolution, thereby
weakening the generalization performance. To solve
this problem, Yuan [21] et al proposed a scale-equalized
deep convolutional neural network (DCNNISE) model
utilizing the retained subtle texture information to fur-
ther improve the detection performance of forged finger-
prints. Moreover, the confusion matrix was applied to
FLD as performance indicator in the performance evalu-
ation for the first time. Zhang [22] et al further found
that CNN model used for multi-classification of natu-
ral images cannot obtain good accuracy in fingerprint
liveness detection, because it ignored the difference be-
tween natural and fingerprint images and the shallower
network structure cannot mine deep features of finger-
prints. Therefore, they proposed a lightweight but pow-
erful network structure Slim-ResCNN.At present, Agar-
wal S [23] et al found that existing FLD algorithms per-
formed well when test dataset and train dataset sample
distribution are the same, but result of cross-sensor fin-
gerprint liveness detection is bad. In order to enhance
the generalization, robustness and operability of FLD al-
gorithm, they believed that the learning model need be
adaptive to the data and proposed a general EaZy model.
This adaptability in the context of cross-sensor datasets
embodies significant advantages.



In this paper, the main contributions are summarized
as follows:

(1) Multimodal fingerprint feature extraction Ac-
cording to different classification tasks, CNNs can
complete complex mapping through self-learning
and extract high-level features of image. However,
due to various depth and architecture of CNNs,
the characteristics of real and fake fingerprints ex-
tracted by different network models are quite dif-
ferent, making the classifier have stronger perfor-
mance. In order to integrate the excellent character-
istics of multiple CNNs, this paper attempts to use
multimodal neural network models to extract vari-
ous fingerprint features to make the difference be-
tween real and fake fingerprints more obvious.

(2) Genetic optimization module Full concatenation
of multi-dimensional features has big defects. In ad-
dition, the feature extraction method based on CNN
is similar to the black box operation, which means
extracted fingerprint features are not known, mak-
ing it impossible to determine the optimization di-
rection of features. In consequence, genetic algo-
rithm is innovatively utilized to optimize extracted
fingerprint feature, which automatically select the
obvious distinguishing part, so as to solve the prob-
lem of unknown features. By imitating the genetic
processes of life, such as crossover, mutation, and
selection, the optimal real and fake fingerprint fea-
tures are found in the fused feature space. Based
on the trained CNN feature extractors, initialized
feature populations are put into the fully connected
layer to calculate the fitness. Through mutation and
crossover operators, excellent performance genetic
information from parents is inherited and new genes
are generated, promoting feature evolution.

Broad adaptability This paper carried out model
training and testing on 8 Livedet Datasets (2011,
2013) [24, 25]. In order to improve the stability
and generalization of the trained model, some op-
erations were used to expand the training set, in-
cluding rotation, brightening and flipping. The ex-
perimental results show that the accuracy of finger-
print liveness detection on multiple data sets is sig-
nificantly improved in the highest accuracy of the
modal network, which proves the effectiveness and
wide adaptability of our model.

3. Methodology

3.1. Multimodal Deep Feature Learning

Without expert knowledge, deep neural networks
have ability to automatically learn pixel distribution of
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Figure 2: A flow diagram of FLD via learning multi-modal
deep features

image. By narrowing the gap between model output and
label, model parameters are updated until they converge
to a certain limit, thereby completing the complex map-
ping from two-dimensional images to one-dimensional
features. The high-level features extracted by the deep
neural network are excellent discriminativeness, show-
ing amazing performance in image recognition and clas-
sification. In the field of fingerprint liveness detection,
CNN models can also achieve good identification re-
sults and become a research hotspot in this area, such
as AlexNet, VGG16, ResNet, etc. These networks have
many differences in the depth level of the model or the
width level of the convolutional layer, and the learned
fingerprint features will also be multifarious. In order to
make full use of the merits of various networks, this pa-
per concatenates features of multiple convolutional net-
works as general features of model reducing difficulty of
forged fingerprint detection.
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Figure 3: Genetic optimization module in our method
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In the field of FLD, some scholars believe that to al-
leviate the shortage of target samples, transfer learning
needs to be applied to the model. [26] They use 1.2 mil-
lion ImageNet images (source task) to pre-train the con-
volutional network, and stochastic gradient descent is
used to optimize error losses. After training, all trained
parameters of the convolutional layer in the source task
are transferred to FLD. However, we think that this ap-
proach still loses part of the characteristics of the fin-
gerprint image, so the pre-training step should be aban-
doned. We select three classic CNNs——AlexNet, VGG16
and ResNet, as feature extractors, hoping to get features
with different concerns. After training the CNN, freeze
network parameters and take out the penultimate fully



