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Abstract

Understanding the behavior of human drivers is critical for
the successful deployment of autonomous vehicles. Driver
modeling is challenging due to the uncertainty inherent in hu-
man behavior and the complex interactions among drivers.
Recent efforts have focused on black-box models that are
highly expressive but lack interpretability of underlying dy-
namics. White-box models, on the other hand, are more in-
terpretable as they are typically defined by relatively sim-
ple rules. They can prevent undesirable outcomes but can-
not model the variability of human behavior. This paper
presents a gray-box driver model that combines rule-based
models with data-driven learning. The parameters of rule-
based driver models are learned from real-world data using
expectation-maximization. We perform experiments on in-
teractive driving scenarios with lane changes and evaluate
our model based on prediction accuracy, data efficiency, and
safety. Results show that our model can accurately replicate
human driver behavior with less data.

Introduction
Developing a realistic driver model that can capture human
driving behavior is essential for the successful integration of
autonomous vehicles into existing roadways. Autonomous
vehicles, being safety-critical and complex systems, are re-
quired to comply with automotive safety standards. Tradi-
tionally, ISO 26262 has been the standard for functional
safety of road vehicles (International Organization for Stan-
dardization 2011). It follows the principle that safety cannot
be absolute, giving rise to the concept of tolerable risk. More
recently, ISO/PAS 21448 was devised as the safety stan-
dard for driver assistance systems (International Organiza-
tion for Standardization 2019). It accounts for any potential
hazards despite the absence of system failures, and provides
guidance to achieve the safety of the intended functional-
ity (SOTIF). For validating safety-critical systems such as
autonomous vehicles, simulations can be useful as they al-
low for testing of various scenarios without risking injury
or death. However, the simulations need to employ realistic
driver models in order to accurately evaluate the autonomous
vehicles.
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Various approaches have been explored to model human
drivers. Recent studies have focused on black-box mod-
els including recurrent neural networks (Morton, Wheeler,
and Kochenderfer 2016; Alahi et al. 2016; Zyner, Worrall,
and Nebot 2019), generative adversarial networks (Gupta
et al. 2018; Kosaraju et al. 2019), variational autoencoders
(Ivanovic et al. 2020), and generative adversarial imitation
learning (Kuefler et al. 2017; Bhattacharyya et al. 2019,
2020a). Although these expressive models can learn com-
plex behaviors from data, they not only lack interpretability
of the underlying dynamics but also can result in undesirable
behaviors such as collision (Bhattacharyya et al. 2021).

On the other end of the spectrum, researchers have de-
veloped white-box models, or rule-based models, where the
driver response is governed by a small set of predefined
rules. White-box models, such as IDM (Treiber, Hennecke,
and Helbing 2000) for car following and MOBIL (Kest-
ing, Treiber, and Helbing 2007) for lane changing, are in-
terpretable and thus able to prevent unacceptable behavior.
However, they cannot model the inherent stochasticity of hu-
man behavior. To mitigate the limitations of both black-box
and white-box models, Bhattacharyya et al. (2020b, 2021)
developed a gray-box model where the parameters of an in-
terpretable rule-based model are learned as probability dis-
tributions from data. For one-dimensional driving scenarios
with no lane change, they estimate the parameters of the
stochastic IDM (Treiber and Kesting 2017) using particle
filtering. Because this model learns the underlying distribu-
tions by repeatedly sampling a set of particles, its computa-
tional complexity increases with the number of samples.

In this paper, we first extend the work of Bhattacharyya
et al. (2021) to a two-dimensional driver model. The driver
behavior is governed by the combination of a car-following
model and a lane-changing model. Incorporating the lane-
changing model adds more complexity and uncertainty to
the interactions among multiple vehicles. We also propose a
methodology to learn the parameters of the two-dimensional
driver model from data using expectation-maximization
(EM). One advantage of using EM is that it allows us to use
expert knowledge to define the distributions over the param-
eters and measurements. Additionally, it is guaranteed that
the likelihood monotonically increases with each iteration
(McLachlan and Krishnan 2007). In this paper, we validate
the hypothesis that our model can improve the accuracy and



data efficiency by performing experiments using a real world
vehicle trajectory dataset.

