
Supporting round-trip data migration for web APIs with
Henshin
Daniel Strüber1

1Faculty of Science, Radboud University Nijmegen, Postbus 9010, 6500 GL Nijmegen, The Netherlands

Abstract
We present a solution to the Round-Trip Migration case of the Transformation Tool Contest 2020, based on the Henshin
model transformation language. The task is to support four scenarios of transformations between two versions of the same
data metamodel, a problem inspired by the application scenario of Web API migration, where such a round-trip migration
methodology might mitigate drawbacks of the conventional “instant” migration style. Our solution relies on Henshin’s visual
syntax, which seems well-suited to capture the problem on an intuitive level, since the syntax is already similar to the scenario
illustrations in the case description. We discuss the five evaluation criteria expressiveness, comprehensibility, bidirectionality,
performance, and reusability.

Keywords
data migration, model transformation, tool contest contribution

1. Introduction
During the evolution of web-based systems, provided
APIs may change over time. Implementing API changes
in an instant usually leads to severe complications, as
developers of client software need to rapidly respond
to such changes. A desirable alternative is a round-trip
migration system that provides support for several API
versions in parallel, while internally managing the data
in such way that consistency is ensured.

To study how transformation tools may be an enabling
technology for such a system, this problem is the subject
of a case in the 2020 edition of TTC, called Round-Trip
Migration of Object-Oriented Data Model Instances [1].
The case description includes four scenarios of changes
that need to be supported by such a system: create/delete
field, rename field, declare field optional/mandatory, and
multiple edits. The task is to develop transformations
capturing these changes between two versions 𝑀1, 𝑀2

of the same metamodel. In each scenario, four trans-
formations are required: the migration and subsequent
back-migration for both possible round-trip directions
(𝑀1-𝑀2-𝑀1, 𝑀2-𝑀1-𝑀2).

In this paper, we present a solution to the case based on
the Henshin model transformation language [2, 3]. Hen-
shin is a model transformation language that supports the
declarative, graph-based specification of in-place trans-
formations. The basic features of Henshin’s tool set are

TTC’20: Transformation Tool Contest, Part of the Software
Technologies: Applications and Foundations (STAF) federated
conferences, Eds. A. Boronat, A. García-Domínguez, G. Hinkel, and F.
Křikava, 17 July 2020, Bergen, Norway (online).
" d.strueber@cs.ru.nl (D. Strüber)
~ https://www.danielstrueber.de/ (D. Strüber)
� 0000-0002-5969-3521 (D. Strüber)

© 2021 Copyright for this paper by its authors. Use permitted under Creative
Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

a suite of editors and an interpreter kernel. It also offers
a variety of advanced features, such code generation for
parallel graph pattern matching and support for various
transformation analyses.

Henshin provides an expressive visual syntax that aims
to support usability during transformation development
[3]. In fact, combining the object-diagram paradigm with
change descriptions, Henshin’s syntax is similar to the
informal notation used in the case description. Whereas
the case description illustrates the change of specific in-
stances, Henshin captures such changes in the form of
reusable rules. Rules express basic match-and-change
patterns. To specify control flow between rules where
needed, Henshin provides composite units that orches-
trate the execution of a number of sub-units and rules.
From a variety of available units (including random exe-
cution and loops), our solution uses one: Sequential units,
supporting the specification of rules in a given order as
well as the included data flow.

2. Solution
The solution comprises a set of Henshin rules and units,
as well some Java-based glue code. The reason for hav-
ing the glue code is to establish the connection to the
benchmark framework by implementing the provided
task interface (constant over the different scenarios). The
solution contains 8 modules (one per scenario and case),
encapsulating rules and units. For scenarios 1–3, each
module contains 2 rules, one for forward and one for back-
ground migration. For scenarios 4, each module contains
2 units, each orchestrating 4 rules (one of them reused).
The full solution and setup instructions are available at
https://github.com/dstrueber/ttc2020.

mailto:d.strueber@cs.ru.nl
https://www.danielstrueber.de/
https://orcid.org/0000-0002-5969-3521
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org


(a) Scenario 1, 𝑀1-𝑀2-𝑀1 case.

(b) Scenario 1, 𝑀2-𝑀1-𝑀2 case.

Figure 1: Full solution for Scenario 1: create/delete field.

2.1. Scenario 1: create/delete field.
The solution for scenario 1 comprises four rules, shown in
Fig. 1: two for both directions, one for migration and one
for back-migration. Each rule has a name and a parame-
ter list; parameters have a name and one of the directions
in, out, var. In and out parameters are passed into and
out of the the rule from the usage context (in our case,
the Java-based glue code), var parameters (variables) are
used internally to propagate information between differ-
ent parts of the rule. Each rule comprises a number of
preserve elements (shown in gray), specifying the con-
text for creations, and create elements (shown in green),
specifying newly created elements. For example, the
top migrate rule specifies a person from metamodel 1 as
context for the creation of a new person based on meta-
model 2, obtaining the same name and the age value of -1.
The migrateBack rule for the 𝑀2-𝑀1-𝑀2 case requires a
trace person as a source for the age value. The glue code
for the previously applied migrate rule ensures that this
object is available and can be passed into migrateBack.

