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Abstract 
Psychological health monitoring plays an important role in mood evaluation, especially of 
ageing subjects within the home environment. For this purpose, the development of innovative 
and easy-to use platforms based on the use of contact or contactless smart sensor is spreading 
widely. This paper presents the design and the implementation of a novel framework able to 
evaluate the mood combining vital signs and facial expressions. For this purpose, a low-cost 
and commercial vision sensor is used to allow a wider diffusion of the proposed solution and 
with the aim of increasing the acceptability of the proposed solution. Specifically, a heart rate 
estimation algorithm and a facial expression recognition module are combined to evaluate the 
end user’s mood. This result has been achieved through use of deep learning and transfer 
learning algorithms that work in real time also on embedded hardware platform not equipped 
with GPUs, consequently increasing its usability. The first added value of the proposed 
framework consists in the possibility of detecting facial expressions “in the wild” 
independently from the selected vision sensor and from face orientation. Another important 
added value lies in the implementation of rule-based expert system which combines data 
acquired from the same smart sensor but whose operation is also maintained using information 
from heterogeneous sensors that provide the same type of discrete input values. Due to 
COVID-19 restrictions, the overall system is currently being tested first in a controlled 
environment and then in a real environment to achieve the final goal. The findings of the 
preliminary experiments show promising results for heart rate and facial expression monitoring 
with a low average error expressed in terms of Root Mean Square Error for HR estimation and 
high accuracy regarding facial expression recognition.  
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1. Introduction

Mood generally reflects a person’s mental state but can also have a significant relationship with the 
physical health [1]. Consequently, his assessment could have a very important impact on daily life and 
work. For example, it is well known that a negative mood is a key factor that influences human health 
and different studies demonstrated that a negative mood over a long period of time can contribute to 
various health problems such as depression or heart disease [2]. 

Generally, there are two ways to evaluate the mood. The first one is based on the estimation of 
emotional behavior of the person/patient through the analysis of facial expressions patterns. Moreover, 
the mood can be evaluated analyzing the physiological signals of the observed subject, such as heart 
rate (HR), HR variability, electrocardiogram (ECG), and electroencephalogram (EEG). 
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The evaluation of the mood turns out to be an important information especially for monitoring the 
health status of ageing subjects and/or frailty subjects. In this context, an enormous advantage is 
obtained by implementing HW/SW platforms that are implemented through devices (possibly 
commercial) such as to increase the degree of acceptability of the proposed solution. Various 
experiments have shown that wearable devices are poorly accepted by elderly subjects for monitoring, 
for example, vital signs. Furthermore, another disadvantage arises from the fact that such devices can 
be unworn due to an oversight, compromising any long-term analysis. Consequently, many scientific 
studies have turned towards the extraction of features for the evaluation of the mood using non-contact, 
minimally invasive sensors, increasing the degree of acceptability of the proposed solution. 

 From the analysis of the most recent scientific literature in the sector it is evident how facial 
expressions are the most widely employed modality for the evaluation of mood. For example, in [3] a 
stationary wavelet transform is used to extract features for facial expression recognition and the selected 
features are then passed into a feed-forward neural network that is trained through a back-propagation 
algorithm. Moreover, in [4] a hybrid feature descriptor-based method is proposed to recognize human 
emotions from their facial expressions. 

Previous research showed that even HR is a good indicator for the evaluation of mood since it was 
demonstrated that HR fluctuates with mood changes. In [5] an experiment showed that physiological 
signals have unique responses to different emotions. For example, HR increased significantly when 
people were angry or fearful, but decreased substantially during disgust. In [6] it is demonstrated that 
HR during a positive mood was lower than during a neutral mood. The authors of [7] in their study 
showed that the effects of relaxation and fear on HR were significantly different, and the average HR 
during happiness was lower than in a sad state.  

As described above, both facial expressions and HR help in mood assessment. In recent years, with 
the more advanced process of fusing information from different sources, it has become possible to 
merge the features of reference emotional states. To automatically recognize emotions, many works 
have proposed fusion with audiovisual information, e.g., combining speech with facial expressions. In 
[8] a database (emoF-BVP) is presented consisting of various audio and video recordings of actors 
expressing various intensities of different emotional expressions. Then, four deep belief network (DBN) 
models are presented which allow the generation of robust multimodal features for emotion 
classification in an unsupervised manner. 

Some studies have investigated the combination of EEG and physiological signals. For instance, in 
[9] the database “Dataset for Emotion Analysis using Physiological signals” is used for the 
classification of emotions. The aim is to determine which of the physiological and EEG signals are most 
relevant for emotion recognition. 

