
Supporting Impaired People with a Following Robotic
Assistant by means of End-to-End Visual Target Navigation
and Reinforcement Learning Approaches
Nguyen Ngoc Dat1, Valerio Ponzi1, Samuele Russo2 and Francesco Vincelli1

1Department of Computer, Control and Management Engineering, Sapienza Univerisity of Rome, 00185 Rome, Italy
2Department of Psychology, Sapienza University of Rome, via dei Marsi 78 Roma 00185, Italy

Abstract
We present an improvement in visual object tracking and navigation for mobile robot implementing the advantage actor-
critic (A2C) reinforcement learning architecture on top of the Gym-Gazebo framework. This work provides an easier way
to integrate reinforcement learning algorithms for navigation and object tracking tasks in robotics field. We train the
convolutional-recurrent model employed for the policy estimation in an end-to-end manner. The robot is able to follow a
simulated human walking in an indoor environment by using the sequence of images provided by the robot camera. The
input of the algorithm is acquired and processed directly in ROS-Gazebo environment. The policy learned by the robot agent
proved to generalize well also in an environment with different size and shape with respect to the training one. Moreover,
the policy allows the robot to avoid obstacles while following the tracking target. Thanks to these improvements, we can
straightforwardly apply the tracking system in a real world robot for a person following task in indoor environments.
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1. Introduction
In some categories of subjects defined as "fragile" the pres-
ence of an assistant who can guide and help them can
be a valid help. In some cases, this assistant is not only
useful but also necessary, especially with subjects who
show spatial orientation problems. The idea of this study
concerns the accompaniment of the person to a robot that
accompanies and helps him when it is necessary to regain
the visuospatial orientation. For example, when the sub-
ject walks down the street, the robot recognizes if that is
the right path and, if so, communicates to the person that
he has taken the wrong path and suggests the appropri-
ate path. This functionality is very useful and sometimes
indispensable when the patient has cognitive problems
that can have implications on executive functions and on
the abilities of visuospatial orientation [1, 2, 3]. Where
self-monitoring and visuospatial planning skills are lack-
ing, the use of this robot can help the patient on the one
hand to maintain greater autonomy and independence,
and on the other hand to reinforce, strengthen and reha-
bilitate skills. visuospatial. In fact, the use of the robot
would not be limited only to a replacement of the action
that the person has failed, but it would also be able to
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help the person reflect on the mistake made, asking the
person questions that help him to reflect and reason. .
Furthermore, the activation of reasoning can occur even
before the person is about to commit a visual-spatial er-
ror. For example, the robot can prompt the person to
activate a reasoning based on the planning of the path
that is shorter or better reachable. Furthermore, the robot
can also perform the function of "companion" with which
the person talks, and then chooses and decides indepen-
dently with the help of the robot’s questions, which is
the place where he prefers to go. In fact, in patients with
mild cognitive impairment, it is easy for the subject to
act on impulse, without adequate planning of the path
and without having reflected on the objectives for which
one chooses to follow that path. From a psychological
and neuropsychological point of view, the use of robots
plays a fundamental role in supporting, on the one hand,
the self-determination and autonomy of the person and
on the other, slowing down their decline and activating
neuropsychological enhancement processes mediated by
the robot. Object detection is the process of detecting
the object in frames of a video sequence, while the ob-
ject tracking is the process of finding the direction of an
object while moving around a scene [4] The main steps
of the tracking process are: (1) Detection of moving ob-
jects, (2) Tracking of the related object from the current
frame to the next frame, (3) Analysis of tracking objects
to recognize their behaviour. Visual tracking plays an im-
portant role in fusing many computer vision applications
which include image and video processing, pattern recog-
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nition, information retrieval, automation and control.
The tracking procedure finds itself in many applications
like mobile robotics, solar forecasting, particle tracking
in microscopy images, biological applications, surveil-
lance, to cite the most common ones [5, 6]. Much of
the existing work related to object tracking is on passive
tracker, where it is assumed that the object of interest is
always in the image scene, and there is no need to handle
camera control during tracking. This approach is not
suitable for some use-cases, e.g., the tracking performed
by a mobile robot with a camera mounted or by a drone.
For such applications, one should seek a solution to ap-
proach active tracking, which unifies the two sub-tasks,
i.e., the object tracking and the camera control. In the
passive tracker approach, it is difficult to jointly tune the
pipeline with the two separate sub-tasks. The tracking
task may also involve many human efforts for bounding
box labeling. Moreover, the implementation of camera
control is non-trivial and can incur many expensive trial-
and-errors system tuning in the real-world, as shown
in [7], [8]. Active object tracking additionally considers
camera control compared with traditional object tracking.
There exists not much research focus in this approach
for visual object tracking so far.

