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Abstract. There is a marked increase in delivery services in urban areas,
and with Jeff Bezos claiming that 86% of the orders that Amazon ships
weigh less than 5 lbs, the time is ripe for investigation into economical
methods of automating the final stage of the delivery process. With the
advent of semi-autonomous drone delivery services, such as Irish startup
‘Manna’, and Malta’s ‘Skymax’, the final step of the delivery journey
remains the most difficult to automate. This paper investigates the use
of simple images captured by a single RGB camera on a UAV to dis-
tinguish between safe and unsafe landing zones. We investigate semantic
image segmentation frameworks as a way to identify safe landing zones
and demonstrate the accuracy of lightweight models that minimise the
number of sensors needed. By working with images rather than video we
reduce the amount of energy needed to identify safe landing zones for a
drone, without the need for human intervention.

1 Introduction

Finding appropriate landing sites on land for flying objects in dynamic envi-
ronments can be used for both manned and unmanned aerial vehicles. While
Irish start-up Manna has shown that there is indeed a market for drone deliv-
ery (even securing $25 million of Series A funding as recently as April 2021),
their approach seems to rely on having a human pilot their drones, stating in a
press release accompanying their funding announcement that “a single Manna
employee operating multiple drones can operate nearly 20 deliveries per hour”.

A large number of factors affect the suitability of potential landing sites,
from rain flooding a site to someone walking their dog in the area. Thus both
moving objects and more permanent ground changes can influence the safety
of a landing zone. A well-maintained map of potential landing sites identified
using topological features [5] is a good starting point but using this alone does
not lead to sufficient accuracy. We focus on the use case of drones being used
for deliveries where GPS and Digital Elevation Models (DEMs) [4] are useful for
proposing potential landing sites but live assessment of a proposed site is still
necessary. For example, a car park may appear as an ideal landing site, but what
if there is already a car in the spot GPS is directing the drone to or perhaps
there is a person walking by as a drone is preparing to land?
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Quad-copter drones are the most commonly used type of drone and is partic-
ularly suitable for landing in high density environments as it needs a landing site
only slightly larger than itself, whereas a fixed wing version requires a ‘runway’
of sorts. However, the small size can be a disadvantage as such autonomous ve-
hicles require a range of sensors to compute their position and surroundings thus
increasing the weight and space of the device as well as the battery consumption
that additional sensors require.

Deploying a trained CNN model on a drone to recognise landing spots can
reduce energy consumption by removing the need for an internet connection
to send data back and forth to a hub but we need to ensure that the cost of
inference from video sensors is as low as possible. Pruning a trained model is
an obvious technique as smaller models take less time/resources to run, but
with video data, we also have other options. First, we can investigate at what
frequency we need to process images – processing 120 frames per second will
be a lot more expensive than 10 but is there enough of an increase in accuracy
to justify the more expensive model and where is the sweet spot? Similarly we
could reduce the area of an image that we process. As a drone drops altitude to
land, a camera pointed straight down will cover far more than the area needed
and by cropping to an area in the middle of the frame we reduce the compute
cost. While it is beneficial to abort a landing as early as possible if it will fail, it
is more important to identify obstacles that could actually cause damage to the
drone (or the drone could cause damage to) when it is close to the ground.

The goal of this work is to implement an image-based method to assess the
appropriateness of drone landing sites proposed using topographical features.
The novelty of the contribution is in the efficient detection of landing sites al-
lowing on-board computation with reduced energy consumption. In the next
section we review current literature on the topic and following that we describe
our data collected. That is followed by a section on model training and then
a section on video inference, including the model performance in experimental
settings. A concluding section completes the paper.

2 Related Works

2.1 Semantic Segmentation

Convolutional neural networks (CNNs) have shown impressive performance in
many kinds of image segmentation. Results from the SpaceNet 6 challenge [11]
showed that CNNs are the most effective method for the segmentation of satel-
lite images. The aim of SpaceNet 6 was to extract building footprints using a
Synthetic Aperture Radar (SAR) imagery dataset. SAR is a form of radar that
penetrates clouds and has the advantage of being able to capture usable data in
any weather conditions. Each of the top-5 performing teams at SpaceNet 6 used
an implementation of the U-Net architecture [8] which differs from a standard
fully connected CNN (FCN) in that it is symmetric meaning there are the same
number of feature maps in the up-sampling path as in the down-sampling path,
and the skip connections which skip some layers of the network and feed the
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output as the input to the next several layers, apply a concatenation operator
instead of a sum. Thus one of its advantages is that it does not require all input
images to have the same size, allowing cropped areas of images to be classified.