In this paper, an algorithmic pipeline that fuse HR values and facial expressions for the evaluation 
of mood is presented. The mood is evaluated by combining HR and facial expressions using a rule-
based expert system. This system automatically detects the mood of the observed subject integrating a 
low-cost and commercial camera, a face detection algorithmic module based on Deep Learning (DL) 
and a Facial Expression Recognition (FER) module based on the concept of Transfer Learning (TL) 
algorithms. Moreover, the pipeline integrates a contactless HR detection module. A first important 
added value of the proposed pipeline is to be found in its running in real-time on a non-GPU embedded 
hardware platform. Another important advantage is that the algorithmic pipeline is independent from 
the image capture device and from the face orientation of the observed subject, achieving more accurate 
prediction of HR and facial expression of the end-user in a typical Ambient Assisted Living (AAL) 
context. 
The remainder of this paper is organized as follows. Section 2 explains our proposed algorithmic 
pipeline and provides an overview of the methodology by detailing the algorithmic step implemented 
for HR, facial expression estimation and mood evaluation. The results obtained are reported in Section 
3. Finally, Section 4 shows our conclusions and discussions on some ideas for future work.

2. Method

An overview of the proposed framework via a block diagram representation is depicted in Figure 1. 



The algorithmic pipeline has as input an image acquired by a commercial vision sensor in the RGB 
color space. It consists of four main blocks: 1) a pre-processing step integrating a face-detection module 
and a series of algorithmic steps useful to format the data for the following steps, 2) a HR estimation 
module based on a specific Region of Interest (ROI) extraction, filtering, detrending and Fast Fourier 
Transform (FFT) of the signals obtained, 3) a FER module based on a pre-trained deep-learning model, 
4) a final software module for the evaluation of the end-user mood. In the last main block, the estimated 
value of HR and the corresponding facial expression are sent as input to an expert system that returns 
the patient’s mood using established rules. Each component of the pipeline is detailed in the following. 

 
Figure 1: Block diagram of the proposed algorithmic pipeline designed and implemented for mood 
evaluation. 

2.1. Pre-Processing 

The first main block of the pipeline implements the pre-processing algorithms on the initially 
acquired image. One of the most important algorithmic step involves the detection of the facial region 
in the streaming video captured by the commercial vision sensor. It is important to underline that this 
block is in common within the pipeline both for the estimation of the heartbeat and for the recognition 
of the facial expression of the observed subject. 

To obtain an accurate real-time face detection, the latest version of OpenCV library is used, where 
a deep neural network (DNN) architecture is included. This module allows face detection “in the wild” 
in real-time on a PC without GPU. Moreover, this approach allows face detection even in less-than-
ideal lighting conditions. The module uses a reduced ResNet-10 model [10] and its output is the 
bounding-box coordinates of the facial region together with a confidence index. After face detection, 
to crop only the facial region, a software procedure is implemented extracting only the coordinates of 
the upper left corner, the height, and the width of the face, thus removing all the information not related 
to the face. In addition, both a down-sampling step and an increasing resolution step are added, 
depending on the resolution of the facial image.  

Specifically, a simple linear interpolation was used for down-sampling, while a nearest-neighbor 
interpolation was implemented to increase the size of the facial images. At this point, a “normalization” 
step is added to stabilize the contrast and brightness of the image. Here, normalization was performed 
through the application of "contrast-limited adaptive histogram equalization" (CLAHE) [11]. 



2.2. Heart Rate Estimation 

The gold standard techniques for measuring HR such as ECG and photoplethysmography (PPG) 
require skin contact and can inevitably cause discomfort, especially in the current pandemic period. 
Recently, remote photoplethysmography (rPPG) has obtained an increasing attention because it allows 
measurement of HR in a contactless way. 

In this section, heart rate estimation block is explained.  After the application of pre-processing steps, 
given the face identified by the landmarks, regions of interest (ROIs) corresponding to a region with a 
strong blood modulation transition are identified. As described in [12] and other HR estimation 
research, the forehead and the cheeks resulted to be the most suitable regions for the purpose since the 
strength of PPG signals differs between different regions of the face, with the cheek and forehead 
regions tending to produce the strongest PPG signals [13]. Due to forehead occlusion depending on the 
hair style, in the present version of the framework the validation of the HR measures was carried out 
considering only the cheeks. To identify the ROIs, a shape predictor (with 68 landmarks) that includes 
the face is used (Figure 2a). Then, to identify cheeks, the areas delimited by landmarks 1-29-34-4 (right 
cheek) and 17-29-34-14 (left cheek) are considered (Figure 2b). 