2. Related Works
Despite the success of traditional trackers based on low-
level, hand-crafted features, models based on deep con-
volutional neural network (CNN) have dominated recent
visual tracking research. The success of these models
largely depends on the capability of CNN to learn a good
feature representation for the tracking target. Unfor-
tunately, for a busy scene with occluding objects, this
approach can fail to find long-term temporal correlations
expressing target motion along different frames. In this
work we explore and investigate a more general strat-
egy to develop a novel visual tracking approach based
on reinforcement learning and convolutional recurrent
networks. The major intuition behind this method is that,
during the active tracking process, the historical visual
semantics and tracking proposals encode pertinent in-
formation for future predictions. Such features require
continuous and accurate predictions in both spatial and
temporal domain over a long period of time, thus de-
manding for a novel network architecture design as well
as proper training algorithms. We formulate the visual
tracking problem as a sequential decision-making pro-
cess and explored a novel framework, referred to as Deep
RL Tracker (DRLT). The latter processes video frames as
a whole and directly outputs actions to make the camera
able to follow the target in each frame. Our model in-
tegrates convolutional network with recurrent network
(Figure 2), and builds up a spatial-temporal representa-

tion of the input frames. It fuses past recurrent states
with current visual features to make predictions of the
target object’s movements along the input sequence of
frames over time. We employed an end-to-end algorithm
that allows the model to be trained to maximize tracking
performance in the long run. This procedure uses back-
propagation to train the neural network components and
off-policy actor-critic reinforcement learning algorithm
[9] to train the policy network. Recent research in vi-
sual object tracking relies on game engines as simulation
environment to perform training of the neural network
models to be then applied on physical robotic platform
and real-world environments. We notice that game en-
gines are not suitable for mobile robot applications, such
as the person following the task considered in this work.
Game engines only allow to control the camera position
and orientation, without caring about how to control
the robot motion and navigation in response to tracking
outputs, since the game engine does not have any robot
hardware APIs. For this reason, our approach relies on
a simulation environment based on ROS/Gazebo frame-
work for the training process, providing suitable APIs
to deal with camera control by navigation of the robotic
platform carrying the camera sensor. Our main target
is teaching the mobile manipulator TIAGo, from PAL
Robotics, to follow a human target, while walking in an
indoor environment, for assistance and health-care task.
TIAGo robot and the human tracking target are modeled
in Gazebo 3D simulator. A sequence of images, acquired
by robot camera sensor, is passed as input to the obser-
vation encoder; then the sequence encoder collects and
encodes the temporal correlation of extracted feature rep-
resentation; after these steps, the advantage actor-critic
(A2C) RL off-policy algorithm is used to optimize the ac-
tor and critic networks through policy gradient and value
loss and the output of reinforcement learning algorithm
is then used to sample the new action which the robot
has to perform to follow the human trajectory.

Target-driven visual navigation is a relatively new task
in the field of robotics research. Only recently, end-to-
end systems have been specifically developed to address
this problem. A possible naive approach could be to use
a classic map-based navigation algorithm along with an
image or object recognition model.
To overcome these limits, map-less methods, which try to
solve the problem of navigation and target approaching
jointly, have been proposed [10, 11]. These systems, like
ours, do not build a geometric map of the area, instead,
they implicitly acquire the minimum knowledge of the
environment necessary for navigation. This is done by
direct mapping visual inputs to motion, i.e. pixels to ac-
tions. The DRL framework proves very promising for
this purpose. In deep reinforcement learning and agent-
based models, a reward function is defined based on the
robot’s perceived state and performed actions. The robot
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Figure 1: Overview of the network architecture. The encoder block contains 4 convolutional layers. The sequence encoder is a
LSTM layer, which extract feature over time. The actor-critic networks are fully connected layers