connected layer as extracted features. Since the different
dimensions of this layer will affect the output, fewer fea-
tures are difficult to support the classification of true and
false fingerprints. In addition, more features can also
make model training difficult and key features cannot be
extracted. Therefore, we selected multiple dimensions
for experimentation, such as 256, 512 and 1024.

3.2. Genetic Algorithm

Because excessive features will cause dimensional dis-
asters, it is obviously not advisable to perform fully con-
nected operations for multiple features [27]. If only
some of the features are selected to construct the model,
the difficulty of the learning task can be reduced and the
interpretability of the model can also be increased. How-
ever, how to filter and process these characteristics is
a big problem. Traditional feature selection algorithms
are proposed by researchers based on the analysis of
feature defects. For neural networks, unascertainty of
feature extraction process masks the source of the fea-
ture. Genetic algorithms can adaptively find better solu-
tions from the feature space, without other selection al-
gorithms. Better features are highlighted after a series of
biologically inspired operations, such as crossover, mu-
tation, and selection.

The genetic algorithm mainly includes five steps, as
shown in fig.3. Firstly, with value of Oor 1, N chromo-
somes are randomly generated as the initial population,
which is the same as feature length. 0 means discarding
the corresponding location feature value, and 1 means
selecting. Secondly, the single-layer fully connected
layer as a classifier, the characteristics of the fingerprint
image at the corresponding position of the chromosome
are separated for train and evaluation. Record the clas-
sification accuracy of the test set as fitness. Thirdly, ev-
ery chromosome in the existing population is selected as
the parent chromosome with evolutionary probability to
produce offspring. The evolution probability calculation
formula is as follows:

E-M
h=——0,
Y=o (F = M)

where F; is the fitness of the ith chromosome, N is the
number of chromosomes, P; is the probability that the
i"" chromosome is selected, and M is the fitness penalty
value.

)

Algorithm 1 Multimodal feature weight learning

Input: The dataset of fingerprint D; The size of
initial population N; The fitness penalty value
M; The maximum number of iterations T;
Output: In T generation, the feature chromosome
with the greatest fitness;
1: Population Initizlization: Initialize N chro-
mosomes with a length of S, the value of which
is randomly generated 0 or 1;
2: fori=1,---,T do

3: Mutation: According to the evolutionary

4: probability, a gene of length L in chromos

5: -ome is reinitializedor reversed randomly.

6: Crossover: Two parents are selected from

7: the population for single-point crossover

8: to produce new offspring.

9: Fitness: Extract the fingerprint feature of
10: testset at the corresponding position in the
11: chromosome, whose accuracy is used as
12: the fitness.

13: Selection: The original fitness minus pena
14: -Ity value M is used as the new fitness. The
15: roulette algorithm generates survival prob
16: -ability of individual, which means poorly
17: adapted are more likely to be eliminated.
18: end for

The way where the proportion of the fitness of indi-
vidual chromosomes in the population is as the evolu-
tion probability is called the roulette wheel algorithm.
Due to the high accuracy of the sub-network in the
model, the chromosomes with higher fitness cannot ob-
tain an advantage under the roulette wheel algorithm.
So we take the lowest precision in the sub-network as
a penalty value, and highlight the gap between chromo-
somes by introducing a fitness penalty value. Through
roulette wheel selection, chromosomes with high fitness
are more likely to be retained as parental chromosomes,
whose structural information is passed on to the off-
spring. Fourthly, on the basis of inheriting parental chro-
mosomes, offspring chromosomes will have mutations
in a certain length of gene encoding. Some randomly
generated or inverted gene codes replace the original
part with a certain probability, which means that certain
features are reselected. The mutation of gene coding
provides the possibility of population evolution. Finally,
the roulette wheel selection method is utilized to select
parents with greater fitness for crossover from popula-
tion. Cut off the two parental chromosomes (divided
into upper and lower parts) at the same position, and ex-
change the upper parts to form two brand-new chromo-
somes. Each chromosome inherits powerful genes from
both parents. After the gene mutation and crossover of
the ¢t generation, many offspring will be produced and



combined with the parental chromosomes to form a new
population. The k chromosomes with the highest fitness
are selected as the (¢t + 1") generation population and
continue to evolve until the set generation threshold is
reached. Choose the best-performing individual as the
optimal solution.

