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Abstract. A large portion of structured data does not yet reap the ben-
efits of the Semantic Web. Therefore, The “Tabular Data to Knowledge
Graph Matching” competition at ISWC tries to bridge this gap by eval-
uating and promoting the creation of such semantic annotations tools.
Besides annotating data semantically, the system should also be able to
further augment the datasets based on the provided annotations. In this
paper, we propose a system that is capable of both annotating and aug-
menting a dataset by using the interpretable embedding technique INK.
The “Tabular Data to Knowledge Graph Matching” competition was
used to evaluate the proposed annotation capabilities of our proposed
system.

Keywords: Tabular Data · Semantic Annotation · Node Embedding ·
Data Augmentation · Entity Recognition · Type Recognition · Property
Recognition.

1 Introduction & Challenge Description

A large portion of existing or newly produced structured data is not semantically
annotated. Solutions exist to enrich raw structured data semantically based on
the textual descriptions within these structured files [15,12,7,1,4,3].

The “Tabular Data to Knowledge Graph Matching” competition that has been
hosted for several years at the International Semantic Web Conference (ISWC) [9,8]
stimulates the creation and optimization of these semantic annotation systems.
These systems try to extract semantic annotations from a given Knowledge
Graph (KG): a collection of interlinked descriptions of entities, both human
and machine-readable. DBpedia [2] and Wikidata [17] are two such KGs.

Given a Comma-Separated Values (CSV) file, most of the time, three different
challenges have to be tackled in the “Tabular Data to Knowledge Graph Match-
ing” competition, as visualized in Figure 1: (i) the automated assignment of a
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DBpedia or Wikidata column type (Column-Type Annotation (CTA)), (ii) a
DBpedia or Wikidata entity has to be assigned to the different cells (Cell-Entity
Annotation (CEA)), and (iii) relations between different columns have to be
inferred, when possible (Columns-Property Annotation (CPA)). In our example
Figure 1, the CEA task would have to assign the dbr:Coldplay or wiki:Q45188
to text description of Coldplay in Col0. For the CTA task, Col3 must be as-
signed to dbo:PersonFunction or wiki:Q66715801. The relation between Col1
and Col2 for the CPA task must be defined as dbp:birthDate or wiki:P569 in a
semantic annotation system. The competition consists of different rounds, with
structured files from different domains. No ground truth labels are provided up-
front, which means only unsupervised learning methods can be used.

Most of the existing solutions are based on external lookup methods and infer
the column and property types afterwards by either clustering the entities based
on an uninterpretable embedded vector or by using entity-specific scoring pro-
cedures [12,7]. These annotators are denoted as semantic annotation platforms
and provide a link to existing KGs but are currently not able to augment an
annotated, structured file with new information available in those KGs. When
for example, semantic annotations are provided for all entities within our exam-
ple in Figure 1, the current techniques are not able to augment this table with
additional linked data. Here, as an example, the inception dates for each entity
in Col0 could be added to further enrich the current structured file. Seman-
tic data augmentation tools, which can add new information based on tabular
data, exist today [6]. Semantic data augmentation tools which can both define
semantic annotations and also provide and new information based on semantic
annotations are of high interest nowadays as more and more machine learning
(ML) techniques try to use a graphical representation as input and tasks such as
node classification are becoming popular [14]. The current nature of the exist-
ing semantic annotators, such as the uninterpretable embedding characteristics
makes them not directly suitable for such an augmentation preprocessing step.

Col0 Col1 Col2 Col3

The Killers Brandon Flowers 21 June 1981 Singer

Coldplay Chris Martin 2 March 1977 Singer

U2 The Edge 8 August 1961 Guitarist

ABBA Benny Andersson 16 December 1946 Composer

Inception

2001

1996

1976

1972

CEA

CTACPA

+ Augment

Fig. 1. The three different subchallenges of the competition are explained in a simple
example. In the CEA task, a system tries to define each individual cell entity. Besides
these 3 sub-challenges, a more general data augmentation task can also be interesting
to perform.

