
The Fulib solution to the TTC 2021 laboratory workflow
case
Sebastian Copei1, Adrian Kunz1 and Albert Zuendorf1

1Kassel University, Germany

Keywords
model transformation, tool presentation, java

1. Introduction
This paper outlines the Fulib [1, 2] solution to the Labora-
tory Workflow Case of the Transformation Tool Contest
2021 [3]. Our analysis of the use case showed that it
provides quite a number of different model elements that
require individual treatment but the different cases are
relatively simple. However, some parts of the predefined
EMF metamodels do not work very well with the Fulib
modeling approach. For example, the predefined meta-
model uses index numbers to identify the tips of a liquid
transfer job and these index numbers need to be mapped
to the barcodes of the samples that are transported by a
tip. Similarly, samples need to be mapped to cavities on
micro-plates. Thus, we took the liberty to adapt the given
metamodels by adding explicit associations between sam-
ples and some labware elements, cf. Fig. 1. Note, these
adaptions connect elements from the source and from the
target metamodel of our model to model transformation.
For these adaptions, we loaded and combined the two
given Ecore metamodels of the use case into the Fulib
code generator and then did some manual modifications
using Fulibs metamodeling API. Due to a misinterpreta-
tion, we also changed the cardinality of the previous-next
association for Jobs from many-to-many to one-to-one.
We felt this meets the semantics of the use case, too,
and it resulted in a somewhat simpler model that can be
processed easier and faster.

The rest of the paper outlines the implementation of
the different model processing steps and we conclude
with some measurements.

2. Initialization and Loading
The initialization phase allows to load the metamodels
and transformations. In our approach, Fulib generates a

TTC’21: Transformation Tool Contest, Part of the Software
Technologies: Applications and Foundations (STAF) federated
conferences, Eds. A. Boronat, A. García-Domínguez, and G. Hinkel,
25 June 2021, Bergen, Norway (online).
" sco@uni-kassel.de (S. Copei); a.kunz@uni-kassel.de (A. Kunz);
zuendorf@uni-kassel.de (A. Zuendorf)

© 2021 Copyright for this paper by its authors. Use permitted under Creative
Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

Figure 1: Design

very light weight implementation of our model in Java
code and Fulib generates a number of dedicated Table
classes that enable efficient OCL [4] like queries. The
actual model transformations are coded in Java against
the generated model API. Thus, the Fulib solution has no
initialization phase.

The various input models that describe a JobRequest,
its Assay and the target Samples are given as EMF/XMI
files (*/initial.xmi). We load the initial model with a
generic XML parser and a DOM tree visitor, that builds
the model based on our light weight model implementa-
tion.

3. Creating the initial
JobCollection

Once the JobRequest and Assay are loaded, we use
an AssayToJobs visitor [5] to generate the initial
JobCollection, cf. Listing 1.Using the visitor pattern
allows for a nice separation of model queries that look up
elements and of transformation rules that do the actual
operations.

The initial method of our AssayToJobs visitor
first creates the target JobCollection (cf. line 6 of
Listing 1). Then it iterates through the samples, reagents,
and assay steps and calls appropriate assign rules (cf.
lines 7 to 14).

The assignToTube rule checks, whether we have a
TubeRunner that still has place for the new sample (cf.
line 20). If not, a new TubeRunner is created (cf. line
22 to 26) and added to the JobCollection (cf. line 25).
Then, the sample’s barcode is added to the TubeRunner

mailto:sco@uni-kassel.de
mailto:a.kunz@uni-kassel.de
mailto:zuendorf@uni-kassel.de
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

1 public class AssayToJobs {
2 private JobCollection jc;
3 private JobRequest jr;
4 public JobCollection initial(JobRequest jr) {
5 this.jr = jr;
6 jc = new JobCollection();
7 jr.getSamples()
8 .forEach(this::assignToTube);
9 jr.getSamples()

10 .forEach(this::assignToPlate);
11 jr.getAssay().getReagents()
12 .forEach(this::assignToTrough);
13 jr.getAssay().getSteps()
14 .forEach(this::assignJob);
15 return jc;
16 }
17 TubeRunner tube = null;
18 int tn = 1;
19 private void assignToTube(Sample sample) {
20 if (tube == null ||
21 tube.getBarcodes().size() == 16) {
22 tube = new TubeRunner();
23 tube
24 .setName(String.format("Tube%02d", tn))
25 .setJobCollection(jc);
26 tn++;
27 }
28 tube.withBarcodes(sample.getSampleID());
29 tube.withSamples(sample);
30 }
31 ...

