
Round-trip migration of object-oriented data model
instances
Luca Beurer-Kellner1, Jens von Pilgrim2 and Timo Kehrer3

1ETH Zürich, Zürich, Switzerland
2HAW Hamburg, Hamburg, Germany
3Humboldt-Universität zu Berlin, Berlin, Germany

Abstract
The communication of web-based services is typically organized through public APIs which rely on a common data model
shared among all system components. To accommodate new or changing requirements, a common approach is to plan
data model changes in a backward compatible fashion. While this relieves developers from an instant migration of the
system components including the data they are operating on, it causes serious maintenance problems and architectural
erosion in the long term. We argue that an alternative solution to this problem is to use a translation layer serving as a
round-trip migration service which is responsible for the forth-and-back translation of object-oriented data model instances
of different versions. However, the development of such a round-trip migration service is not yet properly supported by
existing technologies. In this challenge, we focus on the key task of developing the required migration functions, framing
this as a model transformation problem.

Keywords
Web development, API and data model evolution, translation layer, round-trip migration, model transformation

1. Introduction
Context: In web development, the communication of
web-based services is typically organized through pub-
lic APIs which rely on a common data model shared
among all system components. Over time, the shared
data model must be changed to accommodate new or
changing requirements, and the system components (i.e.,
services) including the data they are operating on must
be migrated. This API evolution problem is a well-known
challenge for web APIs [1, 2, 3].

Figure 1 illustrates this problem by means of a typical
example of a distributed system exposing a three-tier
architecture with a client, a service and a database layer.
The API and its underlying data model are evolved from
version 1 (red, not striped) to version 2 (green, striped),
which may lead to different architectural evolution sce-
narios, depending on the temporal order of updating the
involved components. Ideally, all components are up-
dated simultaneously (scenario ➊). When performed in
an online fashion, we need a translation layer (TL) to

TTC’20: Transformation Tool Contest, Part of the Software
Technologies: Applications and Foundations (STAF) federated
conferences, Eds. A. Boronat, A. García-Domínguez, G. Hinkel, and F.
Křikava, 17 July 2020, Bergen, Norway (online).
" luca.beurer-kellner@inf.ethz.ch (L. Beurer-Kellner);
Jens.vonPilgrim@haw-hamburg.de (J. v. Pilgrim);
timo.kehrer@informatik.hu-berlin.de (T. Kehrer)
� 0000-0001-7734-3106 (L. Beurer-Kellner); 0000-0002-7025-8301
(J. v. Pilgrim); 0000-0002-2582-5557 (T. Kehrer)

© 2021 Copyright for this paper by its authors. Use permitted under Creative
Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

migrate the existing data using tools such as Liquibase1.
Once the migration has been performed, components
relying on version 1 of the data model are replaced by
their updated successor versions.

In practice, however, not all the affected components
can be migrated instantly and at the same time [4]. A
common workaround is to plan data model changes in
a backward compatible fashion. However, this severely
hampers flexibility when evolving the data model, and
essentially comes at the cost of architectural erosion, in-
creased maintenance efforts and technical debt. A more
flexible solution would be to operate components relying
on different data model versions at the same time and to
use a translation layer serving as round-trip migration
service being responsible for the forth-and-back transla-
tion of object-oriented data model instances of different
versions. The evolution scenarios ➋, ➌ and ➍ use such a

1https://www.liquibase.org/

1

Service V.1

Client V.1

API V.1

Service V.2

Client V.2

Database
Service V.2

API V.2

Database
Service V.1

TL 1
V.1 V.2

2

Database
Service V.2

Service V.1

Client V.1

API V.1

TL 2
V.1 V.2

3

TL 3
V.1 V.2

Client V.1

API V.1

Service V.2

Database
Service V.2

4

Service V.2

Client V.1

Database
Service V.2

API V.2

TL 4
V.1 V.2

Figure 1: An example of a distributed system. The API and
its underlying data model are evolved from version 1 (red, not
striped) to version 2 (green, striped).

mailto:luca.beurer-kellner@inf.ethz.ch
mailto:Jens.vonPilgrim@haw-hamburg.de
mailto:timo.kehrer@informatik.hu-berlin.de
https://orcid.org/0000-0001-7734-3106
https://orcid.org/0000-0002-7025-8301
https://orcid.org/0000-0002-2582-5557
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org
https://www.liquibase.org/

round-trip migration service to migrate and migrate back
shared data model instances on demand. Architecturally,
this allows for greater flexibility than the aforementioned
solutions. It leaves open a wide variety of design deci-
sions, regarding the use of different data model versions
as well as the location of the translation layer (client-side,
server-side, in the database system, etc.).

Research Gap: Although it seems to be an attractive
solution to deal with data model evolution, the develop-
ment of a round-trip migration layer which is responsible
for the the forth-and-back translation of object-oriented
data model instances of different versions is not yet prop-
erly supported by existing technologies.

Frameworks such as Google’s Protocol Buffers2,
Apache Thrift3 or Apache Avro4 support versioning of
the whole API and provide annotations in order to change
an API in a backwards compatible way. On a more fine-
grained level, UpgradeJ [5] extends Java to support ver-
sioned type declarations. It allows for upgrading to new
versions dynamically at run-time, however, the revised
class must have at least the fields and method signatures
as the original one. Dmitriev et al. [6] discuss evolu-
tion techniques for the PJama persistence framework.
Programmers can write migration functions which are
embedded by means of static methods. However, there
is no dedicated support for implementing round-trip mi-
grations.

Traditional research on data model evolution and in-
stance migration has its roots in the database systems
community. Here, schema evolution generally refers to
the process of facilitating the modification of a database
schema without loss of existing data or compromising
data integrity [7]. The main aim, however, is to merely up-
date instance data in response to schema changes, which
inherently differs from round-trip migrating instances
between different versions of an API.

