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Abstract. Semantic segmentation is a crucial step in many Earth ob-
servation tasks. Large quantity of pixel-level annotation is required to
train deep networks for semantic segmentation. Earth observation tech-
niques are applied to varieties of applications and since classes vary
widely depending on the applications, therefore, domain knowledge is
often required to label Earth observation images, impeding availabil-
ity of labeled training data in many Earth observation applications. To
tackle these challenges, in this paper we propose an unsupervised seman-
tic segmentation method that can be trained using just a single unlabeled
scene. Remote sensing scenes are generally large. The proposed method
exploits this property to sample smaller patches from the larger scene
and uses deep clustering and contrastive learning to refine the weights of
a lightweight deep model composed of a series of the convolution layers
along with an embedded channel attention. After unsupervised training
on the target image/scene, the model automatically segregates the major
classes present in the scene and produces the segmentation map. Exper-
imental results on the Vaihingen dataset demonstrate the efficacy of the
proposed method.
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1 Introduction

Plethora of satellites equipped with High Resolution sensors have been launched
in the last decade. Additionally, unmanned aerial vehicles (UAVs) are now widely
available, thus generating a large volume of images for detailed Earth observation
(EO). Automatic parsing of such images is useful for various applications, includ-
ing disaster management [19] and urban monitoring [21]. The last decade also
witnessed the development of various deep learning methods that outperform
the previous methods on EO images. Their superior performance is attributed
to their capability to learn complex spatial features from large volume of labeled
data.
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A crucial step in understanding EO images is semantic segmentation, i.e.,
assigning a semantically meaningful class/category to each pixel in the image.
Semantic segmentation for natural images has progressed fast exploiting avail-
ability of vast training data and superior performance of convolutional neural
networks (CNNs). While CNN based methods have been adopted to the EO
images [17], their applicability in the EO has been limited due to the lack of
labeled data [13].

While the lack of training data offers a hurdle for segmentation of VHR EO
images, their large spatial size offers an advantage. Being representative of a
geographical area, EO scenes are generally large, e.g., each scene in the Potsdam
dataset (part of ISPRS semantic labeling dataset [1]) has a size of 6000 × 6000
pixels. While a typical image in the computer vision datasets [9] rarely captures
multiple instances of the same object in the same image, EO images may capture
even up to hundreds of instances of the same object (e.g., building) in a single
image/scene. Though most state-of-the-art semantic segmentation methods are
supervised [14, 18], there are few methods based on the concept of deep clus-
tering [22] that can work in unsupervised manner. The unsupervised paradigm
has also been extended for remote sensing images in context of multitemporal
analysis by exploiting temporal consistency between images in a time-series [21].
Inspired by their success, we propose an semantic segmentation method that
can learn the segmentation clusters in unsupervised manner from a single image
using a lightweight model. The proposed method employs deep clustering and
contrastive learning and produces segmentation map such that each label corre-
sponds to a semantically meaningful entity. The proposed method is trained on
a single scene only. The key contributions of this paper are as follows:

1. Proposing an unsupervised segmentation method that can be trained on a
single unlabeled EO scene.

2. Incorporating deep clustering and contrastive learning in same framework
for unsupervised segmentation.

Related works are discussed in Section 2. We define the problem statement and
detail the proposed single-scene segmentation method in Section 3. Experimental
validation is presented Section 4. We conclude the paper and discuss scope of
future research in Section 5.

2 Related Work

Considering relevance to our work, in this Section we briefly discuss deep seg-
mentation, unsupervised and self-supervised learning.

2.1 Deep segmentation

Most supervised methods for semantic segmentation rely on pixelwise classifica-
tion using a classifier that is trained using available reliable training pixels. Many
deep learning based supervised methods have been proposed in the literature [18,
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25, 4]. Most deep learning based approaches have an architecture consisting of
an encoder and a decoder to achieve discrimination at pixel level. Several super-
vised segmentation methods have been proposed for EO images [23, 25, 15–17,
7]. The supervised methods require a significant amount of training data. To
address the scarcity of training data, [13] proposed a segmentation method that
trains the model using incomplete annotations. Unsupervised deep clustering
for multi-temporal EO segmentation is proposed in [21]. However, their method
focuses on only two classes per target scene.