Therefore, in this paper, we describe MAGIC: a data mining tool to augment
a structured file with data residing in a KG. In order to mine this augmented
data, MAGIC will make use of INK [16], a fully interpretable embedding tech-
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nique capturing all information from the neighbourhood of a node within our
graph. Based on that interpretable embedding, the MAGIC platform can easily
perform the CEA, CTA and CPA tasks all at once compared to its competitors
and can provide additional linked data defined in those interpretable embed-
dings. By performing all tasks at once and storing the obtained INK embedding,
the number of external calls to entity lookup services can be reduced. The fact
that INK can also query KGs stored locally reduces the calls needed to external
SPARQL endpoints even further.

We have organised the rest of our paper as follows: In Section 2, we give a gen-
eral introduction to our interpretable embedding technique INK. Next, Section 3
describes how INK is being used in our semantic annotation tool MAGIC. Imple-
mentation details are provided in Section 4. Section 5 shows the results obtained
during the “Tabular Data to Knowledge Graph Matching” competition. To il-
lustrate the additional benefits of both the interpretable embedding technique
INK in combination with the MAGIC platform, we demonstrate how an existing
structured file can be augmented with additional information within a KG in
Section 6. Finally, Section 7 concludes this paper and shows some additional
future research directions.

2 INK: Instance Neighbouring by using Knowledge

Various techniques exist to transform information residing in KGs to a more
appropriate format for an ML model, such as RDF2Vec [13]. INK is such a
technique that builds node embeddings by transforming the neighbourhood of
the node within a KG into an interpretable structured format. An example of
the INK node extraction approach is provided in Figure 2. Here, the goal is
to build an INK embedding for the Coldplay node. INK will first query the
neighbourhood until a predefined depth. If we define the depth parameter K
to be one, only the nodes within the direct neighbours (visualized in grey) will
be visited. INK iteratively extracts neighbourhood information and store these
neighbourhoods efficiently (visualized in Figure 2 on the right). The predicates
in the neighbourhood of depth one are concatenated with their corresponding
objects as values (concatenation here performed using the special character §). To
add the neighbourhoods of depths > 1 (shown by the orange and green coloured
edges within our example KG), INK concatenates all the relations on a path from
the root node to the object node together, without providing detailed information
about all intermediate nodes on that path. This intermediate information is still
available due to the extraction at the lower neighbourhood’s depths.
All this extracted information is stored in a dictionary value with as key the
root node. When extractions are provided for multiple of these root nodes, a
two-dimensional matrix or data frame can be constructed defining which of
these extracted (relation, object) pairs occur in the root nodes. Accompanied
with descriptive labels for each of such a root node, this two-dimensional rep-
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Fig. 2. Example of the INK dictionary representation (right), extracted from several
neighbourhoods of the Coldplay node within a larger KG (left).

resentation can be used to perform some more general machine learning tasks,
such as node classification. More information about INK and the performance
of this technique on several node classification tasks can be found in previous
work [16].

3 System Description

The interpretable embedding approach as discussed in Section 2 is used in a
system called MAGIC to annotate structured files. An overview of the MAGIC
system is provided in Figure 3. In general, three modules can be derived: A pre-
processing module to select the appropriate annotation candidates, a processing
module based on INK to get the interpretable embedding and select the best
matches and at last, a post-processing module to offload the obtained informa-
tion to the corresponding competition tasks. The rest of the section describes,
in detail, the eight different steps to process the structured input file.