4. Experiments

4.1. Dataset

In this paper, LivDet 2011 and 2013 datasets are used
to conduct experiments. The entire data set includes
16470 images as the training set and 16439 images as the
test set. Six different sensors (Biometrika, CrossMatch,
Identix, etc.) are used for image acquisition. The fake
fingerprint data set includes 9 different materials (Body-
Double, EcoFlex, gelatin, latex, Silgum, WoodGlue, etc.)
to make fake fingerprint images. But the scale of the
image is different, so it is very necessary to unify the
size of the image. This paper solves the traditional oper-
ations that require cropping and zooming through ROI
operations.The specific information of LivDet Datasets
is shown in the following table:

Table 1
Details of the LivDet datasets.

Image
Dataset Sensor train/test size

Biometrika(Bio) ~ 2000/2000 312x372

LivDet2011 DigitalPersona(Dig) 2004/2000 355x391
Italdata(lta) 2000/2000 640x480

Sagem(Sag) 2016/2036 352x384

Biometrika(Bio) ~ 2000/2000 312x372

LivDet2013 Italdata(lta) 2000/2000 640x480
Crossmatch(Cro)  2250/2250 800x750

Swipe(Swi) 2200/2153 208x1500

4.2. Performance evaluation ctiteria

In the field of fingerprint liveness detection, the aver-
age classification error (ACE) is a widely accepted evalu-
ation standard. The ACE is defined as the average value
of false reject rate (FRR) and false accept rate (FAR), cal-
culated as Eq.(2).

FRR -',2- F AR, @

Based on the original VGG16, AlexNet and
ResNet18 models, the final fully connected layer are
set to 512 dimensions.Through four different operations

ACE =

(small angle rotation, flip, zoom, and brightness), dataset
is enhanced to train each sub-network (15 training
epochs with learning rate 0.0002). Then, freeze the net-
work parameters as the feature extractor of our model.
Next, the genetic algorithm is implemented in the fin-
gerprint features extracted by the above-mentioned sub-
network to find the parts with significant differences.
We set the initial population size N to 10, the maximum
evolutionary generation T to 20, and the mutation prob-
ability of each chromosome to 0.05. According to the
roulette algorithm to determine the probability of each
chromosome being selected as a parent, all parents have
a 50% probability of crossover operations with other par-
ents. In the selection operation, the roulette algorithm is
still used to eliminate individuals with lower fitness and
maintain the population size N. The experimental results
show that the accuracy of FLD is about 1% higher than
the highest in the sub-network after screening by ge-
netic algorithm. The three sub-networks selected in this
paper have the same structure as in the original paper,
except that the dimensions of the final fully connected
layer are changed. Table 2 shows that the accuracy of the
method proposed on the LivDet2011 dataset far exceeds
that of other algorithms. Although not every dataset
achieves the best accuracy on the LivDet2013 data set,
our method is not far from it and the average accuracy
also has competitiveness.

5. Conclusion

Due to the difference in the depth and architecture
of CNN, the fingerprint features extracted by each net-
work are not the same. In order to combine their ad-
vantages, this paper concatenated the fingerprint fea-
tures extracted by multiple CNNs. In addition, the un-
known feature of neural network extraction makes it im-
possible to find the optimization direction of the connec-
tion feature. Regarding the issue above, we introduce a
FLD algorithm based on multi-modal features, and uses
genetic algorithm to optimize these features. Through
genetic algorithm, concatenated features are optimized
adaptively and the difference features between real and
fake fingerprints are deeply mined. The experimental
results show that after the optimization of the genetic
algorithm, the accuracy of FLD is improved by about 1%
on the basis of the highest accuracy of the sub-network.
Compared with other FLD algorithms, our method also
has better accuracy and stability.
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Table 2

The Average Classification Error of different models when datasets are LivDet2011 and LivDet 2013 repectively.

Dataset Model The Average Classification Error ACE in (%)

Bio Dig Ita Sag Average
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Bio Cro Ita Swi Ave
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