The SpaceNet data identified only a single class, building footprints, and
While buildings are obviously an obstacle to landing aerial vehicles in dynamic
settings, there are other objects to consider such as trees or people. Also, the
resolution of the SAR data at 0.5m2 per pixel is likely to be too coarse to be used
for identifying drone landing sites. Consequently, it is likely that imagery taken
from drones rather than satellite imagery will be more useful in the segmentation
we would use.

While the use case for image classification in autonomous driving vehicles
may produce a large number of classes like people, cyclists, traffic signals, road
markings, other cars and more, aerial imagery typically has low intra-class and
high inter-class similarity [1]. This suggests that there are broad similarities
between different classes of object. Our work combines several classes in an effort
to increase prediction accuracy as whether a site is inappropriate because there
is a rock or a cyclist in the way does not matter, both have the same outcome.

Among the published literature on segmentation, there is disagreement as to
how data augmentation affects the performance of trained models. In [2] and
[8] the authors credit data augmentations including jitter, re-scaling, rotation
and flipping, as a key for learning low-level features. However [6] reported no
noticeable improvement when applying similar data augmentations. Our work
considers the above transformations to see whether they improve accuracy when
applied in the UAV Safe Landing Zone (SLZ) context.

The final aspect of our drone landing use case to consider is object tracking.
As a drone is about to land, there may be moving objects in the vicinity that
cause a proposed site to become unsuitable, such as movement of cars, humans,
or animals. There has already been research in this with regards to autonomous
vehicles, often in conjunction with LiDAR [7]. A particularly interesting object
tracking framework was by Xiang et al. [13], where the object being tracked is
modelled with a Markov Decision Process. The object is then classed in one of
a number of states - active, inactive, tracked, or lost. Objects in the tracked
state influence whether or not the drone is able to land. If a tracked object
encroaches on a proposed landing site, that site is rejected in favour of another.
An extension of this could be to model each landing sites as an element of a
Markov process where, once identified, the site is placed in either an appropriate
or inappropriate state, depending on the presence of tracked objects.

2.2 Safe Landing Zone (SLZ) Detection

There is previous work on automatic detection of SLZs for UAVs. Shah Alam
and Oluoch [10] produced a survey of approaches split into three main categories
— camera-based, LiDAR-based, and a combination. Camera-based approaches
depend on the number of cameras used by the UAV. Theodore et al. [12] pro-
posed a technique using a stereo vision approach where the discrepancy in pixels
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between the two cameras are used to approximate a terrain profile and a set of
constraints is then applied to that profile to identify appropriate landing sites.

Another camera-based approach is known as homography estimation where
two images of any planar surface are related by a homograhpy, essentially relating
the two transformations between two planes. By densely sampling the pixels
between successive frames, computing dense optical flow and calculating the
homography error, Garg et al. [3] showed that this could be used to identify
whether a proposed landing zone was planar and thus safe to land on, or not.
That work focused on the case of water vs. solid ground where motion on the
surface of the water increases the homography error whereas for solid ground
the homography error is low.

Simultaneous Localisation and Mapping (SLAM) techniques involve using
image sensors on UAVs to create a 3D map of the environment and estimate a
UAV’s location within that environment. This is particularly useful in unknown
environments where there are no landmarks to guide a landing. Yang et al. [14]
proposed a monocular based SLAM technique which was successful in landing
a UAV in several different environments. However, it can be difficult to detect
SLZs from high altitudes, potentially problematic because this method involves
performing several passes over a larger are in order to map it. This leaves the
dilemma of either starting the mapping process too high and getting a poor
result, or starting too low and potentially hitting obstacles.

3 Data Collection

Two data sources were used in work reported in this paper. To train an initial
segmentation model, the Aerial Semantic Segmentation Dataset from TU Graz1

was used. This contains 400 images from a nadir (bird’s eye) view taken from
a height of between 5m and 30m above ground, alongside a mask for each im-
age as shown in Figure 1. The images are high resolution at 6000*4000px (24
megapixel), too large for our implementation so the images and associated masks
were split into sections and resized to 256*256 pixels. The masks applied were
pixel-accurate and limited to the following classes: tree, grass, other vegetation,
dirt, gravel, rocks, water, paved area, pool, person, dog, car, bicycle, roof, wall,
fence, fence-pole, window, door, obstacle. While these help provide information
about the scene, their primary use is to identify areas that can be landed in
namely grass, paved areas, dirt or gravel.