Listing 1: Initial JobCollection via AssayToJobs Visitor

(cf. line 28) and in addition, we connect the sample
to the TubeRunner for simple reference (cf. line 29).
The rules assignToPlate and assignToTroughwork
quite similarly.

Listing 2 shows the handling of assay
ProtocolSteps. As there are different types of
ProtocolSteps we use a map of stepAssignRules
that provides a special assign rule for each kind of step
(cf. line 3, 7, 13 to 24). As an example, ProtocolSteps
of type DistributeSample are handled by rule
assignLiquidTransferJob4Samples (cf. line 30 to
32). Rule assignLiquidTransferJob4Samples
just iterates through all samples and calls
rule assignTipLiquidTransfer. Rule
assignTipLiquidTransfer ensures that a
LiquidTransferJob is available (cf. line 41 to
54). Then, lines 56 to 66 create the corresponding
TipLiquidTransfer and initialize the corre-
sponding attributes. Note, line 66 connects the
TipLiquidTransfer to its sample for easy reference.
The remaining stepAssignRuleys work similar.

1 public class AssayToJobs {
2 ...
3 Map<Class, Consumer<ProtocolStep>>
4 stepAssignRules = null;
5 private void assignJob(ProtocolStep ps) {
6 initStepAssignRules();
7 Consumer<ProtocolStep> rule =
8 stepAssignRules.get(ps.getClass());
9 rule.accept(ps);

10 }
11 private void initStepAssignRules() {
12 if (stepAssignRules == null) {
13 stepAssignRules = new LinkedHashMap<>();
14 stepAssignRules
15 .put(DistributeSample.class,
16 this::assignLiquidTransferJob4Samples);
17 stepAssignRules
18 .put(Incubate.class,
19 this::assignIncubateJob);
20 stepAssignRules
21 .put(Wash.class, this::assignWashJob);
22 stepAssignRules
23 .put(AddReagent.class,
24 this::assignAddReagentJob);
25 }
26 }
27 private void
28 assignLiquidTransferJob4Samples
29 (ProtocolStep protocolStep) {
30 jobRequest.getSamples().forEach(
31 sample -> assignTipLiquidTransfer
32 (protocolStep, sample));
33 }
34 LiquidTransferJob liquidTransferJob = null;
35 private void
36 assignTipLiquidTransfer
37 (ProtocolStep protocolStep, Sample sample)
38 {
39 DistributeSample distributeSample =
40 (DistributeSample) protocolStep;
41 if (liquidTransferJob == null ||
42 liquidTransferJob.getTips().size() == 8) {
43 liquidTransferJob =
44 new LiquidTransferJob();
45 liquidTransferJob
46 .setProtocolStepName(
47 protocolStep.getId())
48 .setState("Planned")
49 .setJobCollection(jobCollection)
50 .setPrevious(lastJob);
51 lastJob = liquidTransferJob;
52 liquidTransferJob
53 .setSource(sample.getTube())
54 .setTarget(sample.getPlate());
55 }
56 TipLiquidTransfer tip =
57 new TipLiquidTransfer();
58 tip.setSourceCavityIndex
59 (sample.getTube()
60 .getSamples().indexOf(sample))
61 .setVolume(distributeSample.getVolume())
62 .setTargetCavityIndex(sample.getPlate()
63 .getSamples().indexOf(sample))
64 .setStatus("Planned")
65 .setJob(liquidTransferJob)
66 .setSample(sample);
67 }
68 ...

Listing 2: Initial JobCollection via AssayToJobs Visitor

4. Reading Changes to Job
Executions and Propagate

Updating is done via our Update class, cf. Listing 3.
Updates are described by text lines in predefined files.
Our update method calls method updateOne for each
line (cf. line 7 and line 14 to 23). Basically, there
are two kinds of updates, updates that effect a whole
Microplate and updates that effect individual Samples
and TipLiquidTransfers. Microplate related updates
are handled by rule updateJob (cf. line 19 and 24
to 32). Rule updateJob uses FulibTable code gen-
erated for model specific queries. Line 27 creates a
JobCollectionTable that has one row and one col-
umn containing the current JobCollection. Line 28
does a natural join with the JobCollection and its
attached labware, i.e. we get a table with rows for
each pair of JobCollection and Labware. Line 29
removes all rows that do not refer to a Microplate.
Then, line 30 expands our table to Jobs attached to the
Microplates, i.e. we get rows for all possible triples
of JobCollection, Microplate, and attached Jobs.
Line 31 filters for Jobs with the right stepName. For
each resulting row, line 32 assigns the new state to the
corresponding Job.

