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Abstract
In the context of the Optiflex project, we consider the problem of dispatching grid loads in presence
of energy production coming from renewable sources. As renewables are mostly weather-dependent
and therefore massively and quickly fluctuating, the imbalance between production and consumption,
the over voltage and overload of grid components are just a few of implications. One of the technical
measures for mastering these challenges is the intelligent management of available flexibilities in the grid.
In order to let the distribution system operators face this challenge, a concept aimed to actively control
heat pumps and electric heaters is proposed. This concept is concretised in four main steps: power profile
disaggregation of the controllable flexibilities, photovoltaic power prediction, power demand estimation
of the controllable loads, and loads actuation scheduling.
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1. Introduction

Production of energy from renewable sources has been growing constantly in the past few years.
Today, renewables constitute a substantial part of the electric energy production in Switzerland
and in several other European countries and will continue to grow in the coming years and
probably even decades (e.g., in Switzerland refer to the “Energy Strategy 2050” [1]).

Since the energy production from renewable sources is mostly weather-dependent and
therefore massively and quickly fluctuating, various challenges arise. Unbalance between
production and consumption, overvoltage and overload of grid components are just a few of them.
One of the technical measures for mastering these challenges is the intelligent management
of available flexibilities in the grid. With the OptiFlex project (Innosuisse, 43383.1 IP-EE) we
want to use the already installed Smart Metering base as measurement, communication and
switching infrastructure, without the need of any additional hardware, containing investments
for Smart Grid use cases. In a first step we want to control flexibilities for distribution grid
purposes only.

The general approach and a description of the algorithms will be presented in the next
sections.
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Figure 1: Schematic representation of Optiflex.

2. Methodology

Distribution System Operators (DSO) can adopt two different approaches in order to control
household flexibilities: decentralized or centralized. Both having pros and cons.

The decentralized approach consists of controlling the loads in a distributed way, installing
additional plug-on electronic units which measure electrical parameters of the controllable
loads, such as voltage, current and frequency, calculate energy needs and production forecasts,
and according to the best possible scheduling, controls the household devices autonomously [2].
This approach allows for a direct interface with the device, and very detailed measurements
(in the order of 1Hz), allowing the status (on/off) of the device to be known. Disadvantages
arise when this solution has to be scaled up: the installation can not always be executed in
one step (i.e. one visit), the mounting is not everywhere easily possible (e.g., old buildings),
the production of a wide range of devices and the unit maintenance are costly, since hardware
failure and necessary replacements may occur. Furthermore, a sort of coordination mechanism
is still needed to mitigate network unbalances, overvoltages and overloads. This coordination
requires a telecommunication network to be in-place.

These disadvantages could be overcome by a centralized approach, since there is no need
to install further hardware components. Indeed, current smart-meter technology is able to
communicate detailed enough power measurements and act on local switches. Centralized
algorithms are able to orchestrate the flexibilities to meet the goals of grid stability. On the side
of disadvantages, managing the massive data flow generated by all smart meters deployed in a
grid and collect them in a centralized database is a challenge which may hinder the success of
centralized approaches.

3. Algorithms

A simplified representation of the Optiflex suite of modules and their interaction is reported in
“Figure 1”.

The metering infrastructure feeds metering data into the system, data is processed to under-
stand loads’ behavior with the Non-Intrusive Load Monitoring (NILM) component according to
past weather data. Load behavior is then used to train a demand model able to forecast future



needs according to future weather forecasts. Finally, grid loads are steered by a Demand Side
Management (DSM) component and the process is continuously iterated.

3.1. Non-Intrusive Load Monitoring (NILM)

NILM is necessary when electrical loads are not directly monitored but an estimate of their use
is needed. Commonly, the smart-metering infrastructure provides the necessary measurements
at the Point of Common Coupling (PCC) of each household, that are composed of active and
reactive power measurements as well as voltages and currents. The purpose of NILM is to
detect the activation of major controllable loads (normally heat pumps and domestic water
heaters) that can be steered via the actuators installed at the smart-meter and separate their
power foot-print from the other loads that are considered as uncontrollable.

Non intrusive load monitoring has been studied since the 90s [3]. Extensive reviews of such
algorithms are provided, for instance, by Zoha et al. [4] and by Zeifman & Roth [5].

The main issue to implement effective disaggregation algorithms is the sampling frequency.
While the majority of the approaches rely on sampling rates in the range from 0.1 Hz to 1 Hz, in
Optiflex we deal with much lower sampling frequencies in the order of one sample per minute.

In this context, our purpose is to control a pre-defined set of flexibilities, in particular heat
pumps and electric heaters, for which we know the nominal power and the relay status with a
5 minutes resolution, in addition to the meter power profile.

Given these data, the disaggregation algorithm aims to detect whether a flexibility has been
absorbing power or not during a given time interval. The approach is described in detail in [6],
it builds on previous work [7], [8], [9] and it is also inspired by recent research from Bu et al.
[10].