The second data source we used were test videos from drones with downward-
facing cameras. For this we simulated drone footage by screen recording a video
game. There were several options that could act as drone simulators though
few had a camera that allowed watching the UAV during flight from a first
person perspective and also had the camera pointing down at 90°and a 107° field
of view to get the required nadir perspective. We used a game available on
Steam called AI Drone Simu to record test videos. This had a number of pre-
built environments, some involving moving components such as cars and trains

1 http://dronedataset.icg.tugraz.at
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Fig. 1. Example aerial photo and its associated mask (top row) and two examples
of aerial shots captured in two different environments from the AI Drone Simu game
(bottom row) showing how realistic our test videos are.

as well as some limited capabilities to create our own environments including
cityscapes, empty parks, medieval villages, train yards, and ports. Videos were
collected by screen recording while landing the drone. As can be seen in the
bottom two images in Figure 1, imagery from this game provided a good and
realistic approximation of real life environments. Furthermore, Shafaei et al. [9]
show that video games can reliably be used as a source of training data for
computer vision models, and also highlight their advantage in terms of being
able to collect data under multiple different environmental parameters.

There were some disadvantages to using the game platform as a simulated en-
vironment, mainly the difficulty of controlling the drone. Whereas in Unity/Blender
it would have been possible to define a flight path and speed, in the game en-
vironment the drone has to be manually controlled, which can make it difficult
to get consistent landings. We disabled any roll, pitch, and yaw motion in the
drone and essentially only allowed it to travel on a vertical axis. This still left an
issue where the throttle was super sensitive on the controller that was being used
and even pressing as lightly as possible often stopped the descent completely. To
counteract this, the idle speed of the propellers was increased to the maximum
allowed and the drone was allowed to ‘free-fall’ from high enough that it would
reach a terminal velocity before landing. The slowest terminal velocity that could
be achieved was 15 km/h, which faster than landing a drone but still allowed us
to gather imagery as if the descent rate had been slower.
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Another issue was that the game environment does not supply any altitude
data. Altimeter sensors are small and cheap in terms of money and power con-
sumption so it is fair to assume that typically there would be access to altitude
data when flying a drone. Given a fixed speed when landing, we worked back-
wards from the moment of landing to approximate the altitude at any given
point, computing the descent rate at approximately 10cm per frame at 15 km.h
and 30 fps. This allows us to compare the accuracy of our image segmentation
at different altitudes.

One of the drawbacks of using this method to collect data is that there is no
associated ground truth mask for each of the landing videos. Creating a mask for
every frame of 32 videos of 10 seconds duration with each at 30 fps (more than
9,000 frames in total), is obviously too great. We created a mask for the first
frame of each video and that area in subsequent frames was projected back on to
this initial frame, which was then cropped to represent the area captured in later
frames as shown in Figure 2. Here, the grey areas represent the ground area at
frames 1, 2, 3, . . . , the red area represents the area of frame 2 projected back on
to the initial frame, and similarly the green area represents the area of frame 3
projected back to the initial frame. This should support a good approximation of
the accuracy of segmentation at different altitudes when in static environments.
However, due to the fact that only the initial frame is given a ground truth
mask, any dynamic objects would not have a mask associated with them. Thus,
the performance of the segmentation is expected to appear worse with metrics
based on this mask for video clips which contain dynamic objects.

Fig. 2. Projection of surface area of subsequent frames onto the initial mask

4 Model Training

As mentioned earlier, the architecture used in our model is UNet [8] with some
minor changes mainly to the input and output layers. Where the original used
a single layer input image (in grey scale), here an RGB image was used and
this layer was expanded to three channels. Similarly the output layer, originally
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just a binary classification was expanded to a multi-class classification. While
ultimately we will use a binary classification (safe or not safe), for the purpose
of diagnosing the effectiveness of various models, we will use multi-class and the
average of the classes as the value for binary classification.

The classes that were deemed as safe landing zones were grass, gravel, dirt,
and paved area. However there were also some ‘confounding’ classes present -
areas which look clear and safe to land on, but would ultimately be an inap-
propriate landing zone. These classes were roofs and water.Thus we consider
3 different models; one containing all safe landing classes, one containing only
the dominant safe landing classes, and one containing both the dominant safe
landing classes as well as the two confounding classes.