learns sequential decision making to accumulate more
rewards while in operation. The overall problem is typi-
cally formulated as a Markov decision process (MDP) and
the optimal action-state rules are learned using dynamic
programming techniques. These methods are attractive
because they do not require supervision and they imitate
the natural human learning experience. However, they
require complex and lengthy learning processes. DRL
for Robotic Applications and Visual Navigation RL is be-
coming popular in recent times. In [12] it is proposed
a solution to the navigation problem of nonholonomic
mobile robots with continuous control based on deep-RL.
Moreover, training the robot for the motion task in a
virtual environment allows to speed up the learning and
generalization process and also avoid the costs and risks
of a trial and error learning approach in the real-world
setup. Equipped with deep ConvNets, RL shows impres-
sive successes on visual tracking tasks as shown also in
[13]. However, they are distinct from this work, as they
do not formulate the tracking procedure in an end-to-end
manner and do not consider camera controls. A further
step towards generalization is taken by [14], which intro-
duces a framework that integrates a deep neural network
based object recognition module. With this module, the
agent can identify the target object regardless of where
the photo of that object is taken. However, it is still
trained or fine-tuned in the same environments where
it is tested. Therefore, it is still not able to generalize to
unseen scenarios.

3. System set-up and simulation
environment

The first step in the development of this work consisted
in the setup of a simulation environment in which the
TIAGo robot model and a walking human model (ac-

tor) can be reproduced. As described in the previous
chapter, the task of the project is the development and
the improvement of a visual object tracking system al-
lowing to actively track a human walking in an indoor
environment in an end-to-end manner by means of an
actor-critic RL algorithm. To avoid the potential issues
about the different operative systems running on our
machines, the continuous update of dependencies and
deprecated packages, which can prove troublesome for
developing while using a Robot Operating System (ROS)
code-base, a Docker container has been built to develop,
run, manage and sync the modules building up the whole
project (refer to paragraph 3.1) The Gazebo was chosen
as a simulation environment since it can plugin directly
to the ROS framework. Robot simulation is an essential
tool in every robotics toolbox. A well-designed simulator
makes it possible to rapidly test algorithms, design robots,
perform regression testing, and train AI systems using
realistic scenarios. For the integration of RL algorithm
in ROS/Gazebo framework we relied on Gym-Gazebo,
a toolkit which extends the OpenAI Gym for robotics,
providing different learning techniques and algorithms
to be compared using the same virtual conditions.

3.1. Docker
Docker is a software platform that allows one to build,
test, and deploy applications quickly. Docker packages
software into standardized units called containers that
have everything the software needs to run including
libraries, system tools, code, and runtime. We man-
aged to build a complex Docker container, requiring
to sync many packages and tools that are dependent
to each other. For instance, TIAGo robot ROS package
(tiago_public_ws) require ROS Melodic version, ROS
Melodic requires Python v2.7 ; about the RL module, Gym-
Gazebo requires PyTorch machine learning framework
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Figure 2: Scheme of the project framework in docker container

and PyTorch requires Python v3.6. Thus we need to setup
both python2 and python3 for adapting with the sys-
tem. Having an NVIDIA GPU available, we leverage the
NVIDIA Container Toolkit that allows users to build and
run GPU-accelerated Docker containers.
GPU-enabled applications need access to both kernel-
level device drivers and user-level CUDA libraries, and
different applications may require different CUDA ver-
sions. One way to solve this problem is to install the
GPU drivers inside the container and map the physical
NVIDIA GPU device on the underlying Docker host (e.g.,
/dev/nvidia0) to the container. The problem with this
approach is that the version of the driver and libraries
inside the container needs to precisely match. Otherwise,
the application will fail. In such a case, users still have
to worry about what drivers and libraries are installed
on each host computer to ensure compatibility with con-
tainerized applications.
NVIDIA Docker, instead, provides driver-agnostic CUDA
images. This Docker plug-in enables GPU applications
running in containers to share graphic acceleration de-
vices on the Docker host without worrying about version
mismatches between libraries and device drivers. In par-
ticular, we employed the rocker toolkit [15] that, building
upon the nvidia-docker2 package, provides an easy
way to run the docker container with graphic user inter-
face and GPU acceleration. The structure of the docker
container is shown in detail in the diagram of Figure 2