2.2 Unsupervised and self-supervised learning

Supervised methods are limited in many applications due to the difficulty of
labeling data. This has motivated machine learning researchers to develop unsu-
pervised and self-supervised methods. Some works [10, 8] use pre-text tasks like
image rotation to learn unsupervised semantic feature. Similar approaches have
been adopted in EO, e.g., learning to rearranging randomly shuffled time-series
images [20]. In addition to pre-text tasks, some methods rely on deep cluster-
ing by jointly learning the cluster assignment and weights of the deep network
[3]. Given a collection of unlabeled inputs, deep clustering divides them into
groups in terms of inherent latent semantics. Many variants of deep clustering
exists, e.g., using convolutional autoencoder [11]. Contrastive methods function
by bringing the representation of positive pairs closer while spreading represen-
tations of negative pairs apart [5, 6, 24]. [2] demonstrated that the unsupervised
methods learn useful semantic features even with a single-image input.

Our work is inspired from the above-mentioned works on unsupervised and
self-supervised learning, especially deep clustering [3]. Moreover similar to [2],
our work focuses on single scene.

3 Proposed method

Let X be a VHR EO image/scene of spatial dimension R × C pixels where
R and C are much larger than usual image sizes in computer vision (224 ×
224). Originally we do not have label corresponding to any pixel in X. Our
goal is to obtain segmentation map corresponding to X, i.e., we want to assign
labels to each pixel in X such that those labels are semantically meaningful.
We accomplish this by using self-supervised learning that do not require any
external label. Smaller patches of size R′×C ′ (R′ < R and C ′ < C) are extracted
from X. Let us assume that a total Btotal patches can be extracted from X. One
training batch involves only a batch of B patches sampled from Btotal, denoted as
X = {x1, ..., xB}. xb is processed using a deep clustering loss, thus simultaneously
refining the weights of the model and the segmentation map. We use a lightweight
model that uses a series of convolution layers and a channel attention. At the end
of I epochs, the trained model can be applied to X to obtain its segmentation
map. Furthermore we demonstrate that the self supervised network trained on
X can be directly applied to another spatially disjoint but semantically similar
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scene Z, without requiring any further training or fine tuning. The proposed
method is shown in Algorithm 1.

3.1 Basic architecture

Usually the number of images used in training a deep network is in the order of
tens of thousands. Compared to that the number of patches that can be used for
unsupervised learning from a single EO image/scene is limited. Actual number is
a function of R,C,R′, C ′. Considering this we design a lightweight network con-
sisting of only few (L) convolution layers. Convolving the input patches through
convolution layers allow us to capture the pixelwise semantics. Successive con-
volution layers capture increasingly complex spatial details. The spatial size of
the input images are preserved through the successive layers by exclusion of
stride or pooling operation from the architecture. Output from each convolution
layer is processed through activation function (Rectified Linear Unit - ReLU)
to introduce non-linearity and by Batch Normalization layer. The weights of
the network, denoted as W1, ...,WL are initialized using a suitable initialization
method and are trainable using a set of loss functions that do no require any
external label. While the kernel numbers are fixed as 64 in all layers (any other
number could be chosen), last layer projects feature to K-dimensional space,
where K is an approximation of desired number of classes. In addition to the
convolution layers, a channel attention mechanism is used. Channel attention
mechanism has demonstrated potential in improving the performance of CNNs
[12]. We apply the channel attention just before the final 1×1 convolution layer.
The channel attention is designed following [26], i.e., by joint use of both average
pooling and max-pooling.

After processing a patch xb in X through the network, for each input pixel xb
n

(n = 1, ..., N), we obtain deep features ybn of dimensionK. The basic architecture
(showing only convolution and attention layers) is shown in Table 1.

Table 1. Basic architecture of the network. Activation function and batch-
normalization is excluded for sake of brevity.