3.2. Irradiance estimator - Photovoltaic production forecaster

The irradiance estimation algorithm has been designed and implemented to tackle the issue
of missing direct monitoring of photovoltaic (PV) installations and the presence of inaccurate
weather data (global irradiance measurements). In presence of either direct PV monitoring or
accurate weather data, the algorithms infrastructure is designed in order to use the real data.

The irradiance estimation algorithm has been inspired by the approaches presented in pre-
vious works [11], [12]. Differently than our approach, in these studies, the PV production is
generated from a set of reference PV installations under clear sky conditions.

The basic idea of our approach is to exploit the (negative portion of the) power reading of a set
of meters in a neighborhood monitoring PV installations together with domestic loads exploiting
the assumption that PVs are exposed to similar irradiation conditions. The methodology uses a
popular software library (PvLib, a community supported tool that provides a set of functions
and classes for simulating the performance of PV energy systems).

Irradiance estimation is obtained with the following procedure:

• Compute the Global Horizontal Irradiance (GHI) in clear sky conditions (GHI*) of the
considered neighborhood over a defined period of time discretized in time steps (e.g., the
past 24 hours).



• For each PV installation, compute a scaling factor of GHI*, for each time step, so that the
estimated production matches the power reading of the meter.

• For each time steps, among the scaling factors of all PV installations, retain the maximum.
• Use the retained scaling factors to estimate the irradiance from GHI*.

The rationale behind this approach is that not all major loads are absorbing power simultaneously
and the effect of PV installations is directly visible in the metering data. The approach is detailed
in [6].

3.3. Demand estimation

With demand estimation it is intended the task of predicting the time-dependent needs of a
flexibility to be connected to the grid, that is the amount of time a flexibility must be allowed to
drain power from the grid in different moments of the day. More formally, we aim to predict
the future power usages of a flexibility 𝑦𝑡, 𝑦𝑡+1, ..., 𝑦𝑁−1 using the output of the disaggregation
algorithm that estimates past power usages 𝑦𝑡−𝑚, 𝑦𝑡−𝑚+1, ..., 𝑦𝑡−1, where M is the number of
historical data used to forecast, and N is the number of future values being forecast.

There are several forecasting methods available, namely: moving average, seasonal method
with error correction, autoregressive model, autoregressive integrated moving average model,
function fitting neural network, and nonlinear autoregressive neural network. In the current
implementation of Optiflex, we devised a software architecture capable of using different
techniques with minor implementation effort. We currently provide a demand estimation
algorithm which hybridizes a seasonal method with a simple classification method.

Seasonal method: we assume that demand has daily-seasonal patterns. Thus, this method
predicts the future demand values by computing statistical distributions for the values at the
same time point in previous days. Let m be the period of the seasonality 𝑙 = 𝑀

𝑚 be the number
of available seasonal data, and the future values.

As an example, average values can be then computed by:

𝑦′𝑡+𝑖 =

∑︀𝑙
𝑗=1 𝑦𝑡+𝑖−𝑗𝑚

𝑙
, 𝑖 = 0, 1, ..., 𝑁 − 1 (1)

Classification method: the output of the disaggregation is a data sample that is used to calibrate
a seasonal model, we hybridize the seasonal method with a simple classification method, thus
obtaining multiple seasonal models, one for each class. Fundamentally:

• We define a set of classes C ∪ {c0}, where c0 is a base class
• We classify the sampling data as belonging to two classes c𝑗 and c0
• We update the seasonal data of classes c𝑗 and c0
• We predict the class of the future power usages and predict using the appropriate seasonal

model

The method is generic (classes can be defined in several ways) but in the current implementa-
tion of Optiflex we use four classes + the base class (class 0).

The classification method is based on aggregated daily weather data: average daily tempera-
ture, average daily irradiance. To classify samples, we use static data associated to the location



Table 1
Classification rules

Daily T avg ≥Monthly T avg Daily T avg <Monthly T avg

Daily I avg ≥Monthly I avg Hot – Sunny day Cold – Sunny day
Daily I avg <Monthly I avg Hot – Cloudy day Cold – Cloudy day

of the pilot site: average monthly temperature, average monthly irradiance. The four classes
intuitively correspond to “Hot - Sunny”, “Hot - Cloudy”, “Cold - Sunny”, and “Cold - Cloudy”
days.

Classification is then performed as in “Table 1” where letter I stands for Irradiance and letter
T stands for Temperature.

3.4. Scheduler

Scheduling is the final component of the Optiflex algorithmic pipeline. Its basic purpose is to
steer controllable flexibilities in order to optimize some objective functions (peak shaving in the
current implementation). Flexibility steering is subject to some functional constraints that must
be respected.

