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Abstract. Heterogenous domain adaptation is a very challenging area,
where labelled data from one dataset should help in learning on another
unlabelled or scarcely labelled dataset, coming from a different input
space. This problem is especially interesting in remote sensing, where a
variety of sensors are used, producing images of different modalities and
having a different number of bands. However, surprisingly, not much
work has been done to address this problem. In this paper, we propose a
novel approach for semi-supervised heterogeneous image domain adapta-
tion named SS-HIDA. We evaluate on two heterogeneous remote sensing
datasets, one being RGB, and the other multispectral, and show that
SS-HIDA successfully outperforms the baseline method for the task of
land-cover classification.

Keywords: Remote Sensing · Domain Adaptation · Deep Learning ·
Representation Learning

1 Introduction

In recent years, deep learning (DL) techniques have made a huge improvement
in the field of computer vision (CV). Supervised DL methods rely heavily on
the existence of large-scale labelled datasets. However, reference data is often
difficult to obtain. This is especially true in the field of remote sensing (RS).
Satellites generate a huge amount of data on a daily basis, and since labelling
is a manual process, it is slow and expensive. Not to mention that the Earth’s
surface is constantly evolving, meaning that reference data may not be reusable
for images taken at a later time. Different satellites have different sensors and
capture images at different seasons or different places, all of which lead to very
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different data distributions. Since DL models (and machine learning methods
in general) often generalise poorly, we cannot apply existing trained models to
other datasets. To overcome this problem, focus has turned to domain adaptation
(DA) techniques.

Domain adaptation involves learning a model on one data distribution (named
source - typically labelled), and applying it to another, different but related data
distribution (called target - typically with little or no reference data) by reducing
the shift between domains. This approach proves to be very successful, however,
most of the DA methods assume RGB images in both domains (homogeneous
DA), while in remote sensing, different sensors can capture images having a
different number of channels (multispectral, hyperspectral, etc), or of different
resolutions. As such, existing DL domain adaptation approaches cannot be ap-
plied in such heterogeneous situations because their structure is fixed, preventing
images of different characteristics being used within the pipeline.

In this paper we propose a novel semi-supervised heterogeneous domain adap-
tation (HDA) approach for images called SS-HIDA with the task of correctly
classifying land cover from satellite and aerial images. Although HDA methods
exist, they focus on adapting from image to text data [20, 5] or adapting between
SURF - DeCAF [13, 25] and DeCAF - ImageNet features [22]. As such, the de-
velopment of such models would be very beneficial for the RS community where
a variety of different sensors are used, some of them being RGB, multispectral,
hyperspectral, SAR, LiDAR, panchromatic etc. To the best of our knowledge this
is the first work on extracting domain invariant features from two heterogeneous
unpaired image-data domains with a different number of bands.

Existing work on different modalities in the RS community have focused
on data fusion [16] where different domains have corresponding paired images.
However, in the proposed work, such a constraint does not exist, and therefore
datasets with completely independent images can be used, possibly taken from
different parts of the world.

This article is organised as follows: in Section 2, a review of related existing
work is given, followed by a description of the proposed SS-HIDA architecture
in Section 3. Section 4 describes the experimental setup and results. Finally, the
conclusions are given and future work is discussed in Section 5.

2 Literature Review

The emergence of Generative Adversarial Networks (GANs) [9, 1] inspired nu-
merous domain adaptation techniques for computer vision [7, 19]. The idea of
making real and fake data indistinguishable is naturally extended to DA where
two domains should be brought to the same space.

A large majority of DA methods for computer vision are concerned with RGB
domains [7, 19, 4]. Some work on heterogeneous DA has been studied in domains
having different features, e.g. SURF and DeCAF features [13, 25], DeCAF and
GoogleNet features [22] etc. And others tackle the problem of image-text DA
[20, 5].
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One of the first methods applied between modalities (RGB and depth images)
was Adversarial Discriminative Domain Adaptation (ADDA) [23], but it is worth
noting that it is primarily used on RGB images.

Perhaps the most promising methods for image based HDA are Image-to-
Image translation GANs [27, 26], which can translate images from one domain
to another. One of the most famous architectures, CycleGAN [27], has been
successfully applied to DA in RGB images [11].