Candidate 
Selection

REST API cloud

Col0 Col1 Col2 Col3

The Killers Brandon Flowers 21 June 1981 Singer

Coldplay Chris Martin 2 March 1977 Singer

U2 The Edge 8 August 1961 Guitarist

ABBA Benny Andersson 16 December 1946 Composer

Structured File

Triple Store

Entity Propagation

Column Selection

Property Propagation

HDT

Magic

CEA

CPA

CTA

Embedding 
Selection

1

2

3 5

4

6

7

8

Fig. 3. Overall MAGIC architecture to define semantic annotations.
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3.1 Defining the Major Column in a Structured File

In most cases, one single column holds multiple relationships to other columns
within a table, for which annotation should be provided. This column can be
seen as the major column. In our example of Figure 1, Col1 is our major column
as both the information of Col0, Col2 and Col3 are derived from the information
in this column. In many cases, this major column is known upfront and can be
provided as additional input. During the “Tabular Data to Knowledge Graph
Matching” competition, the major column was derived from the CPA target file
when available. If such a target file was not provided, the MAGIC approach was
rerun for every available column.

3.2 External Entity Lookup

Each cell description of only the major column is then provided to the more
general MAGIC annotator. A pool of possible annotation candidates is generated
from these cell descriptions. For the competition tasks which requires DBpedia
annotations, the DBpedia Spotlight [11] service was used to generate possible
candidates. When the annotations had to be linked to Wikidata entries, requests
were sent to the Wikidata API1 to search for entities using labels and aliases
(wbsearchentities).

3.3 Candidate Selection

The external entity lookup services are not restricted, which means all possi-
ble candidates matching the provided cell description are returned. Based on
multiple predefined characteristics, candidates can be prefiltered. The candidate
selection step reduces, in this perspective, the number of matches obtained from
the external API’s. In this first version of the MAGIC system, we neglected any
intelligent filtering of candidates.

3.4 Generating embeddings with HDT backend

For the selected candidate annotations, an INK embedding of depth 2 was gener-
ated as discussed in Section 2. To limit the number of external SPARQL requests,
INK extracted the neighbourhood information for these embeddings from a local
compact data structure called (Header, Dictionary, Triples) or HDT [5]. HDT
is a binary serialization format for RDF that keeps big datasets compressed to
save space while maintaining search and browse operations without prior decom-
pression. This makes it an ideal format for storing and sharing RDF datasets
on the Web. An HDT-encoded dataset is composed of three logical components
(Header, Dictionary, and Triples), carefully designed to address RDF peculiari-
ties.

1 https://www.wikidata.org/w/api.php
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– Header: The Header holds metadata describing an HDT semantic dataset
using plain RDF. It acts as an entry point and shows the key properties of
the content even before retrieving the whole dataset.

– Dictionary: The Dictionary is a catalogue comprising all the different terms
used in the dataset, such as URIs, literals and blank nodes. A unique identi-
fier (ID) is assigned to each term, enabling triples to be represented as tuples
of three IDs, which reference their respective subject/predicate/object term
from the dictionary.

– Triples: As stated before, the RDF triples can now be seen as tuples of three
IDs. Therefore, the Triples section models the graph of relationships among
the dataset terms. By understanding the typical properties of RDF graphs,
we can come up with more efficient ways of representing this information,
both to reduce the overall size, but also to provide efficient search operations.

Popular and well-known libraries (like RDFLib [10]) provide additional mecha-
nisms on top of this HDT data structure to translate general SPARQL queries
to the underlying data sources. HDT datasets can be generated with a script
but both Wikidata and DBpedia HDT versions were already made available by
the HDT community. Those were used during this competition2.

3.5 Selecting the best candidate embedding

At this point, interpretable embeddings of depth 2 were generated for multiple
candidates, originating from a single cell within the major column of our struc-
tured file. Within these interpretable embeddings, a next function will search
for matching information residing in the other cells on the same row from which
the candidate embeddings were generated. In our example, the text description
of Chris Martin can return two Wikidata entities: one is the Coldplay singer
(Q712860), the other candidate is an American football player (Q519982). The
INK embedding generated for the Coldplay singer will contain the information
residing in the other cells of that same row (the is part, birth date and occupation
relation). As an embedding of depth 2 is provided, the labels of these associated
nodes are incorporated in the embedding. The best candidate or embedding can
be easily selected by counting the number of times additional information resid-
ing in other cells from the same row, is also available in the generated embedding
of the candidate. In our example, the Chris Martin Coldplay singer embedding
will have a matching count of 3, while the other Chris Martin has a zero match
count. Therefore, the Chris Martin Coldplay singer annotation is selected as the
best candidate in this situation.