As there are multiple classes being identified, the choice of loss function
must reflect that. Because the goal is to classify each individual pixel of the
input image, we use a loss function which returns a probability distribution for
each pixel and we then take the maximum class probability and assign the pixel
to that class. One such loss function is the categorical cross entropy function
where an estimate of the probability of each class is made before calculating
the entropy between that distribution and the probability distribution of the
actual label which will be 1 for the class it belongs to and 0 for everywhere
else. Note that using a softmax activation is recommended in the output layer
to ensure output remain between 0 and 1 We used the ADAM optimiser to find
the network weights which minimise this loss function.

To assess the performance of various trained models, the Intersection-Over-
Union (IOU), also known as the Jaccard index was used. This counts the number
of pixels which overlap between the predicted mask and the ground truth, divided
by the area of union between the two images. Using the five classes mentioned
above – grass, paved area, dirt, gravel, and other – the mean IOU for the initial
model was 0.4762. While mean IOU is a good general metric, to see which classes
were classified better than others and perhaps improve it, it is important to look
at individual IOU scores for each class as shown in Table 1.

Table 1. IOU performances for various models where “−→” indicates that class was
incorporated into “Other”

Model Grass Paved Dirt Gravel Water Roof Other Mean

Model 1 0.749 0.667 0.104 0.313 −→ −→ 0.548 0.477
Model 2 0.719 0.653 −→ −→ −→ −→ 0.591 0.654
Model 3 0.749 0.695 −→ −→ 0.220 0.448 0.585 0.540

Interestingly, the initial model was good at classifying both grass and paved ar-
eas, but was considerably worse at identifying both gravel and dirt. Examining
some of the predictions and their associated masks that while, from the descrip-
tion of gravel and dirt they sounded like somewhat acceptable landing areas,
they were actually unsuitable in a lot of cases. Often they appeared at the edges
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of other areas such as flowerbeds, trees, fencing etc. So based on this a second
model was trained, this time including dirt and gravel as part of the ‘other’ class.
This second model performed much better as a whole, with an improved mean
IOU of 0.654 as shown in Table 1, however it is again important to check the
IOU for each of the individual classes and as we can see, while the mean IOU
increased for the second model, both the grass and paved area classes had poorer
accuracy, which are the two that we are most interested in classifying correctly.

Looking at some of the predicted masks vs. their ground truths helped inform
what was happening and we observed that there were two other classes that were
frequently being mis-classified as either grass or paved area. Those were water
and roof which makes sense since they are each largely flat, unfeatured surfaces.
To improve performance, we included these as individual classes to be predicted
in the third model who’s results are also shown in Table 1. This caused a decrease
in mean IOU, dropping to 0.540 and while this model wasn’t particularly good
at correctly classifying either water or roof, the improved IOU for the grass and
paved area classes as well as the others when compared to the first model, justify
this third model as the most appropriate and it is the one used for inference on
the videos.

5 Video Inference

In an ideal world, not every frame of incoming video from a UAV should require
processing in order to compute a safe landing zone thus reducing energy con-
sumption. We explored this by examining how much a predicted mask in the
same area changes during UAV descent. Similar to how the mask on frame 1
was cropped for each frame as shown in Figure 2, we can use the estimate for
height and field of view of the camera to project the area of the final frame back
onto each prior frame and compute how prediction changes via the IOU value.

When we plot IOU vs. altitude in Figure 3 we see that at very low altitudes
i.e. the very last few frames of the descent, the predicted masks vary more be-
tween subsequent frames. This is because at low altitudes, the contrast between
adjacent pixels of certain surfaces is more exaggerated, whereas at higher alti-
tudes those surfaces appear smoother. This is visible in Figure 4 where in the
first mask, pixel-wise prediction is a lot grainier than in subsequent frames.

This sequence of images and masks also highlights the ability of our model
to detect dynamic objects. While not necessarily able to ‘track’ moving objects,
by computing the IOU between subsequent frames we can infer whether or not
a moving object has entered the frame (or the landing zone), thus potentially
making it unsafe to land there. In frame 25 (the rightmost image of Figure 4), it
is possible to make out the edge of what is a truck moving through the picture at
the bottom of the image. It can also be seen in the associated mask that there is
now an additional area classed as “other”. This aspect is important to consider
when we compare predictions across subsequent frames as dynamic objects move
through the frame the segmentations will vary compared to previous frames.
However, with an average IOU of at least 0.84 at the very low altitude (Figure 3),
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Fig. 3. IOU between successive frames vs UAV altitude (in meters)

Fig. 4. Results of segmentation of the same surface area from multiple heights

there is a high level of consistency across adjacent images indicating that the
model does not jump between different classifications for large areas of the image.