The scheduling algorithm (scheduler in short) is centralized. It means that it simultaneously
considers the entire set of controllable flexibilities. It implements a Model Predictive Control
scheme, in summary, it considers the control actions over a future period of time called planning
horizon and it actually implements only a smaller portion of the control actions called control
horizon and the process repeats when the control horizon is elapsed. The planning horizon is
defined as a discretized time interval 𝑇 divided in timeslots (24h, discretized in 288 timeslots of
5 minutes each in the current implementation of Optiflex) and the control horizon is 1 timeslot.
The control actions are therefore discretized and assumed constant during each timeslot. Control
actions can be categorized as follows:

• Binary control actions: related to the control of a power switch. 1: flexibility connected
to the grid, 0: otherwise.

• Continuous control action: this is normally related to a power setpoint of the flexibil-
ity (commonly associated with storages or chargers), values are bound to operational
constraints of the flexibility.

The scheduler has to respect some constraints operating the flexibilities. In particular for
binary flexibilities, the amount of time the flexibility is connected to the grid must be sufficient
to ensure that the flexibility can satisfy the energy demand. Furthermore the flexibility should
not change its state too frequently and too many times during period 𝑇 in order to preserve the
lifetime of the physical switch.

For continuous flexibilities, the scheduler must maintain the state of the flexibility within
bounds and reach the desired state at time 𝑡.

The scheduler considers the behavior of the rest of the grid in order to account for the
uncontrollable portion of the power the model considers an aggregated signal. The software
architecture of Optiflex, as done for demand estimation, allows to use modular implementations



of the scheduler. For moderate sized pilot sites (hundreds of flexibilities) an exact approach
based on a MILP formulation is used. For larger pilot sites (thousands of flexibilities) a fast
optimizer based on local search heuristics is used.

4. Results

The challenges tackled and solved by the Optiflex project are manifold:

• Manage the massive data flow generated by all smart meters deployed in a grid, by
collecting them in a centralized database, along with the metadata of each flexibilities (i.e.
nominal power).

• Analyse the measurements to determine the behavior of the flexibilities present in the
grid and proactively control them to meet the goals of grid stability, by developing a set
of algorithms able to identify the power profile of each controlled flexibility, estimate
the power consumption of the next 24 hours and steer the loads by meeting the energy
demand.

• Integrate weather forecasting data to predict future behavior of the loads and power
generation in the grid, especially due to PV production, in order to take proactive measures
to compensate excess of power production or power consumption.

• Provide grid managers a functional environment to monitor and control the behavior of
the grid.

These results have been achieved by testing this concept in distribution network of a local DSO
in Massagno, Ticino, Switzerland. The algorithms have been designed in order to be exploited
on different size of the network and to be deployed in the entire grid or even in one or more
subregions in parallel. The pipeline has been firstly tested with the help of a comprehensive
low voltage simulation framework called OPTISIM and developed within SUPSI [13], in order
to validate the robustness over long periods and to compare the test-set without algorithms and
with algorithms acting on controllable loads. The designed test-set is calibrated on a district of
the local DSO grid. The community includes the following characteristics:

• A 30 kWp public PV plant (on the kindergarten)
• 18 single family houses with:

– 3 PV plants (32.76 kWp)
– 10 heat-pumps
– 26kW of electrical heater

• A 50 kWh battery installed at the public PV plant location

In “Figure 2” we report the overall active power of the test-set. It ranges approximately from
-20kW to 80kW. In the top sub-plot we report the overall power when all loads are not controlled
and can freely absorb power when necessary. In the bottom sub-plot we report the overall
power when all flexibilities are controlled by Optiflex. We observe a pattern for the uncontrolled
case where loads tend to accumulate during morning and evening hours forming power peaks.



Figure 2: Simulation results.

We then observe that Optiflex is capable to prevent the formation of such high peaks by
spreading loads along the day. We report that the overall energy provided on a daily basis for
the test-set does not differ between the two settings, that is all loads are absorbing the same
amount of energy. From a preliminary analysis of the test-set we observe KPI peak reductions
of 30-40% with cases of peak reduction of up to 50%.

Simulation was followed by deploying the algorithms in the field, where a test phase on the
same simulated grid is still running. In parallel, scale up tests are being carried out in wider
regions. The first region is composed of 2 transformer stations, 373 meters and 155 flexibilities
(73 heat pumps, 60 boilers and 22 PVs), and the second matches the entire DSO network, where
the data available in the database at this time are 72 transformer stations, 9526 meters and 1481
flexibilities (388 heat pumps, 828 boilers and 265 PVs).

5. Conclusions

The Optiflex solution aims at the exploitation of Smart Metering technology, i.e. the possibility
of modern energy meters to communicate detailed measurements of the energy flow and the
capability of acting on local switches, to intelligently manage the available flexibilities in the
grid such as electrical loads and energy storages in a centralized way, to make the electrical
grid more robust, smoothly integrate distributed energy production and minimize energy losses



due to high power peaks. This centralized implementation allows a lower investment by the
DSO to meet the goals of grid stability, as it is not necessary to install and maintain distributed
hardware components, making deployment on different pilots less wasteful.
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