Transfer learning is much more difficult task in RS when compared to CV.
For many CV object classification datasets, models pre-trained on ImageNet give
transferable features. However, the equivalent large-scale curated datasets in RS
are only starting to exist [12]. An interesting study on transfer learning across
multiple remote sensing datasets was given in [15]. Nevertheless, the fact that
heterogeneous data (i.e. data with > 3 and/or non-RGB bands) exists would
prevent them from being applied in the same manner as in CV.

Tasar et al. propose an approach that uses image-to-image translation for
DA in RS [21], nevertheless it is applied to RGB domains only. CycleGAN has
been used for translating between optical and SAR images [17] in change de-
tection. There have been works on DA for semantic segmentation of land cover
maps using data from different sensors in different domains [3, 2], but in one
case, though the bands may be different, their number still has to be the same
[3], while in the other case, labelled segmentation masks are needed in the tar-
get domain, and these (segmentation masks) are used as an intermediate space
during the translation from the target domain to the source domain [2], this
approach therefore does not extend to classification. Voreiter et al. propose the
most similar method to that presented herein [24], the authors use variant of
CycleGAN and apply it to two remote sensing datasets of different resolutions.

In the literature, unsupervised domain adaptation (UDA) is addressed more
often than semi-supervised DA (SSDA). However it was shown that existing
UDA methods do not scale well to the semi-supervised setting [18] and that
there is a need for methods specifically tailored for SSDA. One such deep learning
method is successfully applied to RS [14] using the Bayesian paradigm.

3 Semi-Supervised Heterogeneous Image Domain
Adaptation (SS-HIDA)

Most of the existing HDA methods are based on the idea of translating data
from one domain to the other, either in pixel space using image-to-image meth-
ods [27, 26], or in feature space, e.g. ADDA [23]. When trained in this manner,
however, the resulting models are only applicable to the target domain. They are
therefore bound to either simplify or invent the difference between domains dur-
ing the translation, since the target data distribution must be made to match
the source’s distribution. Instead, we propose a method that extracts domain
invariant features. The extracted features are neither in the source, nor target
data space, but in a learnt common latent space. The hypothesis being that
this will allow the model to enhance the latent representation using information
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from both domains. Our method is inspired by homogeneous DA methods such
as DANN [7], WDGRL [19], and DSN [4] which also extract domain invariant
features, but are limited to working with homogeneous domains only.

We extend the homogeneous, unsupervised domain adaptation approach Wa-
sserstein Distance Guided Representation Learning (WDGRL) [19] to the case
of heterogeneous image data.

Let Xs = {(xsi , ysi )}
ns

i=1 be a labelled source dataset of ns samples from the
domain Ds following the data distribution Pxs . SS-HIDA uses a small amount
of target labels, so let us define two separate sets of target data, one being

labelled Xtl =
{

(xtlj , y
t
j)
}ntl

j=1
, and the other being unlabelled Xtu = {xtuk }

ntu

k=1,

ntl << ntu, where target samples xt ∈
{
xtlj
}ntl

j=1
∪ {xtuk }

ntu

k=1 come from the

domain Dt and follow the data distribution Pxt . Unlike WDGRL, SS-HIDA is
able to work with heterogeneous domains, i.e. xs ∈ X s, xt ∈ X t, X s 6= X t where
the dimensions ds and dt of spaces X s and X t may or may not differ.

SS-HIDA’s architecture is presented in Figure 1, and consists of 5 neural net-
work components: 3 feature extractors, a domain critic, and a class discriminator.
To be able to work with the data coming from two different spaces, possibly of dif-
ferent input sizes, two different input branches are needed. Therefore, SS-HIDA
has two separate feature extractors — FEs : X s → Rc and FEt : X t → Rc
— these have the task to bring the data to a feature space of the same size
— gs = FEs(x

s), gt = FEt(x
t). Furthermore, another shared feature extractor

FEsh : Rc → Rd is employed to model the similarity of the data domains, and
to extract domain invariant features — hs = FEsh(gs), ht = FEsh(gt). Note
that in Figure 1, the specific architecture presented is for use on RESISC45 and
EuroSAT datasets, which can be adapted to other datasets.

