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Abstract  
Dimensionality reduction is defined as the search for a low-dimensional space that captures 

the “essence” of the original high-dimensional data. Principal Component Analysis (PCA) is 

one of the most used dimensionality reduction technique in psychology and behavioral sciences 

for data analysis and measure development. However, PCA can capture linear correlations 

between variables, but fails when this assumption is violated. In recent years, a variety of 

nonlinear dimensionality reduction techniques have been proposed in other research fields to 

overcome this limitation. In this paper, we focus on non-linear autoencoder, a multi-layer 

perceptron, with as many inputs as outputs and a smaller number of hidden nodes. We 

investigate the relation between the intrinsic dimensionality of data and the autoencoder’s 

internal nodes in a simulation study, comparing autoencoders and PCA performances in term 

of reconstruction error. The evidence from this study suggests that autoencoder’s ability in 

dimensionality reduction is very similar to PCA, and that there is a relation between internal 

nodes and data dimensionality.  

 

Keywords  1 
Dimensionality reduction, Principal Component Analysis (PCA), Autoencoder, Artificial 

Neural Networks 

1. Introduction 

The transformation of data from high-dimensional space into a meaningful low-dimensional space, 

which ideally corresponds to the intrinsic dimensionality of the original data, is referred as 

“dimensionality reduction”. This transformation is important in several domains because it mitigates 

undesired properties of high-dimensional spaces such as the curse of dimensionality [1]. 
However, determining the number of dimensions of a data set requires researchers to take several 

important decisions: in particular, the choice of extraction method and the decision about how many 

components to retain are considered among the most critical in psychological scale development [2]. 
 Intrinsic dimensionality, as an important intrinsic characteristic of high-dimensional data, can be 

defined as the minimum number of coordinates which are necessary to describe data points without 

significant information loss: because the process of dimensionality reduction inevitably leads to 
information loss, it is very important to preserve the main and important characteristics of the original 

data as much as possible. So, dimensionality reduction is not only related to data compression, but also 

to feature extraction [3].  

Traditionally, dimensionality reduction is performed using linear techniques such as Principal 
Components Analysis (PCA), which is one of the most used statistical techniques in behavioral sciences 

and is a standard part of measure development [4]. 
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PCA was first introduced by Pearson in 1901 and developed by Hotelling in 1933 [5,6]. The central 
idea of PCA is to reduce the dimensionality of a dataset with a large number of interrelated variables 

preserving as much variability as possible. This reduction is achieved by finding new variables, the 

principal components, which are linear functions of the original variables, which are uncorrelated and 

sorted so that the first few retain most of the variation present in all the original variables [7]. However, 
assumptions required for PCA are not always satisfied in psychology and behavioral sciences. In fact, 

PCA assumes that the relationships between variables are linear, and all variables should be assessed 

on an interval or ratio level of measurement. Therefore, PCA may not always be the most appropriate 
method of analysis [8].  

In contrast to the traditional linear techniques for dimensionality reduction, machine learning 

techniques can deal with complex nonlinear data, and they represent a valuable alternative to classical 
methods. In this context, a considerable amount of work has been done on non-linear extensions of 

PCA and a variety of approaches has been proposed. Among others, Autoencoders seem a valuable 

alternative to PCA for dimensionality reduction.  

Autoencoder, also called auto-associative neural network or bottleneck network, is a multi-layer 
perceptron with as many inputs as outputs and a smaller number of hidden feature units. During training, 

the targets for the output units are set to be equal to the inputs. The weights in the network are then 

trained to minimize the square error of the reconstruction [9]. Because of this learning strategy, it can 
be shown that the linear autoencoder, with n features, converges to the n-th dimensional PCA subspace 

[10,11]. An extension of the linear autoencoder consists in the introduction of a nonlinear mapping by 

adding nonlinear hidden layers. Such a neural network effectively performs a nonlinear principal 
component analysis, overcoming limits of linear dimensionality reduction [12]. Autoencoders are 

applied to many problems, from facial recognition to customer segmentation [13,14], but they’re absent 

in psychometric research. Furthermore, although it is known that autoencoders have good performance 

in data compression, little research has been conducted on the relationship between the intrinsic 
dimensionality of the data and the number of internal nodes. 