The same limitation applies to more recent work in
model-driven engineering. Here, multiple approaches
have been proposed addressing the migration of instance
models in response to meta-model changes, referred to as
meta-model evolution and model co-evolution [8]. Their
goal, however, similar to schema evolution, is to merely
update instance models in response to meta-model evo-
lution. Nonetheless, a multitude of techniques that have
been proposed in the context of model evolution and
model transformation may serve as a proper basis for the
specification of round-trip migrations.

Challenge in a Nutshell: In this challenge, we focus
on the key task of developing migration functions which
are needed by a round-trip migration service. We only
consider API changes affecting the shared data model,
while other aspects of API evolution such as signature

2https://developers.google.com/protocol-buffers
3https://thrift.apache.org
4https://avro.apache.org

changes in methods or endpoints in HTTP are out of
scope. Protocol changes (e.g., change of message format,
authentication, rate limit) as mentioned in Wang et al.
[1] are also not considered here. Finally, we focus on a
single round-trip migration at a time and do not consider
concurrent operations.

We frame the development of migration functions as
a transformation problem that abstracts from techno-
logical details. While the shared data model is typically
defined through Web API specification languages, we
choose a more simple and explicit representation using
an object-oriented modeling approach. Conceptually, we
consider object-oriented data models and instances as
graphs, serving as basis for the problem definition which
we present more formally in Section 2. Next, in Section 3,
we give a set of selected data model evolution scenarios
and the corresponding round-trip migration tasks which
are to be solved within this challenge. In Section 4, we
present criteria for evaluating the submitted solutions.
Finally, Section 5 presents a simple reference solution,
serving as baseline for more sophisticated solutions based
on model transformation concepts and technologies.

An evaluation framework which may be used by solu-
tion providers and which comprises a set of experimental
subjects is briefly described in Appendix A. The frame-
work as well as a reference solution for this case may be
found at https://github.com/lbeurerkellner/ttc2020.

Relation to Previous TTC Cases: At the 2017 edi-
tion of the Transformation Tool Contest, the “Families
to Persons Case” [9] has been presented. It models a
well-known bidirectional transformation problem which
is closely related to the underlying problem of our case.
However, coming from a more practical setting, we want
to emphasize different aspects. As it will become appar-
ent from our evolution scenarios presented in Section
3, our background is mostly motivated by the features
of modern web-development languages (e.g., the use of
optional fields in Section 3.3) as well as the development
process of web applications in general (e.g., our evalua-
tion criterion re-usability in Section 4.4).

2. Problem Definition
In this section, we introduce our conceptual, technology-
independent notion of object-oriented data models and
instances, and then present properties which we would
ideally expect from round-trip migrations.

2.1. Data Models and Instances
Graphs are a natural means to conceptually define object-
oriented data models and instances. For the sake of being
compatible with the majority of available model trans-
formation technologies, our notion of a graph can be

https://developers.google.com/protocol-buffers
https://thrift.apache.org
https://avro.apache.org
https://github.com/lbeurerkellner/ttc2020

transferred to model representations which are based on
the essential MOF (EMOF) standard being defined by the
OMG5. Specifically, a graph 𝐺 = (𝐺𝑁 , 𝐺𝐸 , 𝑠𝑟𝑐𝐺, 𝑡𝑔𝑡𝐺)
consists of two disjoint sets 𝐺𝑁 and 𝐺𝐸 containing
the nodes and the edges of the graph, respectively. Ev-
ery edge represents a directed connection between two
nodes, which are called the source and target nodes
of the edge, formally represented by source and tar-
get functions 𝑠𝑟𝑐𝐺, 𝑡𝑔𝑡𝐺 : 𝐺𝐸 → 𝐺𝑁 . Given two
graphs 𝐺 and 𝐻 , a pair of functions (𝑓𝑁 , 𝑓𝐸) with
𝑓𝑁 : 𝐺𝑁 → 𝐻𝑁 and 𝑓𝐸 : 𝐺𝐸 → 𝐻𝐸 forms a graph
morphism 𝑓 : 𝐺 → 𝐻 if it maps the nodes and edges of
𝐺 to those of 𝐻 in a structure-preserving way, i.e., ∀𝑒 ∈
𝐺𝐸 : 𝑓𝑁 (𝑠𝑟𝑐𝐺(𝑒)) = 𝑠𝑟𝑐𝐻(𝑓𝐸(𝑒)) ∧ 𝑓𝑁 (𝑡𝑔𝑡𝐺(𝑒)) =
𝑡𝑔𝑡𝐻(𝑓𝐸(𝑒)).

An object-oriented data model is conceptually con-
sidered as a distinguished graph referred to as type
graph 𝑇 , while an instance of this data model is formally
treated as an instance graph 𝐺 typed over 𝑇 . Formally, a
type graph 𝑇 = (𝑇𝑁 , 𝑇𝐸 , 𝑠𝑟𝑐𝑇 , 𝑡𝑔𝑡𝑇 , 𝐼, 𝐴) is a special
graph whose nodes and edges are representing types, and
which comprises the definition of a node type hierarchy
𝐼 ⊆ 𝑇𝑁 × 𝑇𝑁 , which must be an acyclic relation, and a
set 𝐴 ⊆ 𝑇𝑁 identifying abstract node types. The typing
relation between instances and data models may be for-
malized by a special graph morphism 𝑡𝑦𝑝𝑒𝐺 : 𝐺 → 𝑇 re-
lating an instance graph 𝐺 with its associated type graph
𝑇 [10]. The way we handle attributes and attribute decla-
rations follows the definition of attributed graphs given
in [11]. The main idea of formalizing node attributes in
an instance graph is to consider them as edges of a spe-
cial kind referring to data values. Analogously, attributes
declared by node types of a type graph are represented
as special edges referring to data type nodes.