 
Figure 2: ROIs identification: (a) shape predictor with 68 landmarks and (b) left and right cheeks 
identification. 
 

The next step is to filter the obtained raw RGB signals to remove frequencies that are not realistic 
for a human heart. Accordingly, a band-pass filter with ideal behavior is applied to remove high- and 
low-frequency noise. The filter removes components occurring outside the frequency band [0.65, 3] 
Hz, which has been commonly used in the literature and corresponds to the HR between 40 and 180 
bpm. 

Identification of cyclic components in signals is achieved using the power spectrum, but sufficient 
signal quality and length are required. However, all parameters - including the periodic component of 
the signal - vary and the HR signal is limited to a specific time interval. Furthermore, as the noise 
spectrum is similar to the spectrum of the signal to be recovered, filtering to increase the signal-to-noise 
ratio (S/N) is critical. In addition, the three raw RGB signals obtained can be decomposed into basic 
source signals using Blind Source Separation (BSS) algorithms. Since raw RGB signals contain HR 
information in mixed components, in order to extract the source signals from these mixed signals, 
independent component analysis (ICA) is used. ICA is a BSS since it calculates a linear sum W of the 
available data sets y (raw RGB color channels) with weights w in order to maximize one independent 
source at a time. The data sources x must not have a Gaussian distribution and there may only be linear 
mixes M of these unknown sources.  Thus, the mixed data sets and the original independent components 
can be expressed by Equations 1 and 2: 

 
𝑦(𝑡) = 𝑴𝑥(𝑡)    (1) 



𝑥(𝑡) = 𝑾𝑦(𝑡)    (2) 
 
where M is the unknown mixing matrix, and its inverse W is the de-mixing matrix found by the ICA. 
Several ICA algorithms are available. In this proposed system, FastICA [14] method is used to analyze 
the RGB signals and to reveal the original source signals removing noise artifacts. A fourth order 
moment (Kurtosis) is used to identify the independent components (three components in the proposed 
approach). Although there is no ordering of the ICA components, the second component typically 
contained a strong plethysmography signal and consequently, for the sake of simplicity and automation, 
is selected here as the desired source signal. Finally, Fast Fourier Transform (FFT) is applied on the 
selected component to obtain the power spectrum inside the frequency band [0.65, 3] Hz matching to 
[40, 180] bpm. The peak of the power spectrum in the given range represents the pulse frequency 
(Figure 3).  

Then, to improve the performance of the system, HR values are collected in a time window, fixed 
in the actual version of the module in 30 seconds of length. Then, in order to reject possible artifacts, 
the outliers are removed, and a single value is obtained by calculating the median value of the residual 
components in the time window. 
 

 
Figure 3: Feature extraction for contactless HR measurements. Three pre-processed RGB signals are 
extracted from ROI and subsequently filtered. FastICA is applied on the normalized, de-trended and 
smoothed RGB signals to recover three independent source signals. Finally, FFT is applied to the 
second component and the highest power of the spectrum is selected as the estimated HR. 

2.3. Facial Expression Recognition 

The FER theory consists of extracting a small number of basic emotions such as happiness, sadness, 
neutrality, surprise, anger, disgust, and fear. In addition to these expressions, neutral facial expression 
is also estimated in some studies. 

The performance of a FER method is based on the use of the most discriminating features. There are 
two main categories of features methods in this research area: hand-crafted features extraction and 
automatic feature extraction. The first ones are frequently used as geometric or appearance descriptors 
(such as Scale-Invariant Feature Transform, Local Binary Pattern, …). The second category is more 
recent and focuses on features generated automatically by a DL architecture. From the state-of-the-art 
algorithms, CNNs [15] have worked very well for the FER problem in unconstrained scenarios. CNNs 
allow to process data having a grid pattern, such as images, by learning spatial hierarchies of features 
(from low to high-level patterns) automatically. The most important problem regarding the use of CNN 
for FER is the availability of facial expression datasets with a very high number of labelled images, 
since training DL architectures with a limited number of images can lead to the problem of overfitting.  
To address this problem, one of the solutions used is to evaluate the concept of TL [16]. TL is based on 
training a specific network on a small dataset. The network is first subjected to a pre-training phase on 
an extremely large dataset and then applied to the given task of interest. 