Given that our model produces predictions which are smooth and consistent
even though it works on individual frames sampled from video, we now check
their accuracy using the approach illustrated in Figure 2. In this we start with
a ground truth mask manually applied to the first (i.e. highest) frame, the total
surface area of the subsequent frame was projected back to the previous frame,
cropped from the mask, and becomes the mask of the subsequent frame.

We note that the mask applied was a simple binary mask with two classes —
safe or unsafe landing zone (SLZ). This means combining the predicted classes
into groupings, namely combining the paved area and grass classes into safe,
and the remainder as unsafe. It also means that the resulting IOUs cannot be
directly compared to the IOUs calculated when assessing the earlier models. If
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we look at the mean of the IOUs across all 32 landing videos in the graph on the
left of Figure 5 we see that the classification is clearly better in the first 15-18
frames which is effectively at heights up to about 10m.

Fig. 5. Average IOUs between predicted masks and ground truths at each successive
frame across 32 landing videos (left) and average IOU between predicted masks and
ground truths at each successive frame for 32 videos in different environments (right)

Examining the averaged IOUs in different landing videos in the graph on
the right of Figure 5 gives a clearer picture and shows a large disparity in the
IOUs for different environments. Notably, our model performed poorly in the
‘Wild West’ environment. Several factors contributed to the poor segmentation
here. The first was the ground cover which appears to be some kind of brushy,
dusty surface that looks like it would be reasonably acceptable on which to
land a drone. However, that kind of surface did not exist in any of the training
images. Another factor may have been the presence of flat roofs throughout the
scenes. Much like with the initial training and testing data, our model struggled
with classifying these correctly and ended up designating them as safe even
though they were not. Finally, some of the ‘Wild West’ scenes contained moving
trains and again the roofs of these were reasonably large, unfeatured areas and
were often mis-classified. On the other hand Our model performed well in the
park scenes which were deliberately chosen to contain potential obstacles for the
drone. Consider the park scene in the bottom left in Figure 1, not only does it
contain trees (potential obstacles), but also the shadows of the trees which are
easy to mis-classify.

In addition to IOU of particular relevance for evaluating drone landing is the
False Positive Rate (FPR), defined as

FPR =
FP

FP + TN

Here we take any unsafe zones that are classified as safe to be a false positive
(FP ), and correctly classified unsafe zones as true negatives (TN). The value
of FPR as a metric is that it is something that we wish to minimise as there is
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a higher cost associated with attempting to land a drone in an unsuitable place
than there is in rejecting a suitable one. The former can cause the loss of the
UAV, whereas the latter simply means either searching for a new landing site,
or aborting the landing.

Fig. 6. Average False Positive Rate between predicted masks and ground truths at
each successive frame for different environments

As shown in Figure 6, the results for FPR are similar to IOUs for each envi-
ronment, performing best in the park scenes, and poorly in the Wild West scenes.
Again this poor performance seems to be driven largely by the mis-classification
of roofs as safe, which also seems to happen in the city environment. The second
poorest environment was the seaside where, similar to the initial training data,
the model struggled to differentiate between large unfeatured surface areas of
bodies of water and unfeatured swathes of land. What was interesting, however,
was that for the seaside environment, the model performed best the closer it was
to the ground/surface of the water. This is due to the texture rendering of the
game, where as the drone approached the water, more details appear such as
ripples and small breaking waves and that was a factor in the the sudden jump
in false positives between the 5th and 10th frames.

6 Conclusions

In this paper we investigated a lightweight, frame based implementation of on-
board safe landing zone detection for UAVs. Our implementation was based
on exploiting the differences between image segmentation outputs in individual
video frames, spaced apart. Our experiments evaluated the effectiveness of our
model on landing videos from downward-facing cameras captured from a gaming
platform which used multiple landing environments. Our results show that there
is a lot of potential for lightweight segmentation models to be used to perform
real-time on-board segmentation of aerial images and this represents the novel
contribution of our paper.
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One of the lessons from our results is that the performance of models varies
greatly depending on the landing environment. Unsurprisingly, environments for
which there was little similarity with any of the training data performed poorly.
However model accuracy in environments where it had seen similar data in the
training suggests that performance in different environments would improve by
increasing the variety of training data available for those environments.
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