In order to avoid going into any technical details of
model transformation approaches yet, we will take an
extensional view on data models. That is, speaking about
a data model 𝑀 , then ℳ refers to the (infinite) set of
data model instances which are properly typed over 𝑀 .

2.2. Round-Trip Migration Functions
We differentiate the migration and the modification of
instances. Given two data models 𝑀1 and 𝑀2 with
𝑀1 ̸= 𝑀2, a total function 𝑓 : ℳ1 → ℳ2 is con-
sidered a migration function from 𝑀1 to 𝑀2. Given two
instances 𝑚1 ∈ ℳ1 and 𝑚2 ∈ ℳ2, we say that 𝑚1 is
migrated to 𝑚2 if 𝑓(𝑚1) = 𝑚2. On the contrary, given
a single data model 𝑀 , a total function 𝑐 : ℳ → ℳ
is considered an instance modification function. Given
two instances 𝑚 and 𝑚′ typed over 𝑀 , we say that 𝑚 is
modified to become 𝑚′ if 𝑐(𝑚) = 𝑚′.

To allow two components which depend on differ-

5https://www.omg.org/spec/MOF

ent data models to communicate with each other, a
translation layer is responsible for migrating instances
forth and back. Formally, a translation layer is a tuple
𝑇 = (𝑀1,𝑀2, 𝑓, 𝑔) where 𝑀1 and 𝑀2 denote the data
models the layer translates from and to via migration
functions 𝑓 : ℳ1 → ℳ2 and 𝑔 : ℳ2 → ℳ1, respec-
tively. Given an instance 𝑚1 ∈ ℳ1, we refer to the
consecutive application of 𝑓 and 𝑔 to 𝑚1, i.e., 𝑔(𝑓(𝑚1)),
as the round-trip migration of𝑚1 via𝑀2. Likewise, since
translation layers are supposed to work symmetrically in
either direction, given an instance 𝑚2 ∈ ℳ2, 𝑓(𝑔(𝑚2))
denotes the round-trip migration of 𝑚2 via 𝑀1. The
round-trip migration of an instance 𝑚1 via 𝑀2 (resp.
𝑚2 via 𝑀1) is called successful if 𝑔(𝑓(𝑚1)) = 𝑚1 (resp.
𝑓(𝑔(𝑚2)) = 𝑚2). A translation layer 𝑇 is considered
successfully round-trip-migrating if the following condi-
tions hold:

∀𝑚1 ∈ ℳ1 : 𝑔(𝑓(𝑚1)) = 𝑚1 (1)

∀𝑚2 ∈ ℳ2 : 𝑓(𝑔(𝑚2)) = 𝑚2 (2)

In practice, round-trip migrations as introduced above
will barely happen since, more often than not, a compo-
nent will not directly return an instance it just received
but rather apply some modification to the instance be-
fore returning it. Given two data models 𝑀1 and 𝑀2,
a round-trip migration with modification of an instance
𝑚1 ∈ ℳ1 via 𝑀2 is a consecutive application of func-
tions 𝑔 ∘ 𝑐2 ∘ 𝑓(𝑚1) = 𝑔(𝑐2(𝑓(𝑚1))) where, like above,
𝑓 and 𝑔 are migration functions from 𝑀1 to 𝑀2 and
𝑀2 to 𝑀1, respectively, and 𝑐2 : ℳ2 → ℳ2 is an
instance modification function performing the modifi-
cation of the migrated instance 𝑓(𝑚1) ∈ ℳ2. Due
to the modification of 𝑓(𝑚1), the original definition of
a successful round-trip migration is not suitable any-
more. The result of migrating back the modified in-
stance 𝑐2(𝑓(𝑚1)) ∈ ℳ2 is not expected to be the
original instance 𝑚1. Intuitively, the result is rather
expected to be a modification 𝑐1(𝑚1) of instance 𝑚1

where 𝑐1 : ℳ1 → ℳ1 represents the corresponding co-
modification of 𝑐2 on data model 𝑀1. A translation layer
𝑇 = (𝑀1,𝑀2, 𝑓, 𝑔) which handles round-trip migra-
tions between data models 𝑀1 and 𝑀2 is called success-
fully round-trip migrating with modification if there are
co-modifications 𝑐1 : ℳ1 → ℳ1 and 𝑐2 : ℳ2 → ℳ2

such that the following conditions hold:

∀𝑚1 ∈ ℳ1 : 𝑔(𝑐2(𝑓(𝑚1))) = 𝑐1(𝑚1) (3)

∀𝑚2 ∈ ℳ2 : 𝑓(𝑐1(𝑔(𝑚2))) = 𝑐2(𝑚2) (4)

3. Selected Evolution Scenarios
In the following sections 3.2 through 3.4, we introduce a
selection of different cases of data model evolution and
according round-trip migration scenarios. Data models

https://www.omg.org/spec/MOF

:Person
name = "Alice"
age = -1

:Person
name = "Alice"

:Person
name = "Alice"

:Person
name = "Alice"
age = 25

:Person
name = "Alice"

:Person
name = "Alice"
age = 25

Person
name : String

Person
name : String
age : Int

Figure 2: Illustration of the data model evolution scenario “Create/Delete Field” (left) and the corresponding round-trip
migrations 𝑀1 ↦→ 𝑀2 ↦→ 𝑀1 and 𝑀2 ↦→ 𝑀1 ↦→ 𝑀2 (right). Requested specifications for the latter are referred to as
Task_1_M1_M2_M1 and Task_1_M2_M1_M2, respectively.