In this work, TL is used for the FER task.  The famous architecture VGG16 [17] is pre-trained using 
the Facial Emotion Recognition 2013 (FER-2013) dataset. FER-2013 was introduced in the ICML 2013 



workshop’s facial expression recognition challenge. The dataset is quite challenging, since faces greatly 
vary in age, pose and occlusion conditions [18]. 

Generally, VGG16 architecture is structured into two main and well separated sections: feature 
extraction and classification. In our work, considering that the feature extraction section is used for 
extracting new dataset features, the classification section originally structured with 3-FC layers (named 
FC6, FC7 and FC8) is replaced with a novel FC layer useful for tuning the desired output, i.e., the 
number of facial expression classes (seven classes in our case, six different facial expressions plus the 
neutral expression). The steps to design the proposed new architecture are shown in Figure 4. 

 

 
Figure 4: VGG-16 Deep Convolutional Neural Network (DCNN) architecture trained on ImageNet 
database. In the top row the network has 16 layers and can classify images into 1000 object categories; 
in the bottom row transfer-learning application for FER replacing classification layers of original 
VGG16 architecture is shown.  

From the above schematic representation, it can be seen that the feature extraction part is the same 
as the origin of the VGG16 architecture, but a new FC layer is added to adjust the number of outputs 
with the number of new classes in the dataset, i.e., 7. In addition, there is a flatten layer between the 
feature extraction and the new FC layer whose function is to change the size of the input tensor of the 
previous layer and ensure that the size of the output is a 1 × 1 tensor with a length corresponding to the 
input tensor volume.  

Then, VGG16 is trained with the stochastic gradient descent algorithm [19], estimating the error 
gradient for the current state of the model using examples from the training dataset and then updating 
the model weights using the backpropagation of error algorithm. The classifier layer of the transfer-
learned model can classify seven classes of expressions: “Anger”, “Disgust”, “Fear”, “Happy”, “Sad”, 
“Surprise”, and “Neutral”. In the present work, the deep CNN features were evaluated on three different 
machine learning classifiers that have shown promising results in previous FER studies, such as Support 
Vector Machine (SVM), Logistic Regression (LR), and k-nearest neighbors (kNN). 

SVM separates categorical data in a high dimension space finding a hyperplane with the maximum 
possible margin between the same hyperplane and the cases [20]. LR is a predictive analysis tool and 
describes the relationship between one dependent binary variable and one/multiple independent 
variables. In LR, the dependent variable is binary, in contrast with linear regression having continuous 
dependent variable. In this work, for LR we set only the parameter C (that is, the inverse of 
regularization strength λ) to 0.01 [21]. At last, kNN calculates, in a non-parametric way, the distances 
between the nearest k training cases and an unclassified case, and classifies the latter to the highest of 
the nearest k training cases. Different distance metrics can be applied in an experimental stage, with the 
most widely used that are the Euclidean Distance and the Manhattan distance. Here, k value was set to 
2 and the Manhattan distance was used as a distance function [22].  



This module returns a facial expression label with a sampling time of one second. Consequently, to 
make the whole system suitable for the analysis of video sequences, a decision strategy based on the 
temporal consistency of the FER results is introduced. Facial expression is taken by analyzing a time 
window of the same size of the HR estimation and checking which facial expression associated with a 
confidence index greater than 0.8 is most prevalent in the window. 

2.4. Mood Evaluation 

In this module, a decision strategy based on production rules, usually used as a simple expert system 
in artificial intelligence, is implemented. Specifically, HR values and detected facial expression are 
combined for mood evaluation. A production rule is composed of an IF part and a THEN part, turning 
out to be: 

𝑃!: 𝐼𝐹	X	𝑇𝐻𝐸𝑁	Y,    (3) 
 
where Pi represents the rule	 i, X is the antecedent of the rule i, and Y is the consequent. Here, X is 
composed of (x1, x2) where x1 represents the HR value and x2 represents the detected facial expression. 
Rules are activated when their conditions are satisfied.  

Table 1 reports a sample of used rules. For instance, if the HR value is less than 70 bpm and the 
facial expression is “happy”, then the output of mood evaluation module is: VERY POSITIVE (Rule 1 
in Table 1). 
 
Table 1 
Extract of the rules.  