Rule-based Driver Models
The driver behavior can be decomposed into two compo-
nents: the longitudinal motion and the lane change behav-
ior, which governs the lateral motion. This paper adopts
a stochastic extension of Intelligent Driver Model (IDM)
(Treiber and Kesting 2017) to model the longitudinal mo-
tion, and the Minimizing Overall Braking Induced by Lane
change (MOBIL) model (Kesting, Treiber, and Helbing
2007) for the lane change behavior.

Stochastic IDM
The IDM (Treiber, Hennecke, and Helbing 2000) determines
the longitudinal acceleration so the vehicle drives at the de-
sired speed while maintaining safe separation from the vehi-
cle in front. The input variables into the model are the abso-
lute speed of ego vehicle ẋ(t), the relative speed with respect
to its preceding vehicle ∆ẋ(t), and the distance gap between
two vehicles d(t), at the current timestep t. The acceleration
ẍIDM is

ẍIDM = amax

[
1−

(
ẋ(t)

vdes

)4

−
(
ddes

d(t)

)2
]
, (1)

where ddes is the desired distance gap given by

ddes = dmin + τ ẋ(t)− ẋ(t)∆ẋ(t)

2
√
amaxb

. (2)

The output variables ddes and ẍIDM are governed by sev-
eral parameters. The desired speed is vdes. The minimum al-
lowable distance gap is dmin and the desired time gap to the
preceding vehicle is τ . The limits on the acceleration and
deceleration are amax and bsafe, respectively.

In order to encode the inherent stochasticity in human
driving behavior, we use the stochastic IDM (sIDM) (Treiber
and Kesting 2017), which introduces an additional variance
term σIDM. In this model, the acceleration output for each
vehicle is sampled from the following Gaussian distribution
with the mean ẍIDM given in (1):

ẍsIDM ∼ N (ẍIDM, σ2
IDM) (3)

MOBIL
The MOBIL (Kesting, Treiber, and Helbing 2007) model de-
termines whether to make a lane change in order to maxi-
mize the longitudinal acceleration of the ego vehicle and its
neighbors. It initiates a lane change maneuver if the follow-
ing conditions are met:

˜̈xego − ẍego + p
(
˜̈xnew − ẍnew + ˜̈xold − ẍold

)
> ∆ath (4)

−˜̈xnew ≤ bsafe (5)

In (4), the quantities with tildes are calculated assuming
a lane change. Subscripts ·ego, ·old, and ·new are associated
with the ego vehicle, the follower before changing lane, and
the follower after changing lane, respectively. The parame-
ter p ∈ [0, 1] is the politeness factor, which represents how

much the ego vehicle values the acceleration increase of its
neighbors. The threshold of acceleration increase is ∆ath.
The model decides to change lane only if a weighted sum
of the acceleration increase of the ego vehicle and that of
the neighbors exceeds this threshold. Equation (5) is a safety
criterion to ensure that, if the lane change is made, the decel-
eration of the following car does not exceed the safe braking
limit bsafe.

Vehicle Dynamics
Given the acceleration output from (3) and the lane-
changing action from (4) and (5), the velocity and position of
each vehicle can be updated according to the following dy-
namics. The longitudinal velocity and position for the next
time step are

ẋt+1 = ẋt + ẍsIDM∆t (6)

xt+1 = xt + ẋt∆t+
1

2
ẍsIDM∆t2. (7)

where ẍsIDM is the sampled acceleration output. Unless a
lane change is initiated, all vehicles maintain their lateral po-
sition along their path. Once a vehicle starts changing lane,
the lateral movement is controlled by a PD controller (Kest-
ing, Treiber, and Helbing 2007) until it reaches the center of
the destination lane.

Driver Modeling using
Expectation-Maximization

Throughout this section, x = {(x(i), y(i))}Ni=1 denotes a set
of known variables, that is, the longitudinal and lateral po-
sition measurements for each vehicle. We use z to denote a
vector of latent variables, in particular, the set of unknown
IDM and MOBIL parameters for each vehicle. Our objective
is to infer these latent parameters z by observing x. In this
paper, we assume a discrete distribution over z parameter-
ized by θ.