:Person
name = "Alice"
age = 25

:Person
name = "Alice"
ybirth = 1995

:Person
name = "Alice"
ybirth = 1995

:Person
name = "Alice"
age = 25

:Person
name = "Alice"
ybirth = 1995

:Person
name = "Alice"
age = 25

Person
name : String
ybirth : Int

Person
name : String
age : Int

Data model evolution migrate migrateBack

Figure 3: Illustration of the data model evolution scenario “Rename Field” (left) and the corresponding round-trip mi-
grations 𝑀1 ↦→ 𝑀2 ↦→ 𝑀1 and 𝑀2 ↦→ 𝑀1 ↦→ 𝑀2 (right). Requested specifications for the latter are referred to as
Task_2_M1_M2_M1 and Task_2_M2_M1_M2, respectively.

and instances are represented using UML class and object
diagram notations, respectively. Each scenario comprises
two versions of a data model that demonstrate the ap-
plication of typical edit operations on object-oriented
data models in a minimal context. Each scenario can
be interpreted from two perspectives, i.e., from 𝑀1 to
𝑀2, or vice versa. The respective edit operations which
can be observed in both cases are inverse to each other.
We discuss round-trip migrations in both directions, us-
ing the shorthand notations 𝑀1 ↦→ 𝑀2 ↦→ 𝑀1 and
𝑀2 ↦→ 𝑀1 ↦→ 𝑀2 , respectively.

For each of these round-trip migration scenarios, the
task is to specify the required migration functions, re-
ferred to as migrate and migrate back in the sequel. That
is, each of the four data model evolution scenarios yields
two tasks which we ask to be solved by solution providers,
summing up to a total number of eight tasks for the entire
case. Since all of these tasks are independent from each
other, participants may address a subset of them.

3.1. Create/Delete Field
In this scenario, a new field is added to (removed from)
a class of the data model, as illustrated in Figure 3 (left).
We assume this field to be functionally independent from
any other field of the same class.

As illustrated in Figure 3 (right), in a 𝑀1 ↦→ 𝑀2 ↦→
𝑀1 round-trip migration, the new field age should be
set to some suitable default value since the original

Person instance does not provide a concrete value for
this field. The more complicated case, however, is the
𝑀2 ↦→ 𝑀1 ↦→ 𝑀2 round-trip migration since it needs to
access a previous revision of the migrated object during a
later stage in the round-trip migration. Here, the value of
field age should be recovered from the original Person
instance. In the context of traditional bidirectional trans-
formation, this can be considered as a standard scenario
which we use as a warm-up task of our round-trip mi-
gration case.

3.2. Rename Field
In this evolution scenario, the name of a field is changed.
The most simple reason for this kind of change is to im-
prove the wording in the data model to better reflect the
terminology of a domain of interest. A more challenging
change is to slightly update the meaning of a field, as it is
the case in our evolution scenario presented in Figure 2
(left). Here, the field age in 𝑀1 is changed to ybirth in
𝑀2, now capturing a Person’s year of birth instead of
its current age.

The migration functions which are to be developed for
this scenario should account for this semantic change
and convert between proper values of fields age and
ybirth. As illustrated in Figure 2 (right), we assume the
current date as a basis for the conversions in both direc-
tions. In this case, the change in the semantics of age and
ybirth requires the integration of some user-defined

:Person
name = ""
age = 25

:Person
name = ""
age = 25

:Person
name = "Alice"
age = 25

:Person
name = "Alice"
age = 25

:Person
name = "Alice"
age = 25

:Person
name = "Alice"
age = 25

:Person
name = "Alice"
age = 25

:Person
name = ""
age = 25

:Person
name = "Alice"
age = 25

:Person
name = "Alice"
age = 25

:Person
age = 25

:Person
name = ""
age = 25

:Person
age = 25

:Person
age = 25

Person
name : String [?]
age : Int

Person
name : String
age : Int

Instance modificaion

Figure 4: Illustration of the data model evolution scenario “Declare Field Optional/Mandatory” (left) and the corresponding
round-trip migrations 𝑀1 ↦→ 𝑀2 ↦→ 𝑀1 and 𝑀2 ↦→ 𝑀1 ↦→ 𝑀2 (right). Requested specifications for the latter are referred
to as Task_3_M1_M2_M1 and Task_3_M2_M1_M2, respectively. The lower example round-trip migration demonstrates how
to deal with instance modifications.

:Dog
name = "Bob"

:Person
name = "Alice"
ybirth = 1995

:Dog
name = "Bob"
age = -1

:Person
name = "Alice"
age = 25

:Dog
name = "Bob"

:Person
name = "Alice"
ybirth = 1995

:Dog
name = "Bob"
age = 2

:Person
name = "Alice"
age = 25

:Dog
name = "Bob"

:Person
name = "Alice"
ybirth = 1995

:Dog
name = "Bob"
age = 2

:Person
name = "Alice"
age = 25

Dog
name : String

Dog
name : String
age : Int

Person
name : String
ybirth : Int

Person
name : String
age : Int

owner

owner

owner

owner

owner

owner

owner
1

owner
1

Figure 5: Illustration of the data model evolution scenario “Multiple Edits” (left) and the corresponding round-trip mi-
grations 𝑀1 ↦→ 𝑀2 ↦→ 𝑀1 and 𝑀2 ↦→ 𝑀1 ↦→ 𝑀2 (right). Requested specifications for the latter are referred to as
Task_4_M1_M2_M1 and Task_4_M2_M1_M2, respectively.

arithmetic operation during transformation. Purely struc-
tural approaches often lack this feature, even though in
our context of Web APIs this is an important requirement.

3.3. Declare Field Optional/Mandatory
In this scenario, the multiplicity of a field is generalized
(specialized) from 1 to 0..1 (0..1 to 1). The former case
means that the field is declared to be optional, as indicated
by the notation [?] attached to field name in 𝑀2 of the

data model shown in Figure 4 (left). The latter case is
represented by the default notation used for all other
fields, meaning that the field is a mandatory one.