Rule No. Antecedent Consequent 
HR FER 

1 <= 70 Happy Very positive 
2 > 70 and <= 90 Happy Positive 
3 < 90 Sad Neutral 
… … … … 
16 >= 90 Anger Very negative 

 

3. Results and discussion 

Currently, due to COVID-19 restrictions, only the HR estimation module and FER pipeline blocks 
have been tested. The validation was conducted in the laboratory of the Institute of Microelectronics 
and Microsystems (IMM) in Lecce, Italy. The experimental setup consisted of an embedded PC with 
Intel core i7 and 8GB of RAM, using Python (3.7) language with OpenCV for algorithm development. 
The Intel RealSenseTM D435 camera was used for image streaming acquisition. A total of 15 
participants (nine males and six females) with ages ranging from 35 to 69 years were included in this 
study after giving their voluntary consent. For HR estimation, the root mean squared error (RMSE) is 
proposed for evaluating the accuracy of HR measurements, considering a commercial pulse oximeter 
as ground truth. The experiments were run by varying head poses, lighting conditions, and distance 
from the vision sensor (from 0.5m to 2m). For the sake of brevity, Table  reports the RMSE obtained at 
varying of head poses (ranging from -40° to +40° for yaw angle and -20° and +20° for pitch angle) and 
lighting conditions (in the range 30-100 lumens) at a fixed distance from the vision sensor (0.5 mt.). 

 
 
 
 
 
 

 



Table 2 
RMSE at varying of light conditions (30 and 100 Lux), yaw angle (between -40° and +40°) and pitch 
angle (between -20° and +20°). 

Lx 30 100 
Yaw Angle -40 -20 0 +20 +40 -40 -20 0 +20 +40 
RMSE mean 5.72 4.49 2.41 4.36 5.80 4.86 2.45 1.97 2.78 4.35 

           
Pitch Angle  -20 0 -20   -20 0 -20  
RMSE mean  / 2.56 1.87 2.43 / / 2.35 1.57 2.25 / 

 
These results show that the implemented approach allows effective HR classification even in the 

presence of significant changes in head pose and lighting conditions, with the RMSE increasing slightly 
as lighting intensity decreases. For FER module, each user involved in the trial simulated in sequence 
the classical six facial expressions plus the neutral expression. The performance of FER module was 
evaluated using accuracy as metric. Accuracy (Acc) is the overall classification in term of True Positive 
(TP) and True Negative (TN) of the proposed method. In Figure 5, Figure 6, Figure 7 the confusion 
matrices of the average accuracies obtained using the considered classifiers (i.e. SVM, LR and kNN) 
are reported. The accuracies were calculated by averaging the accuracies obtained by varying lighting 
conditions and face orientation. 

 

 
Figure 5: Confusion matrices for seven classes of facial expressions using SVM as classifier and at 
varying (a) yaw angles and (b) pitch angle. 

 

 
Figure 6: Confusion matrices for seven classes of facial expressions using LR as classifier and at varying 
(a) yaw angles and (b) pitch angle.  



 
 
Figure 7: Confusion matrices for seven classes of facial expressions using kNN as classifier and at 
varying (a) yaw angles and (b) pitch angle. 

From the confusion matrices, it can be seen that the SVM classifier achieves the best performance 
in the efficient recognition of the considered facial expressions varying light conditions the pitch and 
yaw angle. More specifically, SVM obtains an improvement in the classification of about 5.8% 
compared to the LR classifier and of about 4.6% compared to the kNN classifier with lux = 100, while 
the performance in terms of accuracy with lux = 500 is less evident (+2.3% compared to LR and +2% 
compared to kNN). 

4. Conclusion 

In this work, a novel algorithmic pipeline for mood evaluation starting from HR estimation and FER 
was proposed. The hardware platform returns the HR and facial expression of the subject in real time 
using the same input information, i.e., the facial region. Moreover, the platform implements a software 
module capable of evaluating the "mood" through temporal combinations of the information previously 
extracted. An added value lies in the fact that to capture the substantial visual features of HR and facial 
expressions from the face, a series of algorithmic steps were designed and implemented considering 
various head poses, distances from the sensor, and variations in lighting conditions. Thanks to these 
algorithmic steps, the entire pipeline allows greater usability of the proposed solution, integrating 
perfectly into a AAL environment where generally fragile or ageing subjects are present. 

From the performance point of view, the algorithmic pipeline achieved satisfactory results in terms 
of RMSE for HR estimation and accuracy for FER in the wild.  

The next development of the proposed work will be the test of the introduced production rules with 
the purpose to distinguish at least positive, negative, and neutral mood of the observed subject. A further 
development of this work will involve the extraction of the breathing rate from the same facial region, 
and the combination within the rules of this information, to provide an output mood that is as close to 
reality as possible. 
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