In line with these considerations, the aim of this paper is to investigate in a systematic way a possible 

relation between the number of hidden layer nodes and the intrinsic dimensionality of data, comparing 
PCA and autoencoders reconstruction error on artificial datasets. 

Datasets are generated from factor-based population, a choice due to their diffusion in psychometric 

research [15].  

The rest of article is organized as follows: first, methods are briefly described, and the study is 
presented in a more detailed way; then, experimental procedures, data analysis and results are showed; 

finally, section 4 concludes the paper and discusses several future research directions. 

2. Methods 

In many areas among the social and life sciences the amount of high-dimensional data has rapidly 
increased within the past year: to handle such real-world data adequately, dimensionality needs to be 

reduced into meaningfully expression in low-dimensional space.  

In this section two approaches for dimensionality reduction will be described: subsection 2.1 discuss 
Principal Component Analysis, the most famous linear dimensionality reduction technique; then, we 

describe Autoencoders, an alternative non-linear approach for dimensionality reduction more recently 

proposed.  

2.1. Principal Component Analysis (PCA) 

PCA can be defined as the orthogonal projection of data onto a lower dimensional linear space, such 

that the variance of the projected data is maximized [16]. 

To derive the form of PC’s, suppose 𝑥 is a vector of 𝑝 variables with a covariance matrix 𝑆. The first 

step is to search for a linear function 𝛼1
′ 𝑥 of the elements of 𝑥 having maximum variance: 



𝛼1
′ 𝑥 =  𝛼11𝑥1 +  𝛼12𝑥2 + … +  𝛼1𝑝𝑥𝑝 =  ∑ 𝛼1𝑗𝑥𝑗

𝑝

𝑗=1

 (1) 

where 𝛼1
′  is a vector of 𝑝 constants 𝛼11𝑥1, 𝛼12𝑥2 , … , 𝛼1𝑝𝑥𝑝  and ‘ denotes transpose. 

The variance of the projected data is given by: 
 

𝑣𝑎𝑟[𝛼1
′ 𝑥] =  𝛼1

′ 𝑆𝛼1 (2) 

and is maximized under the normalization constraints 𝛼1
′ 𝑎1 = 1 using the techinque of Lagrange 

multipliers. It follows that: 

𝛼1
′ 𝑆𝛼1  =  𝜆(𝛼1

′ 𝑎1 − 1) (3) 

where λ is the Lagrange multipliers. By setting differentiation with respect 𝛼1 equal to zero, the solution 

of this problem can be obtained as a unit eigenvector of the covariance matrix S corresponding to the 

largest eigenvalue. Thus, 𝛼1 is the eigenvector corresponding to the largest eigenvalue of 𝑆, and 

𝑣𝑎𝑟(𝑎1𝑥) =  𝛼1
′ 𝑆𝛼1 =  𝜆1 the largest eigenvalue.  

In general, the kth PC of 𝑥 is 𝛼𝑘𝑥 and its variance is 𝜆𝑘 , where 𝜆𝑘 is the largest eigenvalue of S and 

𝛼𝑘 is the corresponding eigenvector or, also, the vector of loadings for the kth component. We can 

define additional principal components in an incremental fashion by choosing each new direction to be 

that which maximizes the projected variance amongst all possible directions orthogonal to those already 

considered. To summarize, principal component analysis involves evaluating the covariance matrix 𝑆 
of the dataset and then finding the k eigenvectors of S corresponding to the k largest eigenvalues. 

PCA can be also viewed as a linear projection of data points into a lower dimensional space such 

that the squared reconstruction loss is minimized. In general, a dimension reduction technique provides 

an approximation 𝑥(𝑡) to 𝑥(𝑡) which is the composition of two functions f and g: 

𝑥(𝑡) = 𝑥(𝑡) +  𝜖(𝑡) = 𝑔 (𝑓(𝑥(𝑡))) +  𝜖(𝑡) (4) 

The projection function 𝑓 ∶ 𝑅𝑝 → 𝑅𝑧
 projects the original P-dimensional data 𝑥(𝑡) onto a Z-

dimensional subspace, while the expansion function 𝑔 ∶ 𝑅𝑍
 → 𝑅𝑃defines a mapping from the Z-

dimensional space back into the original P-dimensional space with 𝜖(𝑡) as the residue. The feature 

extraction problem may involve the determination of functions f and g. The mean square error (MSE) 
in reconstructing the original data is:  

𝑀𝑆𝐸 =  𝐸 [‖𝑥 − 𝑔(𝑓(𝑥))‖
2

] (5) 

It can be shown that PCA is the algorithm which obtains the smallest MSE among all techniques with 

linear projection and expansion functions f and g [17].  