A usability limitation in this particular scenario (in-
volving two metamodels that, from the user’s perspective,
are actually versions of the same metamodel) is that there
is no visual distinction between elements from different
metamodels. This issue is mitigated by the use of names
(e.g., instance1 and instance2, referring to instances from
𝑀1 and 𝑀2) as well as the coloring of separate actions
(preserve, create).

2.2. Scenario 2: rename field.
Figure 2 shows two out of the four rules for scenario 2,
capturing the 𝑀1-𝑀2-𝑀1 case (for symmetry reasons,
the other two rules are identical). In attribute calcula-
tions, Henshin supports the use of JavaScript expressions,
including standard library objects such as Date, as we use
to specify the conversion between birth dates and age.
During execution, JavaScript expressions are evaluated
using the Nashorn JavaScript engine.

2.3. Scenario 3: declare field
optional/mandatory.

Figure 3 shows two out of four rules for scenario 3, cap-
turing the 𝑀1-𝑀2-𝑀1 case. Again, we rely on Henshin’s
capability of using JavaScript calculations in attribute val-
ues. In the migrateBack rule, we use the ternary operator
to check if the name of the provided person object is null,
and specify different calculation outcomes for both cases.
The 𝑀2-𝑀1-𝑀2 case (not shown) is largely similar; the
main difference is that the migrate rule includes a han-
dling of empty strings, in the same way that the shown
migraterules handles the null case.

2.4. Scenario 4: multiple edits.
While scenarios 1–3 are straightforward, scenario 4 has
a design space of possible solutions. The rationale of our
solution is to illustrate the reuse capabilities of Henshin,
as requested in the case description. Still, we notice an
inherent trade-off between reuse, simplicity and perfor-
mance. The granularity of reuse in this case is so fine



Figure 2: Scenario 2: rename field (𝑀1-𝑀2-𝑀1 case. The rules for 𝑀2-𝑀1-𝑀2 look the same).

Figure 3: Scenario 3: Declare field optional/mandatory (𝑀1-𝑀2-𝑀1 case. The rules for 𝑀2-𝑀1-𝑀2 look similar).

that the price of reuse appears high: Compared to a solu-
tion without reuse (capturing the edits in a single rule),
the specification is much larger and therefore harder to
understand and less efficient to execute.

Figure 4 shows the implementation of the migrate step
in the 𝑀1-𝑀2-𝑀1 direction, comprising a sequential
unit that invokes four rules – three of them presented
with the unit, one of them reused from Scenario 2. (For
reading convenience, the rule from Scenario 2 was actu-
ally copied and included into the Scenario 4 transforma-
tion file, but it would be possible to maintain an actual
reference as well—using EMF’s concept of remote refer-
ences.) The unit produces an instance of a 𝑀2 container
object from an instance of a 𝑀1 container object, and
also has four internal var parameters. The order of the
rule invocations is specified in an activity-diagram-like
notation. Data flow is specified by passing parameters
between rule invocations (questions marks refer to vari-
ables, which do not have to be set from the context). Rule
getObject1 fetches the person and dog objects from the
container. Rules task2_migrate and dog_migrate produce
the migrated objects. Rule connectMigrated2 connects
the migrated objects with a reference and encapsulates
them in a container, which is yielded as output.

The solution for migrateBack and both steps in the
𝑀2-𝑀1-𝑀2 direction look largely similar. A small addi-
tional sophistication is that migrateBack for 𝑀1-𝑀2-𝑀1

requires a copy (a.k.a. trace) of the previously migrated
dog instance, which we implement in a similar manner
as in the 𝑀2-𝑀1-𝑀2 case of scenario 1.

3. Evaluation
We discuss our solution in the light of the five evaluation
criteria from the case description [1].

Expressiveness. The assessment of expressiveness is
based on the number of passing test cases: the more test
cases a solution covers, the more expressive it is. Accord-
ing to this criterion, the present solution is maximally
expressive, since it passes all test cases.

Comprehensibility. With our solution, we aimed at
providing a primarily declarative solution. We achieved
this goal by specifying all parts of the change logic using
Henshin’s declarative rule and control flow concepts. In
addition, our solution includes some glue code, written
in Java, to implement the provided Task interface.

Bidirectionality. Our solution (like any solution pass-
ing all test cases) is inherently bidirectional, since it sup-
ports transformations in both directions. Still, Henshin
does not provide dedicated support for automatically gen-
erating the transformation in either direction, and hence,
leaves the effort for bidirectionality implementation to
the user. An extension of Henshin with dedicated support
for bidirectionality exists in an early stage [4].