The key issue here is to deal with potential null-
values in 𝑀2 and their corresponding default values in
𝑀1. This is rather straightforward in a 𝑀1 ↦→ 𝑀2 ↦→
𝑀1 round-trip migration, as illustrated in Figure 4. Here,
null-values in 𝑀2 may occur due to a modification of
the migrated instance, and they should be translated to a
default value in 𝑀1. The 𝑀2 ↦→ 𝑀1 ↦→ 𝑀2 round-trip

migration is more complicated. Here, we have to check
whether a default value has been synthesized during mi-
gration or through an explicit modification. In the former
case, as illustrated by the upper right example shown in
Figure 4, a synthesized default value is migrated back to
a null-value. In the latter case, illustrated by the lower
right example shown in Figure 4, the default value is the
result of an explicit modification in 𝑀1, which should be
migrated back to a default value instead of a null-value
in 𝑀2. This evolution scenario is of special interest to
us, since optional fields are a common pattern used in
the design and evolution of Web APIs.

3.4. Multiple Edits
In this evolution scenario, we combine two edit opera-
tions which we have already considered before. As we
can see in Figure 5 (left), from an 𝑀1 to 𝑀2 perspective,
the field age of class Dog has been deleted, which corre-
sponds to the edit operation considered in the evolution
scenario presented in Section 3.1. At the same time, the
name and semantics of field age of the referenced class
Person has been changed to ybirth, as in the evolution
scenario presented in Section 3.2.

The corresponding 𝑀1 ↦→ 𝑀2 ↦→ 𝑀1 and 𝑀2 ↦→
𝑀1 ↦→ 𝑀2 round-trip migrations are illustrated in Fig-
ure 5 (right). Their specification can be considered as
a combination of the migration functions required for
the evolution scenarios presented in Section 3.2 and Sec-
tion 3.1. The main aim of this scenario is to call for
solutions that support some form of re-usability (see Sec-
tion 4).

4. Evaluation Criteria
To evaluate the quality of the proposed solutions, we give
a set of quality characteristics which we consider to be rel-
evant for the specification of round-trip migrations. We
draw inspirations from previous work on defining qual-
ity attributes of model transformations [12, 13, 14, 15].
We refine each quality characteristic into measurable at-
tributes for each of the tasks presented in Section 3. To
obtain concrete measures for their solutions, participants
are kindly invited to use the evaluation framework pro-
vided with the case resources (see Appendix A). This
way, some of the measures can be obtained in a semi-
automated manner.

4.1. Expressiveness
A first important and rather obvious quality characteristic
is the expressiveness of the transformation language and
system being used to specify and execute round-trip mi-
grations. Intuitively, the more data model evolution and

according round-trip migration scenarios are supported,
the more expressive is the transformation approach.

To turn this intuition into a measurable evaluation
criterion, we assess the correctness of each task by pro-
viding sets of associated tests. A test case comprises pairs
of instances serving as input and as expected output of
a round-trip migration. For each of the tasks presented
in Section 3, a first test case is derived from the example
presented in that section. A second test case is added in
order to prevent literal encodings of solutions (except for
the taks presented in Section 3.3, which already has two
associated test cases. A task is considered to be solved
correctly if it passes all tests.

All tasks are scored by means of the provided test cases.
A point is given for each passing test case, and points
are summarized over all test cases. This means that all
tasks are scored evenly between zero and two points.
Zero means the task has not been tackled at all, one point
indicates a partial solution, and two points mean that the
task has been solved and the transformation has been
implemented correctly.

4.2. Comprehensibility
Specifications of migration functions should be compre-
hensible in order to be maintainable and to allow for
better manual validation. Our idea of evaluating solu-
tions is to compare their comprehensibility with that of
the provided reference solution (see Section 5). For each
task, the comprehensibility of the reference solution is
scored by one point. Better, equal and worse comprehen-
sibility of a submitted solution are acknowledged by two,
one and zero points, respectively.

We acknowledge that such a classification is highly bi-
ased by subjective preferences. Developers being familiar
with model transformation languages such as Henshin
or ATL most likely prefer a declarative or declarative-
imperative style, while mainstream web developers will
most likely prefer a purely imperative style of writing
migrations. More objective measures such as code met-
rics, as proposed by Götz et al. [16, 17] to compare size
and complexity of model transformations written in Java
and ATL, are hardly applicable to compare transforma-
tions which are written in languages that follow different
paradigms (which is to be expected for the different solu-
tions of this case).

To that end, we see two options for assessing the com-
prehensibility of solutions, both of which involve a hu-
man in the loop. In the offline variant, we will use two
distinct groups of students to evaluate a solution by an-
swering a survey, similar to [18]. One group of students
will have a background on model transformation lan-
guages, while the other group is supposed to have only
(basic) programming skills (in Java). The second variant
is to conduct a live evaluation with the TTC participants.

4.3. Bidirectionality
Bidirectional transformations (BX) [19] appear to be an
attractive solution to our problem as they support to
synthesize migration functions in both directions from
a single specification. Such single specifications may
be symmetric as, e.g., in the case of triple graph gram-
mars [20], or asymmetric as, e.g., in the case of putback-
based bidirectional programming [21].

Within this challenge, we do not insist on any particu-
lar mechanism for specifying bidirectional transforma-
tions, and all mechanisms are ranked equally. All tasks
and extension tasks are scored evenly with zero (no bidi-
rectionality) or one point (support for bidirectionality).

4.4. Re-usability
As with any other kind of software, re-use mechanisms
are an indispensable means to increase the productivity
and quality of model transformations. To that end, nu-
merous re-use mechanisms for model transformations
have been proposed in the literature, a survey may be
found in [22]. We evaluate re-usability by means of
the “Multiple Edits” evolution scenario presented in Sec-
tion 3.4 since it subsumes the scenarios presented in
sections 3.2 and 3.1.

One possible option is to achieve re-usability by means
of delegation. Specifically, when developing migration
functions supporting the round-trip migration of Dog
instances, this could be achieved by, e.g., delegating the
migration of the referenced Person instances to migra-
tion functions which have been already defined.