2.2.  Autoencoders 

Autoencoder, also called auto-associative neural network, is a multi-layer perceptron having the 

same number of outputs as inputs, designed to learn an approximation to the identity function, so as the 

output is as similar to the input as possible [18]. This is achieved by minimizing an error function which 
captures the degree of mismatch between the input vectors and their reconstructions, typically a sum-

of-squares error of the form: 

𝐸(𝑤) =  
1

2
∑‖𝑦(𝑥𝑗 , 𝑤) − 𝑥𝑗‖

2
𝑃

𝑗=1

 (6) 

When used with a hidden layer smaller than the input/output layers and linear activations only, as 

represented in Figure 1, the autoencoder performs a compression scheme which was shown to be 

equivalent to PCA [10, 11]. In fact, both principal component analysis and the neural network are using 

linear dimensionality reduction and are minimizing the same sum-of-squares error function.  



 
Figure 1: Linear Autoencoder with a single hidden layer (l = linear activation function) 

 
In 1991, an interesting non-linear generalization was introduced by Kramer [12]. The network 

described by Kramer is again trained by minimization of the error function (6).  

We can view this network as two successive functional mappings 𝑓 and 𝑔 as indicated in Figure 2. 

The first mapping 𝑓 projects the original 𝑃-dimensional data into a Z-dimensional subspace S defined 
by the activations of the units in the second hidden layer. Because of the presence of the first hidden 

layer of nonlinear units, this mapping is very general, and is not restricted to being linear.  

 
Figure 2: Non-linear autoencoder introduced by Kramer (σ = sigmoidal activation function, l = linear 
activation function) 

 

Let consider a network with p neurons in the input and output layers, k neurons in the mapping and 

demapping layers and a single neuron in the bottleneck layer. Without biases, the projection functions 
f has the form: 

𝑓(𝑥) =  ∑ 𝑤1𝑖
(2)

𝜎 ∑ 𝑤𝑖𝑗
(1)

𝑥𝑗

𝑃

𝑗=1

𝑘

𝑖=1

 (7) 

Similarly, the second half of the network defines an arbitrary functional mapping g from the Z-

dimensional space back into the original P-dimensional input space and takes the form: 

𝑔(𝑦) = [𝑔1(𝑦) … 𝑔𝑝(𝑦)]
𝑇

= [∑ 𝑤1𝑖
(4)

𝜎

𝑘

𝑖=1

(𝑤𝑖1
(3)

𝑦) ∑ 𝑤𝑗𝑖
(4)

𝜎

𝑘

𝑖=1

(𝑤𝑖1
(3)

𝑦)] (8) 



where 𝑤𝑖𝑗
(𝑚)

 is the weight between the i-th neuron of layer 𝑚 +  1 and the j-th neuron of layer m, and 

σ is a non-linear function, usually a sigmoid or a hyperbolic tangent function. 

This process has a simple geometrical interpretation, as indicated for the case P = 3 and Z = 2 in 

Figure 3. The function f defines a projection of points from the original P-dimensional space into the 

Z-dimensional subspace S; then, the function g maps from a Z-dimensional space S back into a P-

dimensional space and therefore defines the way in which the space S is embedded within the original 
x-space. Since the mapping g can be nonlinear, the embedding of S can be nonplanar, as indicated in 

the figure.  

 
Figure 3. Geometrical interpretation of the mappings performed by the network in Figure 2 for the 
case of P = 3 inputs and Z = 2 units in the middle hidden layer. 