3.6 Filling Additional Cells based on Selected Candidates

Selecting the best candidate according to the embedding also provides all infor-
mation to the cells within the same row of the original structured file. Instead of

2 https://www.rdfhdt.org/datasets/

https://www.rdfhdt.org/datasets/
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performing an entity lookup for those cells, the annotations are directly derived
from the major column embeddings. This eventually reduces both the costs of
performed SPARQL lookups and external API calls. The annotations are all
stored within a dictionary and output for the CEA task.

3.7 Defining Relationships Between Cells

Similarly, the embedding also provides the information going from the major
column cell to the neighbouring cells within the same row. This information is
directly derived from the provided embedding by selecting the object or data
property relationships from the INK embedding. The combination of a relation-
ship between two cells is kept within a dictionary. After the procedure to provide
annotations for all cells is finished, the relationships between all those two cells
are counted and the relationship with the maximal count is returned for the
CPA task.

3.8 Defining column types based on additional type embeddings

The previous process is iterated for each cell within our major column. After
all those annotations are provided, the column type can be derived from all
cells containing annotated values. For all cells, an INK embedding of depth 1
is generated and the rdf:type for DBpedia and Wikidata P31 relationships are
kept to determine the column type annotations. Again, the annotation with the
highest count value is kept and returned for the CTA task.

4 Implementation

Both MAGIC3 and INK4 are implemented in Python and are made available on
Github for future research. INK’s implementation details can be found in the
original paper. The MAGIC code is designed to perform evaluations for both
DBpedia and Wikidata tasks but can be adapted to any other task.

– The code to select the major column is currently left outside MAGIC. This
makes it possible for users to provide either this major column by itself or
to write specific code to determine this column within a structured file.

– The code to search for entity candidates is abstracted. This ensures that
future approaches can integrate other entity search API’s (such as the DB-
pedia lookup service) without redesigning the internal MAGIC code. Also,
additional preprocessing steps, such as translations, spell checks, etc. can be
added to this component in the future.

– INK abstracts which data source it uses to generate the embeddings. In
this version of the system, the embeddings were generated using an HDT
backend and an HDT INK connector was made based on RDFlib to perform

3 https://github.com/IBCNServices/MAGIC
4 https://github.com/IBCNServices/INK

https://github.com/IBCNServices/MAGIC
https://github.com/IBCNServices/INK
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this task. In future projects, other already existing connectors (such as the
INK Stardog5 connector to connect to a triple store) can be used or created
when needed.

5 Evaluation Results

The “Tabular Data to Knowledge Graph Matching” competition of 2021 con-
sisted of three rounds in which multiple structured CSV files had to be anno-
tated for either one, two or all CEA, CPA and CTA tasks. The different rounds
consisted of multiple datasets from various domains where either DBpedia or
Wikidata annotations were requested.
In total, four different metrics were used to evaluate the system. On the one
hand, we had the F1-score, which is a harmonic mean of the precision and recall
of our system:

precision =
#correct annotations

#annotations made

recall =
#correct annotations

|target cells|

F1 =
2 ∗ precision ∗ recall

precision + recall

(1)

During the second round, new metrics were used for the CTA challenge. Perfect
annotation were encouraged, and at same time one of its ancestors (okay anno-
tation) were also evaluated. Thus we calculate Approximate Precision (APreci-
sion), Approximate Recall (ARecall), and Approximate F1 Score (AF1).