Note, our JobCollectionTable query could also be
expressed e.g. using the Java streams API. While using
the Java stream API is quite comparable, the Java stream
API requires some more steps and some extra operations
like flatMap and probably some extra type casts. Thus,
we prefer our FulibTables as we consider FulibTables
queries to be more concise.

Updates with dedicated new states for each sample
are handled by rule updateSamplesAndTip (cf. line
21 and 34 to 42). Rule updateSamplesAndTip uses a
FulibTables query to look up all samples attached to some
Microplate attached to our JobCollection. For each
sample we call rule updateOneSampleAndTip (cf. line
40 and line 43 to 65). Rule updateOneSampleAndTip
first retrieves the result state for the current sample (cf.
lines 45 to 47) and updates the sample on failure (cf. line
50). Then the FulibTables query of lines 52 to 56 retrieves
the tip that handles the current sample within the current
stepName. Lines 57 to 65 then update the state of the
tip and its job.

Once the updates are propagated, the FulibTa-
bles query of lines 9 to 12 of Listing 3 iter-
ates through all jobs that are still Planned and
applies rule removeOsoleteJob to them. Rule
removeObsoleteJob calls isObsolete to check,
whether the job can be removed (cf. line 70 and lines
79 to 96) and and in that case it does a classical removal
from a doubly linked list.

To be honest, our removal of obsolete jobs iterates

1 public class Update {
2 private JobCollection jc;
3 public void update(JobCollection jc, String updates) {
4 this.jc = jc;
5 String[] split = updates.split("\n");
6 for (String line : split) {
7 updateOne(line.trim());
8 }
9 new JobCollectionTable(jc)

10 .expandJobs("job")
11 .filter(j -> j.getState().equals("Planned"))
12 .forEach(job -> removeObsoleteJob(job));
13 }
14 private void updateOne(String change) {
15 String[] split = change.split("_");
16 String stepName = split[0];
17 String states = split[2];
18 if (states.length() == 1) {
19 updateJob(states, stepName);
20 } else {
21 updateSamplesAndTips(stepName, states);
22 }
23 }
24 private void updateJob(String states, String stepName) {
25 String jobState = states.equals("S") ?
26 "Succeeded" : "Failed";
27 new JobCollectionTable(jc)
28 .expandLabware("plate")
29 .filterMicroplate()
30 .expandJobs("job")
31 .filter(j -> j.getProtocolStepName().equals(stepName))
32 .forEach(job -> job.setState(jobState));
33 }
34 private void updateSamplesAndTips
35 (String stepName, String states) {
36 new JobCollectionTable(jc)
37 .expandLabware("plate")
38 .filterMicroplate().expandSamples("sample")
39 .forEach(sample ->
40 updateOneSampleAndTip
41 (sample, states, stepName));
42 }
43 private void updateOneSampleAndTip
44 (Sample sample, String states, String stepName) {
45 JobRequest jobRequest = sample.getJobRequest();
46 int index = jobRequest.getSamples().indexOf(sample);
47 char state = index >= states.length() ?
48 'F' : states.charAt(index);
49 if (state == 'F') {
50 sample.setState("Error");
51 }
52 TipLiquidTransfer tip = new SampleTable(sample)
53 .expandTips("tip")
54 .filter(t ->
55 t.getJob().getProtocolStepName().equals(stepName))
56 .get(0);
57 if (state == 'S') {
58 tip.setStatus("Succeeded");
59 LiquidTransferJob job = tip.getJob();
60 tip.getJob().setState("Succeeded");
61 } else {
62 tip.setStatus("Failed");
63 LiquidTransferJob job = tip.getJob();
64 if (job.getState().equals("Planned")) {
65 job.setState("Failed");
66 }
67 }
68 }
69 private void removeObsoleteJob(Job job) {
70 if (isObsolete(job)) {
71 job.setJobCollection(null);
72 if (job.getPrevious() != null) {
73 job.getPrevious().setNext(job.getNext());
74 } else {
75 job.setNext(null);
76 }
77 }
78 }
79 private boolean isObsolete(Job job) {
80 if (job instanceof LiquidTransferJob) {
81 LiquidTransferJob transferJob =
82 (LiquidTransferJob) job;
83 for (TipLiquidTransfer tip : transferJob.getTips()) {
84 if (!tip.getSample().getState().equals("Error")) {
85 return false;
86 }
87 }
88 return true;
89 } else {
90 for
91 (Sample sample : job.getMicroplate().getSamples()) {
92 if (!sample.getState().equals("Error")) {
93 return false;
94 }
95 }
96 return true;
97 }
98 }
99 }

Listing 3: Updating the Jobs

through all jobs and thus it is not really incremental.
This could be improved by collecting affected jobs during
state changes and by investigating only affected jobs.
However, due to the low number of jobs in the example
cases, we do not believe that such a caching mechanism
pulls it weight and thus we did go for conciseness.