Layer Kernel Kernel size Stride

convolution 64 (3,3) 1

convolution 64 (3,3) 1

convolution 64 (3,3) 1

convolution 64 (3,3) 1

convolution 64 (3,3) 1

Attention NA NA NA

convolution K (1,1) 1
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Algorithm 1 Self-supervised training for single-scene segmentation

1: Input: A VHR EO image/scene X

2: Output: A lightweight model that can segment X or any other similar scene
3: Initialize W

1, ...,WL

4: Extract Btotal patches from X

5: for i← 1 to I do

6: while all Btotal patches are not sampled do

7: Sample B patches from Btotal patches, denoted as X = {x1, ..., xB}
8: for j ← 1 to J do

9: for b ∈ B do

10: for n-th pixel in xb do

11: Compute feature yb

n

12: Compute pseudo-label cbn
13: Compute loss ℓbn
14: Compute Lb by considering all n in xb

15: Compute L by considering b = 1, ...B
16: Shuffle X to X ′

17: Compute contrastive loss L′

18: Update W
1, ...,WL with L and L′

3.2 Pseudo label assignment

Semantically similar inputs (in our case, pixels) generate strong activations
in similar feature. Following this principle, we can assign each pixel to a la-
bel/cluster by using argmax classification. More specifically, label cbn for an input
pixel xb

n is estimated by selecting the feature in which ybn has maximum value.
Representing the k-th feature of ybn as ybn(k), c

b
n is obtained as following:

cbn = argmax
k∈K

ybn(k) (1)

Considering that the last layer has K different neurons, cbn can take at most K
values. Thus this is equivalent to clustering with K number of classes. Please
note that we assign label to each pixel for each patch in the training batch, i.e.,
our deep clustering process works at pixel level.

3.3 Deep clustering

Training the self-supervised network is composed of two processes, assignment
of labels to each pixel, estimation of loss based on assigned labels. This process
continues in iteration by reassigning the weights and re-estimating loss. Label
assignment of each pixels needs to be meaningfully refined so that semantic
information of the image is captured and label assignment converges with itera-
tions, performed for J iterations for each batch. Towards this, we compute the
cross-entropy loss between the continuous-valued deep feature representation ybn
and the discrete valued estimated labels cbn.

ℓbn = crossentropy(ybn, c
b
n) (2)
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In practice the loss term L is computed by considering all pixels in a patch and
all patches in a training batch.

3.4 Contrastive learning

Contrastive learning is employed to encourage the network to produce dissimilar
feature for different input. Though we do not have any negative samples under
the unsupervised setting, we shuffle the batch of patches X to X ′. This implies
that b−th patch in X (xb) and X ′ (xb′) are unpaired. Thus we compute negative
absolute error loss for each input pixel xb

n and xb′

n :

ℓb
′

n = −||(ybn − yb
′

n )||1 (3)

Loss term L′ is computed as mean of exponentials of ℓb
′

n over all considered pixels
for all patches in the batch.

The sum of loss term L and L′ is used to update the model weightsW1, ...,WL.
Note that the computation of L does not require any external label and hence
the mechanism is unsupervised.

4 Experiments

4.1 Dataset

We use the Vaihingen dataset that is a benchmark dataset for semantic segmen-
tation provided by the International Society for Photogrammetry and Remote
Sensing (ISPRS) [1]. The images are collected over the city of Vaihingen with a
spatial resolution of 9 cm/pixel. Each image in the dataset convers an average
area of 1.38 square km. Three bands are available - near infrared (NIR), red (R),
and green (G). Additionally digital surface models (DSMs) are available that are
not used in this work. In total, six land-cover classes are considered: impervious
surface, building, low vegetation, tree, car, and clutter/background. As used in
[13], we use image IDs 11, 15, 28, 30, and 34 as test set. Since we need only a
single scene for training, image ID 1 is used for training the unsupervised model.
Our result is shown as an average of three runs with different seeds.