Wasserstein distance is used to measure the distance between domains. This
metric comes from the theory of optimal transport. Since calculating Wasser-
stein distance is computationally expensive, the domain critic component DC :
Rd → R is trained to approximate it [1, 19], which makes the training process
much faster. The domain critic utilises the whole target dataset xt including the
unlabelled part, i.e. a total of nt = ntl+ntu samples. The loss of this component
is defined as:

Lwd(hs, ht) =
1

ns

ns∑
i=1

DC(hsi )−
1

nt

nt∑
j=1

DC(htj). (1)

In order to calculate empirical Wasserstein distance, Equation (1) needs to
be maximised, therefore the domain critic component is trained by solving:

max
θdc

(Lwd − γLgrad), (2)

where θdc are the domain critic’s weights and γLgrad is a regularisation term en-
forcing the Lipschitz constraint (Eq. (5) from [19]), which improves upon simple
weight clipping [1].
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Fig. 1: The proposed heterogeneous semi-supervised domain adaptation model.
The specific architecture presented is used for the case when the source dataset
is RESISC45 and target dataset is EuroSAT. The kernel size of all convolutional
layers is 5× 5.

Finally, the class discriminator C : Rd → Rl (l being the number of classes)
is trained on the extracted features of all the labelled samples (h, y) = (hs, ys)∪
(htl, ytl). If labels yi are one-hot encoded, cross-entropy classification loss is
defined as:

Lc(h, y) = − 1

ns + ntl

ns+ntl∑
i=1

l∑
k=1

yi,k logC(hi). (3)

If we denote the weights of the feature extractor as θfe, and the weights of
class discriminator as θc, the final min-max adversarial optimisation problem to
be solved is:

min
θfe,θc

{
Lc + λmax

θwd

[Lwd − γLgrad]
}
. (4)

4 Experimental results

Unlike WDGRL, whose components are fully connected neural networks, SS-
HIDA is a convolutional architecture (see Figure 1 for details). The DC loss’
weight λ is 0.1, the learning rate is 10−4, and the Adam optimiser is used.
The input data is standardised per channel so that each channel has mean 0
and standard deviation 1. The following augmentation transformations are used:
flipping with a probability of 0.45, rotation from 0◦ to 180◦ with a probability of
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Name Source Image Size Samples Classes Resolution

RESISC45 Aerial 256 × 256 × 3 31,500 45 0.2 m−30 m

EuroSAT Satellite 64 × 64 × 13 27,000 10 10 m

Table 1: Characteristics of NWPU-RESISC45 and EuroSAT datasets

0.75, changing contrast with the probability of 0.33 by multiplying the values of
the pixels with the coefficient ranging between 0.5 and 1.5, changing brightness
with the probability of 0.33 by adding the coefficient ranging between −0.3
and 0.3 scaled by the mean of pixel values per channel before standardisation,
blurring with the probability of 0.33 with Gaussian filter with σ parameter values
ranging from 1.5 to 1.8, and finally adding Gaussian noise with mean 0 and
standard deviation between 10 and 15 with the probability of 0.33. In each
iteration, half of the training batch comes from the source, and the other half
from the target domain. The model is trained for 40 epochs, and the one with
the lowest validation loss is chosen.

SS-HIDA is compared to the target baseline, a classifier trained on the same
amount of labelled target data as our semi-supervised DA model. The same
architecture is used, i.e. the same layers as the target FE, shared FE, and class
discriminator. The models are evaluated on different amounts of labelled target
data, ranging from fully labelled target dataset (100%) to only ntl = 5 labelled
samples per class (1.25%).

4.1 Data

The proposed approach is evaluated on the following eight corresponding classes
from two heterogeneous remote sensing datasets (details given in Table 1):

– NWPU-RESISC45 [6] (high resolution aerial RGB images extracted from
Google Earth) — dense residential, forest, freeway, industrial area, lake,
meadow, rectangular farmland, and river.

– EuroSAT [10] (low resolution multi-spectral images from the Sentinel-2A
satellite) — residential, forest, highway, industrial, sealake, pasture, annual
crop and permanent crop (two classes merged into one), river.