Another possible re-use mechanism could be to ab-
stract from the concrete data models and to specify the re-
quired migration functions in a generic manner, focusing
on the conceptual parts of the respective edit operations.
The generic migration functions would then be instan-
tiated for the concrete data model used in this scenario.
This is similar to the extraction of core transformation
concepts that generalize over several meta-models [23].
In the context of Web APIs, we see this as a core re-
quirement of a feasible transformation approach. In our
setting, the continuous evolution of a data model also
implies the continuous development of a corresponding
migration layer. From a software engineering point of
view, a transformation approach should therefore pro-
vide support for re-usability. More specifically, s single
change to the data model should require only one corre-
sponding change to the migration layer, which implies
that existing migration code can be re-used.

We do not insist on any particular re-use mechanism,
and all re-use mechanisms are ranked equally. Support
for re-usability is acknowledged by four points, while no
points are given if the specification has been developed
from scratch.

4.5. Performance
Finally, we evaluate the proposed solutions with regards
to runtime performance. While the functional correct-
ness of round-trip migrations is an important step to-
wards a valid solution, the Web API context also requires
efficient solutions. The implementation of a more com-
plex translation layer would be out of the scope of this
challenge. Therefore, as a limited evaluation of the run-
time characteristics of the proposed solutions, we repeat-
edly run the round-trip migrations required to support
the evaluation scenarios described in Section 3 for a large
number of iterations and measure their execution time. In
general however, we consider runtime performance a sec-
ondary evaluation criterion. Hence, differences among
proposed solutions with regards to runtime performance
shall only serve as a tie-breaker among solutions which
score equally for the other four criteria.

5. Reference Solution
To provide a reference solution for this case, we im-
plemented all the migration functions which are re-
quired to support the 8 round-trip migration tasks aris-
ing from our four data model evolution scenarios pre-
sented in Section 3 in Java. Its integration into the evalu-
ation framework presented in Appendix A is illustrated
in Figure 7 (bottom). Each task is realized by a con-
crete subclass of class AbstractTask, each of which
is being instantiated by the concrete task factory called
JavaTaskFactory. None of the migrations is delegated
to a dedicated model transformation system, but the mi-
gration functions migrate and migrateBack are di-
rectly implemented in Java.

Qualitative evaluation results Table 1 summarizes
the qualitative evaluation results for our Java-based ref-
erence solution, namely for the criteria expressiveness,
comprehensibility, bidirectionality and re-usability. On
the one hand, it is not surprising that a general purpose
programming language like Java is expressive enough to

0 250000 500000 750000 1000000 1250000 1500000 1750000 2000000
No. of Repetitions

0

5000

10000

15000

20000

25000

30000

35000

40000

Ru
nt

im
e

(m
s)

Total Transformation Runtime

Figure 6: Performance results of our provided reference so-
lution.

Table 1
Evaluation results obtained for the reference solution. Numbers in brackets indicate the maximum score that can be achieved.

Evolution Scenario / Task Expressiveness Comprehensibility Bidirectionality Re-usability

Create/Delete Field
Task_1_M1_M2_M1 2 (2) 1 (2) 0 (1) n.a.
Task_1_M2_M1_M2 2 (2) 1 (2) 0 (1) n.a.

Rename Field
Task_2_M1_M2_M1 2 (2) 1 (2) 0 (1) n.a.
Task_2_M2_M1_M2 2 (2) 1 (2) 0 (1) n.a.

Declare Field Optional/Mandatory
Task_3_M1_M2_M1 2 (2) 1 (2) 0 (1) n.a.
Task_3_M2_M1_M2 2 (2) 1 (2) 0 (1) n.a.

Multiple Edits
Task_4_M1_M2_M1 2 (2) 1 (2) 0 (1) 0 (4)
Task_4_M2_M1_M2 2 (2) 1 (2) 0 (1) 0 (4)∑︀

: 16 (16)
∑︀

: 8 (16)
∑︀

: 0 (8)
∑︀

: 0 (8)

correctly solve all the tasks provided with this case. Thus,
the reference solution achieves the maximum score in
this category, i.e., two points per task summarizing to 16
points in total. On the other hand, bidirectionality and
re-usability are not supported at all.

Performance results Figure 6 illustrates the runtime
characteristics of our reference solution in terms of the
performance test of our evaluation framework (see Ap-
pendix A). These results were obtained on a Mid-2014
MacBook Pro with an Intel Core i5 processor running at
2,6 GHz and 8 gigabytes of main memory. As expected,
the time consumed to perform the round-trip migrations
grows linearly with the number of iterations. It takes
about 40 seconds to perform all the 2 million iterations
of our performance test.

6. Summary and Outlook
In this paper, we outlined our vision of a so-called trans-
lation layer which supports the communication of web-
based services in different, incompatible versions. One of
the key tasks of implementing such a translation layer is
to support the round-trip migration of instances of object-
oriented data models in different versions. In this chal-
lenge description, we phrased this as a model transforma-
tion problem which, in contrast to previous TTC cases
on the same topic, is driven by the needs and specifics of
our application context. We are convinced that modern
model transformation technologies such as Henshin [24],
VIATRA [25] or ATL [26] are capable of solving the chal-
lenge in an elegant way. In particular, solutions to the
TTC 2017 “Families to Persons Case” [27, 28, 29, 30] may
be adapted to our case with moderate effort.

One of the next steps to further extend this challenge
could be to study more evolution scenarios than the four
considered in this paper. Moreover, we could think of
a (semi-)automated specification of the required round-
trip migration functions. Again, we are convinced that
technologies from the field of model-driven engineer-
ing, notably techniques for model matching [31, 32] and
differencing [33], can serve as starting point for such
automation.