Performance. Figure 5 shows the execution time data
from running the performance test on a dual-core i7-
6600U CPU Ubuntu Linux system with 16 GB RAM. We
observe a large slowdown, by two orders of magnitude,
compared to the Java reference implementation. This



Figure 4: Scenario 4: Multiple edits; M1-M2-M1 migrate step (migrate-back and M2-M1-M2 look similar).

0 250000 500000 750000 1000000 1250000 1500000 1750000 2000000

No. of Repetitions

103

104

105

106

Ru
nt

im
e 

(m
s)

Total Transformation Runtime

Henshin

Reference

Figure 5: Runtime measurements

slowdown is to be expected due to the overhead of Hen-
shin’s generic matching engine, and the decision to use a
deliberately inefficient implementation (in favor of reuse)
in the most complicated scenario (scenario 4).

Re-usability. Henshin’s composite units support the
specification of a control flow. In scenario 4, we use this
feature to reuse rules originally specified for the imple-
mentation of scenario 2. Doing so, we enable reuse by
following a suggestion from the case description: "dele-
gating the migration of the referenced Person instances to
migration functions which have been already defined." [1]
Henshin has another reuse concept for specifying rule
variants [5], but this concept was not applicable to the
given case, since it does not support variations on the
level of node types (dog vs. person). This experience
emphasizes the need for more expressive reuse concepts
for model transformations [6].

Furthermore, it can be emphasized that the Java-based
glue code for implementing the task interface is constant
over the different scenarios. Even though scenario 4 is
the most complex scenario by far, we were able to fully
reuse the glue code developed for scenarios 1–3 without
further modifications.

4. Outlook
The trade-off related to reusability vs. simplic-
ity/performance motivates further work on composition
of transformation systems: The complicated specification
of units and rules in scenario 4 could be translated into
a single rule, which might both increase readability and
execution performance. While there are various works
on composition of rules from smaller parts [7, 8, 9], no
existing work seems to consider control flow in the input
transformation specification. The considered round-trip
migration scenario is also relevant during the model-
driven migration between different backend versions of
content management systems [10].

Acknowledgement. Thanks to Antonio Garcia-
Dominguez for providing an initial version of the perfor-
mance comparison figure.

References
[1] L. Beurer-Kellner, J. von Pilgrim, T. Kehrer, Round-

trip migration of object-oriented data model in-
stances, in: Transformation Tool Contest, 2020.



[2] T. Arendt, E. Biermann, S. Jurack, C. Krause,
G. Taentzer, Henshin: advanced concepts and tools
for in-place emf model transformations, Model
Driven Engineering Languages and Systems (2010)
121–135.

[3] D. Strüber, K. Born, K. D. Gill, R. Groner, T. Kehrer,
M. Ohrndorf, M. Tichy, Henshin: A usability-
focused framework for emf model transforma-
tion development, in: International Confer-
ence on Graph Transformation, 2017, pp. 196–
208. URL: https://rgse.uni-koblenz.de/web/pages/
research/papers/SBGGKOT17.pdf.

[4] C. Ermel, F. Hermann, J. Gall, D. Binanzer, Visual
modeling and analysis of emf model transforma-
tions based on triple graph grammars, Electronic
Communications of the EASST 54 (2012).

[5] D. Strüber, J. Rubin, T. Arendt, M. Chechik,
G. Taentzer, J. Plöger, Variability-based model trans-
formation: formal foundation and application, For-
mal Asp. Comput. 30 (2018) 133–162.

[6] M. Chechik, M. Famelis, R. Salay, D. Strüber, Per-
spectives of model transformation reuse, in: Inter-
national Conference on Integrated Formal Methods,
2016, pp. 28–44.

[7] A. Rensink, Compositionality in graph transforma-
tion, in: International Colloquium on Automata,
Languages and Programming, 2010, pp. 309–320.

[8] A. Anjorin, K. Saller, M. Lochau, A. Schürr, Mod-
ularizing triple graph grammars using rule refine-
ment, in: Fundamental Approaches to Software
Engineering, 2014, pp. 340–354.

[9] L. Fritsche, J. Kosiol, A. Schürr, G. Taentzer, Short-
cut rules, in: STAF workshops, 2018, pp. 415–430.

[10] D. Priefer, P. Kneisel, D. Strüber, Iterative model-
driven development of software extensions for web
content management systems, in: European Confer-
ence on Modelling Foundations and Applications,
2017, pp. 142–157.

https://rgse.uni-koblenz.de/web/pages/research/papers/SBGGKOT17.pdf
https://rgse.uni-koblenz.de/web/pages/research/papers/SBGGKOT17.pdf

	1 Introduction
	2 Solution
	2.1 Scenario 1: create/delete field.
	2.2 Scenario 2: rename field.
	2.3 Scenario 3: declare field optional/mandatory.
	2.4 Scenario 4: multiple edits.

	3 Evaluation
	4 Outlook