 

Autoencoder has the advantage of not being limited to linear transformations and can learn more 

complicated relations between visible and hidden units, although it contains standard principal 
component analysis as a special case. However, unlike PCA, the coordinates of the output of the 

bottleneck are correlated and are not sorted in descending order of variance. Moreover, computationally 

intensive nonlinear optimization techniques must be used, and there is the risk of finding a suboptimal 
local minimum of the error function [16]. One solution to mitigate this problem was introduced by 

Hinton in 2006, who proposed a “layer-wise pretraining” procedure for binary data using restricted 

Boltzmann machines [19].  

2.3. Objectives of the work 

Dimensionality reduction implies capturing the "essence" of the data, that is, extracting the most 

important information. In PCA, this is achieved by selecting the principal components that explain most 

of the relationships among the variables and, so, reflect the intrinsic dimensionality of data, but little 

research has been done on autoencoder ability in dimensionality extraction. 
In 2016, Wang et al. [20] investigated a possible relation between the number of hidden layer nodes, 

the performance of autoencoder and the intrinsic dimensionality of data. This study was conducted on 

MNIST and Olivetti face datasets by recording the change of performance of the classifier when the 
dimensionality of the projected representation varies. Results of this study showed a possible relation 

between the hidden nodes, the intrinsic dimensionality of MNIST dataset and the autoencoders 

accuracy. 
Similarly, in this paper we want to investigate this relation in a more systematic way. The aim is to 

compare PCA and autoencoder ability in dimensionality extraction on different factor-based simulated 

datasets. Our hypothesis is that autoencoder’s representation of data lying in bottleneck layer captures 

the most important data characteristics and is in relation with data intrinsic dimensionality. So, the 
performance of autoencoder should be optimal when the number of internal nodes is equal to data 

dimensionality. More details and results are showed in the next section. 

 
 



3. A simulation study 

In order to investigate the relation between data dimensionality and autoencoder’s internal nodes, 

a simulation approach is chosen, because of the possibility to analyze different scenarios by varying 

only the selected design-factors. In this section, the simulation study is described in detail, and results 
are showed. 

3.1.  Simulation Design and Data Generation 

Analyses were conducted on artificial data generated from different factor-based population, using 

the R package Lavaan [21]. Relationships in the model were set assuming the theoretical path model 
represented in Figure 4 and then data were simulated considering the given values of the parameters.  

The simulation study considered different scenarios, varying the following design-factors:  sample 

size, number of components and number of observed variables. The considered levels for each design-
factor are presented in Figure 4. The total number of scenarios obtained from the combination of these 

levels of the design-factors was equal to 48 (4 sample sizes × 3 number of components × 4 number of 

observed variables). For each considered scenario, we generated one dataset. 

 

 
Figure 4: Simulation plan 

3.2. Data analysis and Results 

Non-linear autoencoders used for dimensionality reduction were implemented in Python using Keras 

module [22]; the non-linearity of choice was the hyperbolic tangent activation function (tanh) except 

for the bottleneck and the output layers which used a linear activation function. 

All layers but for the bottleneck had the same number of neurons, equal to the number of observed 
variables. The bottleneck layer’s nodes varied from one to the number of observed variables. That is, 

for a dataset with n observed variables, n autoencoders were trained on the whole dataset, with neurons 

in the bottleneck layer varying from 1 to n. MSE was computed for each autoencoder.  

 Weights were initialized based on the uniform distribution suggested by Glorot and Bengio [23] 
and Adam optimizer was used with 0.0001 learning rate as it offers both fast training and good 

generalization performance [24].  

Model used for 

generating data:

n = 200

n = 500

n = 700

n = 1000

Loadings:
All factor loadings are equal 

to 0.7

Number of observed variables 

for each component:

Generated sample 

size:
Number of components:



Finally, PCA was performed using Scikit-learn module in Python [25] and MSE was computed for each 
possible number of components (from 1 to the number of observed variables). 

Figures 5, 6, and 7 show results for three scenarios: 

a) 3 components and 9 observed variables. 

b) 5 components and 25 observed variables. 
c) 7 components and 63 observed variables. 