References
[1] S. Wang, I. Keivanloo, Y. Zou, How do developers

react to RESTful API evolution?, in: Intl. Conf. on
Service-Oriented Computing, 2014.

[2] E. Wittern, Web APIs - Challenges, Design Points,
and Research Opportunities, in: Intl. Workshop on
API Usage and Evolution, 2018.

[3] S. Sohan, C. Anslow, F. Maurer, A case study of
web API evolution, in: IEEE World Congress on
Services, 2015.

[4] T. Espinha, A. Zaidman, H.-G. Gross, Web API
growing pains: Stories from client developers and
their code, in: Intl. Conf. on Software Maintenance,
Reengineering, and Reverse Engineering, 2014.

[5] G. Bierman, M. Parkinson, J. Noble, UpgradeJ: Incre-
mental typechecking for class upgrades, in: Euro-
pean Conference on Object-Oriented Programming,
2008.

[6] M. Dmitriev, M. Atkinson, Evolutionary data con-
version in the PJama persistent language, in: Intl.
Workshop on Object Oriented Databases, 1999.

[7] E. Rahm, P. A. Bernstein, An online bibliography on
schema evolution, ACM Sigmod Record 35 (2006).

[8] R. Hebig, D. E. Khelladi, R. Bendraou, Approaches
to co-evolution of metamodels and models: A sur-
vey, IEEE Transactions on Software Engineering
43 (2017).

[9] A. Anjorin, T. Buchmann, B. Westfechtel, The fam-
ilies to persons case, in: Proceedings of the 10th
Transformation Tool Contest at STAF 2017, 2017.

[10] E. Biermann, C. Ermel, G. Taentzer, Formal founda-
tion of consistent EMF model transformations by
algebraic graph transformation, Software & Sys-
tems Modeling 11 (2012).

[11] R. Heckel, J. M. Küster, G. Taentzer, Confluence
of typed attributed graph transformation systems,
in: Intl. Conf. on Graph Transformation, Springer,
2002, pp. 161–176.

[12] E. Syriani, J. Gray, Challenges for addressing quality
factors in model transformation, in: Intl. Conf. on
Software Testing, Verification and Validation, IEEE,
2012, pp. 929–937.

[13] C. M. Gerpheide, R. R. Schiffelers, A. Serebrenik, A
bottom-up quality model for QVTO, in: Int. Con-
ference on the Quality of Information and Commu-
nications Technology, IEEE, 2014, pp. 85–94.

[14] K. Lano, K. Maroukian, S. Y. Tehrani, Case study:
Fixml to Java, C# and C++, in: TTC@STAF, 2014,
pp. 2–6.

[15] S. Getir, D. A. Vu, F. Peverali, D. Strüber, T. Kehrer,
State elimination as model transformation problem,
in: TTC@STAF, 2017, pp. 65–73.

[16] S. Götz, M. Tichy, T. Kehrer, Dedicated model trans-
formation languages vs. general-purpose languages:
A historical perspective on ATL vs. Java., in: MOD-
ELSWARD, 2021, pp. 122–135.

[17] S. Höppner, T. Kehrer, M. Tichy, Contrasting dedi-
cated model transformation languages vs. general
purpose languages: A historical perspective on ATL
vs. Java based on complexity and size, Software and
Systems Modeling (2021). To appear.

[18] A. Nugroho, Level of detail in UML models and
its impact on model comprehension: A controlled
experiment, Information and Software Technology
51 (2009) 1670 – 1685.

[19] S. Hidaka, M. Tisi, J. Cabot, Z. Hu, Feature-based
classification of bidirectional transformation ap-
proaches, Software & Systems Modeling 15 (2016)
907–928.

[20] A. Schürr, Specification of graph translators with
triple graph grammars, in: Intl. Workshop on
Graph-Theoretic Concepts in Computer Science,
Springer, 1994, pp. 151–163.

[21] H.-S. Ko, T. Zan, Z. Hu, Bigul: a formally veri-
fied core language for putback-based bidirectional
programming, in: SIGPLAN Workshop on Partial
Evaluation and Program Manipulation, 2016, pp.
61–72.

[22] A. Kusel, J. Schönböck, M. Wimmer, G. Kappel,
W. Retschitzegger, W. Schwinger, Reuse in model-
to-model transformation languages: are we there
yet?, Software & Systems Modeling 14 (2015) 537–
572.

[23] S. Sen, N. Moha, V. Mahé, O. Barais, B. Baudry,
J.-M. Jézéquel, Reusable model transformations,
Software & Systems Modeling 11 (2012) 111–125.

[24] D. Strüber, K. Born, K. D. Gill, R. Groner, T. Kehrer,
M. Ohrndorf, M. Tichy, Henshin: A usability-
focused framework for EMF model transformation
development, in: Intl. Conf. on Graph Transforma-
tion, Springer, 2017, pp. 196–208.

[25] D. Varró, A. Balogh, The model transformation
language of the VIATRA2 framework, Science of
Computer Programming 68 (2007) 214–234.

[26] F. Jouault, I. Kurtev, Transforming models with
ATL, in: Intl. Conf. on Model Driven Engineering
Languages and Systems, Springer, 2005, pp. 128–
138.

[27] G. Hinkel, An NMF solution to the families to per-
sons case at the TTC 2017, in: TTC@STAF, volume
2026 of CEUR Workshop Proceedings, 2017, pp. 35–
39.

[28] A. Zündorf, A. Weidt, The sdmlib solution to the
TTC 2017 families 2 persons case, in: TTC@STAF,
volume 2026 of CEUR Workshop Proceedings, 2017,
pp. 41–45.

[29] T. Horn, Solving the TTC families to persons case
with funnyqt, in: TTC@STAF, volume 2026 of
CEUR Workshop Proceedings, 2017, pp. 47–51.