Problem Formulation
Assuming z is given, the probability of the ith vehicle
changing lanes at each timestep is defined in a manner sim-
ilar to MOBIL with

f
(i)
lane(x, z) =

{
1

1+e−λ(i)C
, if (5) is met

0, otherwise

where

C = ˜̈x(i)
ego − ẍ(i)

ego + p(i)
(
˜̈x(i)

new − ẍ(i)
new + ˜̈x

(i)
old − ẍ

(i)
old

)
−∆a

(i)
th .

(8)

Note that a sigmoid function is used to map the real-valued
C to the range of 0 and 1. This replaces the hard constraint in
(4) with a soft constraint, allowing us to incorporate stoch-
asiticity of the lane changing behavior into our model. We
also introduce a new parameter λ which governs the degree
of preference for switching lanes.



The likelihood of the next position x′(i) = (x′(i), y′(i))
is obtained by the weighted sum of two cases, the lane-
changing case and the car-following case, as follows:

p(x′(i) | x, z) = pchange(x
′(i) | x, z)f (i)

lane +

pfollow(x
′(i) | x, z)

(
1− f

(i)
lane

) (9)

Parameter Estimation using EM Algorithm
Our goal is to find θ that maximizes the log-likelihood of the
observations x. For the ith vehicle, the log-likelihood can be
written as

l(θ(i)) = log

Ti∏
t=1

p(x
(i)
t ; θ) (10)

=

Ti∑
t=1

log p(x
(i)
t ; θ) (11)

=

Ti∑
t=1

log
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z
(i)
t

p(x
(i)
t , z

(i)
t ; θ) (12)

=

Ti−1∑
t=0

log
∑
z
(i)
t

p(x
′(i)
t | z(i)t ,x

(i)
t )p(z

(i)
t ; θ). (13)

This holds from the properties of logarithms (11), the law of
total probability (12), and the conditional probability (13).
However, due to the summation over the latent variable z(i)t

inside the logarithm, θ(i) cannot be solved analytically. Ac-
cordingly, the parameters θ(i) are estimated based on EM
algorithm (Dempster, Laird, and Rubin 1977). It constructs
a tractable lower bound that contains a sum of logarithms as
follows:

l(θ(i)) =

Ti−1∑
t=0

log
∑
z
(i)
t

Qt(z
(i)
t )

p(x
′(i)
t | z(i)t ,xt)p(z

(i)
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(i)
t )

(14)
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z
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t

Qt(z
(i)
t ) log
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′(i)
t | z(i)t ,xt)p(z

(i)
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Qt(z
(i)
t )

(15)

where the inequality in (15) holds from Jensen’s inequality
and log-concavity. This holds with equality if and only if
Qt(z

(i)
t ) = p(z

(i)
t | x′(i)

t ,xt; θ)

The EM maximizes l(θ(i)) by iterating E-step and M-step
until convergence. In the E-step, we compute Qi(z

(i)
t ), the

posterior probabilities of z
(i)
t ’s given xt and θ. For each

timestep t,
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(i)
t ) := p(z
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Then in the M-step, we find the maximum likelihood es-
timates for θ based on Qi(z

(i)
t ) from the E-step:

θ∗ := argmax
θ′

n∑
i=1

Ti−1∑
t=0

∑
z
(i)
t

Qi(z
(i)
t ; θ) log

p(x
′(i)
t | z(i)t ,xt)p(z

(i)
t ; θ′)

Qi(z
(i)
t ; θ)

(17)

Experiments
In this section, we evaluate the performance of our trained
model on a real-world dataset. Using our EM approach, we
learn a distribution over four parameters: the desired longitu-
dinal speed vdes, the stochasticity parameter in sIDM (σIDM),
the politeness (p), and the lane-changing parameter (λ). We
define each model parameter to follow a multinomial distri-
bution, which allows us to work with discrete latent variables
in the EM algorithm. For the other IDM/MOBIL parameters,
we use the values provided in Table 1.