These scenarios are, respectively, the smallest, the medium and the largest among those obtained 

from all the possible combinations of the chosen design-factors. 
Results show that MSE for both Autoencoders and PCA are very similar and are about the same 

when sample size is sufficiently large. Plots always display a downward curve, starting high on the left, 

falling rather quickly, and then flattening out at some point: this "elbow" coincides with the intrinsic 
data dimensionality. This pattern is always repeated, except in models with many observed variables 

and low sample size. In these cases, autoencoders results don’t follow the same trend as PCA and don’t 

provide information about the data dimensionality.   

For the maximum number of components, MSE score for PCA is equal to zero, because considering 
all components data are perfectly reconstructed, and all the variation is retained. MSE scores for 

autoencoder, when the number of nodes is near or equal to the number of observed variables, are low, 

but doesn’t display the same pattern as PCA and are not equal to zero. 

 
Figure 5. MSE for 3-dimensional simulated dataset with 9 variables and different sample size  

 

 
Figure 6. MSE for 5-dimensional simulated dataset with 25 variables and different sample size  
 



 
Figure 7. MSE for 7-dimensional simulated dataset with 63 variables and different sample size  
 

4. Discussion and future research 

In this work, we have compared PCA and non-linear autoencoder and we have hypothesized a 

relationship between the number of autoencoder’s internal nodes and the intrinsic dimensionality of 

data. Results shows that autoencoder can perform dimensionality reduction as well as PCA, with an 
adequate sample size. Furthermore, results show that neurons in internal layer have a relation with the 

dimensionality of data. In fact, after the “elbow” of the graph, in which the number of neurons coincides 

with the dimensionality of data, the decrease in the MSE is slower and thus not sufficient to compensate 
for the increase in complexity. Because the choice of number of hidden neurons is a priori choice, it is 

useful to know that nodes of the bottleneck layer have a relation with data dimensionality.  

The most important difference between PCA and autoencoders is that autoencoders can utilize non-
linear activation functions at the different layers of the neural network whereas, in PCA, dimensionality 

reduction is done in a linear transformation. The use of non-linear activation functions is what makes 

autoencoders a more flexible method for learning patterns in data.  

However, in this work, PCA and Autoencoder seems to have the same behavior in dimensionality 
reduction: even if both methods offer information on the intrinsic dimensionality of data, it is important 

to consider that relations between simulated variables are linear; therefore, it is likely that a linear 

method performs better. However, relations met in real world are not always linear: for this reason, a 
future work will evaluate autoencoder performances on simulated data with non-linear relations 

between variables. Moreover, future research will also focus on autoencoder performances on real 

datasets. This future work will allow deeper understanding of the similarities and differences between 
these methods.  

PCA and autoencoders share architectural similarities, but despite this fact, an autoencoder by itself 

does not have PCA properties. Incorporating some PCA constraints, autoencoder’s solution would have 

the following benefits: a) uniqueness; b)  components would be uncorrelated and sorted in descending 

order of variance; and c) when reducing the data from dimension 𝑝 to dimension 𝑧𝑘, the first 𝑧𝑗  vectors 

(𝑧𝑗 <  𝑧𝑘) would be the same as the solution for reduction from dimension 𝑝 to 𝑧𝑗  [26].  

Despite machine learning methods are increasingly prevalent in several areas of psychology [27, 

28], autoencoders are absent in psychometric research.  Nevertheless, we believe that autoencoder can 

be used where some traditional methods show their limits. For example, in future research, autoencoders 
will be applied to the development of short form of psychological test. In fact, despite the potential 

benefits of using shorter measures, development of short forms shows several limitations: first, 

development of an abbreviated measure can be a relatively laborious process and second, most short 
forms of existing measures are not guaranteed to achieve optimality because their developers typically 

consider only a small fraction of possible alternate forms. In this context, neural networks can help to 



automatize and optimize short-form development process [29]. In particular, an autoencoder trained on 
a long-form of a measure, could be useful in selecting the short form that better reconstructs the long 

form, among the many possible and alternative short-forms. In this case, keeping the number of hidden 

neurons equal to the number of dimensions in the original test could help to choose short-forms that 

have the same dimensionality of the original measure.  
In conclusion, despite additional investigations are required, we believe that autoencoders, which 

are already widely used in other scientific fields, are an interesting alternative to standard PCA also in 

psychometric models. 
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