The datasets are split into train, validation, and test sets with the proportion
of 60:20:20 while keeping the classes balanced in all sets. For the cases of 12.5%
labelled target data and lower, the target validation set consists of ntl images,
the same number of samples as in the target training set. Otherwise we would
have an unrealistic situation in which the target validation set would be bigger
than target training set. This evaluation protocol is similar to that used by Saito
et al. [18]. As SS-HIDA has access to the source labelled data, it uses both the
source and target validation set, while the target baseline can only use the target
validation set.
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Fig. 2: Comparison of the results of SS-HIDA and the baseline classifier with
varying numbers of labelled training images. The numbers are expressed in per-
centages of labelled images.

4.2 Results

The results are presented in Figure 2. They show that SS-HIDA performs very
well in semi-supervised domain adaptation where a small amount of target la-
belled data is available. For the case when RESISC45 is taken as the source (and
EuroSAT as the target), SS-HIDA is almost equal in performance to the baseline
when there is a large amount of labelled data, and it strongly outperforms the
baseline in the more realistic scenario in which only a small fraction of target
data is labelled. When the percentage of labelled target data is 12.5%, 6.25%,
or 2.5%, SS-HIDA achieves 5–6% higher accuracy than the baseline.

When EuroSAT is taken as the source and RESISC45 as the target, the
advantage of SS-HIDA compared to the target baseline is even more pronounced,
gaining almost 12% when only 2.5% of target data is labelled.

In both cases, when 1.25% of labelled target data is available, the benefit
of SS-HIDA reduces, probably due to overfitting on the target data as there
are only 5 labelled images per class available in both training and validation
sets. But even though reduced, the benefit is still high when EuroSAT dataset
is source and RESISC45 is target, with SS-HIDA gaining over 6%.

It is worth noting that the baseline performs surprisingly well with such few
labelled images, achieving over 60% when only five labelled images per class are
given. Keeping in mind that the specific architecture used is not optimised to
achieve state of the art performance, this indicates that the classification problem
is relatively easy (which is backed up by other findings in the literature [15, 8])
and perhaps more pronounced improvements could be found in more difficult
datasets.
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Fig. 3: Ablation study of SS-HIDA, comparison with the model without domain
critic and without shared layers with varying numbers of labelled training images.
The numbers are expressed in percentages of labelled images.

4.3 Ablation Study

In order to discover the impact of each of the model’s components, an ablation
study is performed. One comparison model is created in which the domain critic
is removed (SS-HIDA-NoDC), thus removing the domain adaptation component.
A second comparison model is obtained by separating all of the layers of source
and target architecture so that only the classifier is shared between them (SS-
HIDA-SepFE), thus reducing the capacity of learning a general representation.

The results are shown in Figure 3. In both cases we can confirm that removing
the domain critic leads to a significant drop in performance, especially in the
cases where SS-HIDA has most success. In this case, there is no requirement for
the model to learn overlapping distributions, therefore reducing the classifier’s
ability to generalise between domains. On the other hand, separating the source
and target has less effect on performance. When RESISC45 is the source and
EuroSAT is the target, the performance of SS-HIDA-SepFE is either the same
or a little worse than SS-HIDA. It even outperforms SS-HIDA in some of the
cases when EuroSAT is the source and RESISC45 is the target. But SS-HIDA
remains slightly better when there is 2.5% or 1.25% labelled data in target
domain. In this case, and when there are sufficient labels in the target domain,
the domain critic is able to compensate and still forces the model to extract
domain invariant features. It is also worth noting that none of these variations
result in performance worse than the baseline.

5 Conclusions

This article has proposed a novel approach to semi-supervised heterogeneous
image domain adaptation called SS-HIDA. To the best of our knowledge, this is
the first approach to extract domain-invariant features. The model was evaluated
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on an aerial dataset RESISC45 and a satellite dataset EuroSAT. Nevertheless,
SS-HIDA is not limited to remote sensing applications only, and could be used
for other cases of heterogeneous images, for example RGB and depth images.
The next step of this research will be extending the usage of SS-HIDA to un-
supervised DA. Initial experiments show that problems such as label-flipping
need to be addressed in the unsupervised setting. Another interesting direction
is to tackle the problem of semantic segmentation of images when domains are
heterogeneous.
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