APrecision =
∑

a∈all annotations g(a)

all annotations #

ARecall =
∑

col ∈ all target columns (max annotation score(col))

all target columns #

AF1 = 2× APrecision × ARecall
APrecision + ARecall

(2)

with # denotes the number, g(a) returns the full score 1.0 if a is a perfect
annotation, returns 0.8d(a) if a is an ancestor of the perfect annotation and its
depth to the perfect annotation d(a) is not larger than 5, returns 0.7d(a) if a is
a descendent of the perfect annotation and its depth to the perfect annotation
d(a) is not larger than 3 and returns 0 otherwise. max annotation score(col)
returns g(a) if col has an annotation a, and 0 if col has no annotation.
All evaluations were performed on the same 32 core Intel(R) Xeon(R) CPU E5-
2650 v2 @ 2.60GHz cluster node with 125 gigabyte RAM. The Wikdata HDT
datasource of 3 march 2020 was used for all Wikidata related tasks. The October
2016 English DBpedia HDT datasource was used for all DBpedia related tasks.
The results of our approach are summarized in Table 1 respectively.

5 https://www.stardog.com
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CEA CTA CPA
F1 Precision F1 Precision F1 Precision

Round 1

DBpedia tables 0.184 0.506 0.159 0.628 / /

Wikidata tables DNE DNE DNE DNE / /

Round 2

BioTable Wikidata 0.837 0.838 0.916 0.916 0.838 0.888

HardTable Wikidata 0.836 0.947 0.757 0.681 0.865 0.954

Round 3

BioDivTab Wikidata 0.100 0.253 0.142 0.192 / /

HardTableR3 Wikidata 0.641 0.721 0.687 0.687 0.788 0.936

GitTables / / DNE DNE / /
Table 1. Results obtained by the magic annotation system within the “Tabular Data
to Knowledge Graph Matching” competition. / indicate that no evaluation mechanism
was provided to evaluate these results. DNE (Did Not Execute) represents the tasks
for which MAGIC did not provide any useful results.

The MAGIC system has competitive results when a clear CPA task has been
defined. When such a task and corresponding links between the columns within
our structured files is not defined, the system has more difficulties selecting the
correct entity descriptions. For some datasets, our system extracted too many
candidate embeddings to evaluate. This resulted in memory issues and loss of
information within the corresponding tasks. The evaluations of these datasets
(in particular, the Wikidata tables and GitTables) are therefore not provided in
this table.

6 Data Augmentation

Besides the provided annotations for the CEA, CPA and CTA task within the
“Tabular Data to Knowledge Graph Matching” competition, the MAGIC frame-
work holds an additional advantage compared to its competitors. The INK em-
beddings generated in the magic system are interpretable and used to match the
nearby cells within the same row. Additionally, information originating provided
from a new relationship, which holds for all cells within a column can be added
when it is available from the interpretable embedding. When e.g., we annotated
all cells within our structured file in Figure 1. Combining all INK embeddings of
Col0 will reveal additional information regarding the Bands listed in this file. One
such additional relationship could be the Inception year, which is information
that can easily be added as a new column to our original dataset. MAGIC can
automate this process, revealing new possibilities to extend the original dataset
with new information.

To make these benefits even more tangible, an additional GUI application has
been developed that displays both the annotation and augmentation parts. An
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Fig. 4. MAGIC GUI application to augment annotated, structured files.

example of the GUI is visualized in Figure 4. A video about this GUI application,
using the basic example of Figure 1, is also made availabe6

7 Conclusion and Future Work

In this paper, a system to annotate and augment a structured file with semantic
knowledge is being proposed. This system shows the benefits of combining the
interpretable embedding technique INK with a semantic annotation tool. Future
work can now focus on both the preprocessing and post-processing functionalities
to improve the generated annotations. Currently, matches are provided on exact
string comparisons, without taking any malformed or misspelt text into account.
The generated embeddings are also not used to detect wrongly annotated cells.
Simple outlier detection or clustering tools based on the generated embedding
of a single column can already help to filter those wrong annotations. At last, a
thorough evaluation is needed of how this system can help to augment existing
datasets and how this augmented data can help in more broad ML tasks.
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