5. Results
In TTC 2020 the Fulib solution used transformation code
working directly, with EMF based models [6]. That solu-
tion was very slow. This, year we use the Fulib generated
model implementation. As Table 1 shows, the Fulib imple-
mentation uses an average of 16 megabytes of memory to
handle a case while e.g. the reference solution requires an
average of 46 megabytes. We believe that this reduction
of memory consumption is a result of the more space
efficient model implementation provided by Fulib.

Similarly, the Fulib solution seems to be quite fast:
to run all phases of the test minimal case and of all
scale_samples cases and of all scale_assay cases on a
laptop with Intel Core i7 CPU 3.10GHz and 16 GB RAM
we use a total time of about 2 seconds, the Reference
solution uses about 5.2 seconds and the NMF solution
coming from the central GitHub repository uses about
76 seconds. To us it seems that EMF is a performance
bottleneck.

Tool total time (millisec) avg. memory (mb)

Reference 5227,95 46,45
NMF 76795,22 319,62
Fulib 1999,54 16,09

Table 1
Measurements

Concerning correctness, we have had difficulties to
get the Python script working that runs the checks and
does the analysis of the measurements. Our solution has
been developed on Windows and the Python installa-
tions we tried did not work. A Docker image with the
correct Python version and the correct libraries would
have been a great help. Concerning completeness, we
did not implement updates that generate new samples
on the fly. We just did not understand how these new
samples shall be added to a running JobCollection:
are you allowed to add new samples to an existing plate?
Or does each new sample need a new plate? Or can you
add samples to plates as long as those plates are not yet
under processing? But when does the processing of a
plate actually start? You find our solution on:

Github: https://github.com/sekassel/ttc2021fuliblabworkflow

6. Conclusions
Overall, the TTC 2021 Laboratory Workflow Case has
reasonably simple queries and rules but it also has quite
a number of different cases like different kinds of Jobs
and different kinds of Labware that all need special treat-
ment. The Fulib solution addresses these different cases
using maps of rules where appropriate rules are retrieved
e.g. by the types of current objects. This allows to it-
erate through all tasks, very conveniently. For queries,
our solution uses FulibTables, which are quite similar
to Java Streams or to OCL expressions. For the actual
transformations, we use plain Java code working directly
on the Java implementation of our model(s). Altogether,
we consider our solution as easy to read and as quite
concise, the whole update transformation needs roughly
90 lines of Java code.

The TTC 2021 Laboratory workflow Case is using a lot
of EMF. EMF is the de-facto standard for model exchange
these days. However, as we have discussed compared to
our implementation, EMF has some serious performance
problems. Using our own implementation (i.e. the Fulib
code generator) provides us with a more efficient model
implementation, however, we have to implement EMF
readers and writers ourselves and we still fight some
compatibility issues. These compatibility issues are an-
other reason for our integration into the Python based
test framework: we need to write EMF files that are not
just EMF compatible but that are accepted by the test
framework. We will improve our performance on EMF
compatibility for next years TTC.

References
[1] A. Zündorf, S. Copei, I. Diethelm, C. Draude, A. Kunz,

U. Norbisrath, Explaining business process software
with fulib-scenarios, in: 2019 34th International Con-
ference on Automated Software Engineering Work-
shop (ASEW), IEEE Computer, 2019, pp. 33–36.

[2] fulib, Fulib web service, https://www.fulib.org/, 2019.
[3] ttc2021labworkflow, Ttc2021 case: Incremen-

tal recompilation of laboratory workflows,
https://www.transformation-tool-contest.eu/
2021_labflows.pdf, 2021. Last viewed 25.05.2021.

[4] J. Cabot, M. Gogolla, Object constraint language (ocl):
a definitive guide, in: International school on formal
methods for the design of computer, communication
and software systems, Springer, 2012, pp. 58–90.

[5] E. Gamma, Design patterns: elements of reusable
object-oriented software, Pearson Education India,
1995.

[6] S. Copei, A. Zündorf, The fulib solution to the ttc
2020 migration case, arXiv preprint arXiv:2012.05231
(2020).

https://www.fulib.org/

	1 Introduction
	2 Initialization and Loading
	3 Creating the initial JobCollection
	4 Reading Changes to Job Executions and Propagate
	5 Results
	6 Conclusions