Once trained, we propagate simulated trajectories using
the estimated parameters. Given a scenario with the initial
position and velocity values of all vehicles, we iterate sam-
pling the model parameters from the distributions and up-
dating the position according to (7). Based on the simulated
trajectories, we evaluate our model in terms of prediction
accuracy, data efficiency, and safety.

Data Preprocessing
The proposed model is evaluated on a real-world dataset
called the INTERnational, Adversarial and Cooperative mo-
TION (INTERACTION) dataset (Zhan et al. 2019). The
dataset contains vehicle track data and roadway information
data from highly interactive driving scenarios with cooper-
ative and adversarial motions between drivers. In this work,
experiments are conducted on a highway scenario with lane
change and merging, shown in Fig. 1. We focus on the lane
changing behavior and the lane following behavior.

Each entry of the vehicle track data consists of timestamp,
track ID, position, velocity, orientation, vehicle length-

IDM parameter Symbol Value

Desired speed (m/s) vdes 33.3
Desired time gap (s) τ 1.5
Minimum acceptable gap (m) dmin 2.0
Max acceleration (m/s2) amax 1.4
Desired deceleration (m/s2) b 2.0

MOBIL parameter Symbol Value

Politeness p 0.5
Safe braking (m/s2) bsafe 2.0
Acceleration threshold (m/s2) ath 0.1

Table 1: IDM and MOBIL parameter values for the normal
driver type (Kesting, Treiber, and Helbing 2009; Sunberg, Ho, and
Kochenderfer 2017).



(a) A traffic scenario recorded from traffic cameras and drones (Zhan et al. 2019).

(b) A visualization of the processed vehicle tracks and roadway data.

Figure 1: A highway scenario with lane change and merging from the INTERACTION dataset (Zhan et al. 2019).

/width, and other information. We decompose the driver be-
havior into longitudinal and lateral motions with respect to
the lanes by transforming the variables from Cartesian coor-
dinates to Frenet coordinates. In Frenet coordinates, x rep-
resents the vehicle’s position (i.e. longitudinal displacement)
along the reference path, and y represents side-to-side posi-
tion (i.e. lateral displacement) relative to the reference path.
We define the reference path as the centerline of the lane
occupied by the vehicle.

Baselines
We compare the performance of our work against two base-
line models. The first baseline is the IDM+MOBIL model
using the default parameter values listed in Table 1. These
values define the normal driver class as done in prior work
(Kesting, Treiber, and Helbing 2009; Sunberg, Ho, and
Kochenderfer 2017). In addition, the stocasticity parameter
σIDM is set to zero, and the lane-changing actions are made
deterministically based on (4) and (5). This model represents
a purely rule-based, deterministic model.

The second model uses particle filtering (PF) to esti-
mate the distribution over the latent variables. We adopt the
method proposed by Bhattacharyya et al. (Bhattacharyya
et al. 2021) to learn the MOBIL parameters as well as the
IDM parameters. As in the EM approach, we use the default
values in Table 1 for the parameters not being trained.

Prediction Accuracy
The prediction accuracy is measured using the discrepancy
between the simulated trajectories and the ground truth tra-

jectories. We use the following two metrics introduced in
(Gupta et al. 2018):

1. Average Displacement Error (ADE): The average ℓ2 dis-
tance between the estimated points and the ground truth
points over all time steps in the prediction horizon T .
Then the value is averaged over n examples:

ADE =
1

nT

n∑
i=1

T∑
t=1

√(
x̂
(i)
t − x

(i)
t

)2

+
(
ŷ
(i)
t − y

(i)
t

)2

(18)

2. Final Displacement Error (FDE): The ℓ2 distance be-
tween the estimated final position and the ground truth
final position at the end of the prediction horizon T . Then
the value is averaged over n examples:

FDE =
1

n

n∑
i=1

√(
x̂
(i)
T − x

(i)
T

)2

+
(
ŷ
(i)
T − y

(i)
T

)2

(19)

Fig. 2 shows the ADE and FDE values for each model
over different prediction horizons. We observe that both the
PF and EM models are superior to the default model. For a
detailed comparison, we also report in Table 2 the ADE and
FDE of each model for 5-second duration and 10-second
duration. According to these metrics, the PF-based model
slightly outperforms the EM-based model, but their perfor-
mance are nearly equivalent. A possible reason for the dif-
ference in their performance is that the EM model makes a
stronger assumption about the data than the PF model.
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Figure 2: Average displacement error (ADE) and final dis-
placement error (FDE) over different time horizons.