4.2 Comparison method

To the best of our knowledge, our work is first attempt to obtain multi-class
segmentation maps from VHR images in unsupervised manner. Hence, com-
parison to supervised paradigms is unfair and instead comparison needs to be
performed with methods that can work in label-constrained manner. Consider-
ing this, we compared the proposed method to FEature and Spatial relaTional
regulArization (FESTA) [13] that trains semantic segmentation model based on
incomplete annotations. For comparison, we trained the FESTA model in [13]
using image ID 1 and using different number of training points. Please note that
inspite of working on the incomplete annotations, the method in [13] has access
to some labeled point during training, while the proposed method does not use
any annotated data during training.
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4.3 Result

The training process is accomplished with I = 2, J = 50, and number of kernels
in the final layer K = 8, a value considerably close to number of classes in the
images (6). Choice of K = 8 is the only component of the proposed method,
where prior knowledge about the target scene is used. Since our approach is
unsupervised, it is not possible to automatically know the name of each class
unlike supervised segmentation. Here we have assigned each class a name as per
their overlap with the classes in the reference map.

Multi-class segmentation: We show the result for image ID 11 and 15 in
Figure 1. Input images are shown in first column. Second and third columns show
the reference segmentation masks and the result obtained by proposed method,
respectively. We observe that in both cases the two major classes - buildings
(blue) and impervious surfaces (white) are satisfactorily detected. A significant
overlap is observed between low vegetation (cyan) and trees (green), especially
in image ID 15. Considering the unsupervised nature of the proposed method,
it is difficult for it to know the real class divisions as desired in the reference
map. Thus it identifies similar (as per spectral characteristics) low vegetation
and trees as same class.

The quantitative result averaged over 5 test tiles are shown in Table 2 in terms
of F1 score and Intersection-Over-Union (IoU). The proposed method clearly
outperforms FESTA [13] for 5 point and 20 point annotations. This result shows
that proposed method, despite not using any annotated data during training, can
outperform existing state-of-the-art method when using few annotated points.
When FESTA uses all annotated points in tile 1, the proposed method still
outperforms FESTA, however the margin reduces.

Binary segmentation: In many urban applications, it is more important
to know only the man-made urban structures than low vegetation and trees.
Considering that, we also show the performance of the proposed method as
binary segmentation map, considering two classes: buildings as one class (white)
and rest as one (black). For image 11, Figure 2(a) shows the reference binary
segmentation map and Figure 2(b) shows the binary segmentation obtained by
the proposed method. It is visually evident that there is high match between the
binary reference map and the binary segmentation map.

Table 2. Quantitative comparison of the proposed method to FESTA [13].

Method F1 score IOU

Proposed Unsupervised 0.43 0.30

FESTA 5 points 0.26 0.16

FESTA 10 points 0.32 0.23

FESTA All points 0.41 0.28
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Impervious surfaces Buildings Low vegetation
Trees Cars Clutter Undefined

(a) (b) (c)

(d) (e) (f)

Fig. 1. Visualization of segmentation on Vaihingen dataset: (a), (d) input images 11
and 15 (false color composition), (b), (e) corresponding reference segmentation, and
(c), (f) are segmentation produced by the proposed unsupervised method.

5 Conclusions

This paper proposed a deep clustering and contrastive learning based unsu-
pervised semantic segmentation method for single scene EO images. Exploiting
the large spatial size of the EO images, the proposed method divides the im-
age into patches that are further used for training the unsupervised network.
Pseudo labels are obtained by argmax classification of the final layer. The pro-
posed method optimizes the labels and weights in iterations. The experimental
results on Vaihingen dataset show the efficacy of the proposed method to obtain
meaningful segmentation labels. Instead of seen as a competitor, the proposed
method should be seen as a complementary to the existing supervised segmenta-
tion methods in EO. Since the proposed method provides a fast way to predict
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(a) (b)

Fig. 2. Visualization of binary (building/other classes) segmentation on Vaihingen
dataset image ID 11: (a) reference 11 , (b) segmentation produced by the proposed
method.

reasonably accurate segmentation map using single scene, it may be useful in
conjunction with supervised methods to generate pseudo-labels. Though we ap-
plied the proposed method to urban scenes, the model is application-agnostic.
Our future work will aim towards improving the unsupervised segmentation of
smaller classes (e.g., cars) and extending the proposed approach for ingesting
other sensors, e.g., VHR Synthetic Aperture Radar (SAR) sensor.
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