[30] L. Samimi-Dehkordi, B. Zamani, S. K. Rahimi, Solv-
ing the families to persons case using evl+strace,
in: TTC@STAF, volume 2026 of CEUR Workshop
Proceedings, 2017, pp. 54–62.

[31] D. S. Kolovos, D. Di Ruscio, A. Pierantonio, R. F.
Paige, Different models for model matching: An
analysis of approaches to support model differenc-
ing, in: ICSE Workshop on Comparison and Ver-
sioning of Software Models, IEEE, 2009, pp. 1–6.

[32] T. Kehrer, U. Kelter, P. Pietsch, M. Schmidt, Adapt-
ability of model comparison tools, in: Intl. Conf. on
Automated Software Engineering, ACM, 2012, pp.
306–309.

[33] T. Kehrer, U. Kelter, G. Taentzer, A rule-based ap-
proach to the semantic lifting of model differences
in the context of model versioning, in: Intl. Conf.
on Automated Software Engineering, IEEE, 2011,
pp. 163–172.

[34] C. Brun, A. Pierantonio, Model differences in the
eclipse modeling framework, UPGRADE, The Eu-
ropean Journal for the Informatics Professional 9
(2008) 29–34.

PerformanceTests

testPerformance()

AllFunctionalTests

task_1_M1_M2_M1()
task_1_M2_M1_M2()
...
task_4_M2_M1_M2()

Task_4_M2_M1_M2... Task_4_M2_M1_M2Task_1_M1_M2_M1 Task_1_M2_M1_M2

«abstract»
AbstractTask

AbstractTask(EPackage M1, EPackage M2)
migrate(EObject instance) : EObject
migrateBack(EObject instance) : EObject

JavaTaskFactory

«abstract»
AbstractTaskFactory

createTask(TaskInfo info, EPackage M1, EPackage M2)

«enumeration»
TaskInfo

TASK_1_M1_M2_M1
TASK_1_M2_M1_M2
...
TASK_4_M2_M1_M2

«abstract»
AbstractBenchmarkTests

init()

«instantiate»

«use»«use»

Figure 7: Evaluation framework architecture (top) and integration of the Java-based reference solution (bottom).

A. Evaluation Framework
General architecture Tests in our evaluation frame-
work may be run as JUnit tests. The abstract class
AbstractBenchmarkTests serves as a base class for
all concrete tests (see below), doing some basic initializa-
tion. As illustrated by the architectural overview shown
in Figure 7, the class AbstractBenchmarkTests takes
the client role of an implementation of the Abstract Fac-
tory design pattern, the classes AbstractTaskFactory
and AbstractTask are supposed to encapsulate con-
crete solutions. That is, for each of the eight tasks pre-
sented in Section 3, solution providers who want to use
our evaluation framework are asked to provide a con-
crete subclass of AbstractTask which is to be instanti-
ated by a concrete subclass of AbstractTaskFactory.
The class AbstractTask defines the signatures of the
two central migration functions called migrate and
migrateBack, respectively. The idea is that migrate
and migrateBack then delegate the actual transforma-
tion task to the model transformation system used in a
concrete solution.

Functional tests vs. performance tests All test
cases for assessing the correctness of each of the
eight tasks presented in Section 3 may be run as
JUnit tests which are collected in the Java class
called AllFunctionalTests. Each test method, i.e.,
task_1_M1_M2_M1() through task_4_M2_M1_M2(),
executes a particular task and checks whether for a given
input models the obtained output model looks as ex-
pected. Checking the equivalence of an actual and ex-
pected round-trip migration result is performed using

the model comparison tool EMF Compare [34].
A performance test is provided by the class

PerformanceTests. There is only one test method,
called testPerformance(), which proceeds as follows:
Similarly, to the functional test cases, the test relies on the
correct implementation of the AbstractTaskFactory
and AbstractTask. During performance testing, all
test cases provided for the four evaluation scenarios are
executed repeatedly. That is, a full round-trip migration,
involving calls to migrate and migrateBack is per-
formed. After a certain number of warm-up iterations,
this test loop is repeated for a total of 2 million repetitions.
The test method measures execution with the increasing
number of repetitions and stores the results into the file
results.csv at the root of the solution’s bundle. See
the provided code repository of the evaluation frame-
work regarding plotting scripts for the resulting data.

Registration of a concrete task factory In order to
register a concrete subclass of AbstractTaskFactory,
solution providers may use the Eclipse extension point
mechanism. Concrete task factories can be registered
through a dedicated extension point6. Please note
that, in this case, the classes AllFunctionalTests
and PerformanceTests need to be run as JUnit Plug-
In Test. Alternatively, solution providers may sub-
class AllFunctionalTests and PerformanceTests
which can be then run as a normal JUnit test. In this case,
the init method of these concrete subclasses must take
care of instantiating the concrete task factory. Our ref-

6de.hub.mse.ttc2020.benchmark.concretetaskfactory

erence solution (see Section 5) implements both options
for the sake of illustration.

Test data Finally, since many model transformation
tools available in the model transformation research com-
munity are based on the Eclipse Modeling technology
stack, we provide implementations of the data models
used in the evolution scenarios presented in Section 3
in EMF Ecore. Consequently, instances serving as test
data for assessing the correctness of transformation tasks
are represented as EMF instances (often referred to as
instance models in the EMF community).

	1 Introduction
	2 Problem Definition
	2.1 Data Models and Instances
	2.2 Round-Trip Migration Functions

	3 Selected Evolution Scenarios
	3.1 Create/Delete Field
	3.2 Rename Field
	3.3 Declare Field Optional/Mandatory
	3.4 Multiple Edits

	4 Evaluation Criteria
	4.1 Expressiveness
	4.2 Comprehensibility
	4.3 Bidirectionality
	4.4 Re-usability
	4.5 Performance

	5 Reference Solution
	6 Summary and Outlook
	A Evaluation Framework