ADE-5 ADE-10 FDE-5 FDE-10

Default 4.222 14.048 10.036 43.666
PF 1.527 5.809 4.144 17.459
EM 1.618 5.925 4.373 17.490

Table 2: Average displacement error (ADE) and the final dis-
placement error (FDE) in meters for 5-second duration and
10-second duration.

Data Efficiency
To evaluate the data efficiency, we train the models using
subsets of different sizes from our dataset and compare their
accuracy performance. Table 3 shows the ADE of the PF and
EM models using small, medium, and large datasets. The
small dataset contains only the first 10 data points of each
vehicle track. The medium dataset contains the first 50 data
points. The large dataset is the same as the original dataset
where each track has about 200 data points on average. This
experiment was not conducted on the default model because
it does not involve any learning. We observe that both PF
and EM models perform as poorly as the default model using
the small dataset. With the medium dataset, we see that the
performance of the EM model improved more than the PF
model, indicating it is more data efficient.

small medium large
(10 data points) (50 data points) (original)

Default – – 4.222
PF 4.113 3.381 1.527
EM 4.292 2.705 1.618

Table 3: Average displacement error in meters for 5-second
duration using different sized subsets of dataset.

Frequency collisions hard brakes

Default 0.0000 0
PF 0.0059 0
EM 0.0032 0

Table 4: Frequency of collisions and hard brakes in simu-
lated trajectories using our EM model and two baselines.

Safety
To evaluate the safety, we inspect the frequency of undesir-
able behaviors in the simulated trajectories. These behaviors
include collisions and hard brakes. When a vehicle is follow-
ing its lane, collisions are counted when the headway dis-
tance is less than the vehicle length. During lane-changing
period, collisions are counted when the ℓ2 distance to an-
other vehicle is less than 0.5 meters. Hard brakes are counted
when a vehicle decelerates faster than the safe braking limit
bsafe in (5).

Table 4 shows the frequency of collisions and hard brakes
observed in the simulated trajectories for each model. The
default model does not produce any collisions or hard
brakes, as both IDM and MOBIL are designed to be
collision-free. However, it suffers from poor prediction ac-
curacy as seen in Fig. 2. The PF and EM based model also
produce no hard breaking. This is because in (8), we de-
fined the probability to be positive only when (5) is satis-
fied. Collisions are observed in both PF and EM based model
because they are probabilistic models. It turns out that EM
based model achieves almost half the collision rate of the PF
based model.

Conclusion
This paper presented a methodology for modeling human
driver behavior that can efficiently learn a driver model with-
out sacrificing safety. Our gray-box model can learn the vari-
ability from large amounts of data available, and at the same
time, interpret the underlying dynamics of driving behavior.
We performed experiments on a real-world driving scenario
with lane changes and compared the performance our EM
based model with two baselines, the default IDM+MOBIL
model and the particle filtering based model. It was shown
that our model can generate trajectories that represent the
human driving driver in the real scenarios. The EM-based
model was able to achieve nearly equal prediction accuracy
to the PF based model with less data.

There are several potential directions for future work.
While we assumed the latent variables of the EM algorithm



follow multinomial distributions, future work can use dif-
ferent distributions with a weaker assumption to better rep-
resent the actual distributions of the model parameters. In
addition, we can evaluate the algorithms on other datasets
such as Next-Generation Simulation (NGSIM) (Colyar and
Halkias 2007). In addition, we can analyze the generaliz-
ability of the EM approach by applying it to other scenarios
including merging and roundabout.
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