3.2. ROS - Gazebo
ROS is a collection of libraries, drivers, and tools for the
effective development and building of a robot systems.
It has a Linux-like command tool, an inter-process com-
munication system, and numerous application-related

packages. The main features of the ROS infrastructure
are: Nodes. They are the executable processes that partic-
ipate in the communication. They can be programmed in
C ++ or Python. For this project, Python has been chosen
for its speed and simplicity and the built-in integration
with the PyTorch deep learning library. Topics. The
inter-process communication has a Publish/Subscribe
model and the communication data are called Topics.
They are the communication channels, defined by a spe-
cific name and a single type of message that can be posted
to them. Nodes can subscribe to topics to receive the in-
formation published in them or publish information for
other nodes to receive it. Callbacks. They are the in-
terruption service routines that are generated when a
node subscribed to a topic detects that something has
been published on that channel. In this routine, the data
processing is done, such as saving the position of the
robot in the callback generated by the topic where an
odometry sensor publishes the readings. Launch. A
class of files that run and manage multiple nodes for the
robot and its sensors, the simulation environment and
the data visualization software, such as Rviz or Gazebo
simulator. They are encoded in XML format.
URDF (Undefined Robot Description Format). They
are definition files of a robot. The links of the robot’s
kinematic structure are connected to each other by joints.
They also define the dynamic, kinematic, visual and col-
lision properties of the robot. As launch files, they are
programmed in XML too.
Gazebo is a simulator specifically designed for robotics.
Its convenient design makes it possible to quickly test
algorithms, robots and AI applications. In Gazebo all the
elements present in reality are simulated, the sensors and
actuators act according to the environment. In this work,
Gazebo has been used for the design of the virtual indoor
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environment, where all the experiments with the TIAGo
robot are performed.

3.3. TIAGo Robot
To better fit our task of the person following via visual
object tracking algorithm, we consider some robot plat-
forms, such as TIAGo and Turltebot. Differently from
TIAGo, Turltebot provides with APIs, packages and open
source ROS plugins. However, we chose TIAGo robot
platform that, although it does not provide as many open
source APIs as Turltebot, it is a more advanced and mod-
ern robot platform and its kinematic structure can better
adapt to our target. Since the aim of our work is to make
a mobile robot to be able to learn in an end-to-end man-
ner how to actively detect and track a person walking
in an indoor space, the height of TIAGo is more suitable
because the camera mounted on the head of the robot can
catch the full human body of the person to follow, thus
providing better input data to the reinforcement learning
algorithm. Moreover, the robot is a service robot specifi-
cally designed to work in indoor environments, so our
application can be easily deployed on the real platform
and in the real world.
Following the main components of the TIAGo robot are
described (see Figure 3).

• The mobile base uses a differential drive sys-
tem and has a maximum speed of 1 m/s. It is
designed for indoor operation. At the base is the
laser sensor that has a variable sensing distance
depending on the model (iron, steel or titanium),
between 5.6 meters and 25 meters. To detect what
lies behind the robot, there are 3 sonars of 1 meter
of detection.

• The body is the central part of the TIAGo robot
and is made up of the arm and torso. The torso
has a prismatic articulation that allows increasing
the height of the robot by 35cm. The arm has
7 degrees of freedom, a length of 87 cm in its
maximum extension, and a load capacity of 3kg.

• The head comprises the neck, having 2 DoF that
allow TIAGo to look in any direction. In the place
of the eyes, there is an RGB-D camera that pro-
vides color and depth images, being able to recre-
ate the environments using point clouds. The
technology is the same as that used by the pop-
ular Kinect cameras. In particular, the robot is
equipped with a built-in Asus Xtion camera.

PAL Robotics offers different ROS packages and libraries
compatibility allowing TIAGo robot to perform complex
perception, navigation, manipulation and human-robot
interaction tasks. The platform is also equipped with a

Jetson TX2 Kit that guarantees power-efficient computing
resources well fitting to deep learning applications.

Figure 3: TIAGo robot with structural components high-
lighted)

3.4. Animated human model: actor
Gazebo simulator allows defining animated model (called
’actor’ in Gazebo) which is useful if one wants to have
entities following predefined paths in simulation with-
out being affected by the physics engine. They have a
3D visualization that can be seen by RGB cameras, and
3D meshes which can be detected by GPU based depth
sensors, so being suitable for computer vision applica-
tions. A closed-loop trajectory is defined for each of the
considered train test cases. Additional plugin files are
used to control animations based on feedback from the
environment. Actors extend common models, adding an-
imation capabilities. There are two types of animations
that can be used separately or combined together:

• Skeleton animation, which is relative motion
between links in one model;

• Motion along a trajectory, which carries all of
the actor’s links around the world, as one group;

Both types of motions can be combined to achieve a skele-
ton animation that moves in the world. Gazebo supports
two different skeleton animation file formats: COLLADA
(.dae) and Biovision Hierarchy (.bvh). The actor model
defined in the project loads a COLLADA file described
within the <skin> tag. Sometimes, it is useful to com-
bine different skins with different animations. Gazebo
allows one to take the skin from one file, and the anima-
tion from another file, as long as they have compatible
skeletons. Scripted trajectories represent the high-level
animation type of actors, which consists of specifying a
series of poses to be reached at specific times. Gazebo
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takes care of interpolating the motion between them so
the movement is fluid. The trajectory is defined inside
the .world file containing all the models which are vi-
sualized in simulation. Inside the <script> tag one can
define some of the parameters for the desired trajectory,
such as the start time and the if or not the motion has to
be repeated after it ends. For our actor model’s trajectory
we set the trajectory to loop forever and start playing as
soon as the world is loaded. In particular, the following
parameters are available:

• loop: it is set to true for the script to be repeated
in a loop. For a fluid, continuous motion is worth
setting the last waypoint to match the first one;

• delay_start: this is the time in seconds to wait
before starting the script. If running in a loop, this
time will be waited before starting each cycle;

• auto_start: this attribute is set to true if the an-
imation should start as soon as the simulation
starts playing. It is useful to set this to false if the
animation should only start playing only when
triggered, for instance, by a plugin.

Finally, the actual trajectory is built by defining a se-
quence of waypoints: The parameter waypoint is de-
scribed inside the <trajectory> tag and represents the
intermediate targets the model has to reach along the
trajectory path. Each waypoint consists of a time and a
pose;

• time the time in seconds, counted from the be-
ginning of the script, when the pose should be
reached;

• pose: the pose which should be reached.

Once trajectories are created and static animations are
loaded, the final step is to combine them in full synchro-
nized animation and trajectory. Our skeleton animation
contains a transnational component in the 𝑥 − 𝑎𝑥𝑖𝑠,
as we could notice by running the animation without
any trajectory. But that animation is not yet synchro-
nized with our trajectory until we enable that by set-
ting <interpolate_x> to true inside <animation>
tag. Figure 4 shows how an actor is modeled and an-
imated in Gazebo.

4. Reinforcement learning for
robotics

Recent trends in reinforcement learning [16], show vari-
ous applications in robotic fields, such as planning, con-
trol, air-based, under-water, land-based, etc. Moreover,
a different state of the art RL techniques ad algorithms
has been employed in this field, including actor-critic,

(a) Actor’s skeleton (b) Actor’s Animation

Figure 4: Building steps for actor’s animation & trajectory

deep reinforcement learning, and multi-agent learning.
For the visual object tracking task this project deals with,
two Actor-Critic methods have been considered: A2C
(Advantage Actor Critic) in [17] and A3C (Asynchronous
Advantage Actor Critic) in [18]. We decided to deploy
the latter since it best fitted the available computational
resources and the environmental settings. Thus the en-
vironment setup can be outlined as follows: a virtual
environment implemented in Gazebo is combined with
a reinforcement learning algorithm developed in ROS
framework, encapsulating the agent description and re-
ward updating in Gym-Gazebo package. Finally, a re-
implementation of A2C algorithm using PyTorch library
is used to define the policy learning method and manage
the RL environment.

4.1. Gym gazebo
Gym-gazebo is a powerful toolkit for reinforcement
learning of robotics applications that relies on ROS
and Gazebo. This package follows the same baseline
structure characterizing OpenAI Gym, and builds a
ROS/Gazebo environment on top of that. Indeed, in the
past years, non-profit AI research companies, such as
OpenAI, have created a generic set of algorithm and
environment interfaces. In OpenAI’s Gym, agent-state
combinations encapsulate information environments,
which will be able to make use of all the available
algorithms and tools. This abstraction allows easier
implementation and tune of the RL algorithms, but most
importantly, it creates the possibility of using any kind
of virtual agent. This includes robotics, which Gym is
already supporting with several environments on their
roster. Gym-Gazebo toolkit aims to integrate the Gym
APIs with robotic hardware, validating reinforcement
learning algorithms in real environments. Real-world
operation is achieved by combining Gazebo simulator
with ROS, so providing a set of libraries and tools that
help software developers to create robotic applications.
The architecture consists of three main software blocks:
OpenAI Gym, ROS and Gazebo. Environments developed
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Figure 5: Gym-Gazebo Framework Architecture

in OpenAI Gym interact with the Robot Operating
System, which is the connection between the Gym
itself and Gazebo simulator. Gazebo provides a robust
physics engine, high-quality graphics, and convenient
programmatic and graphical interfaces.

We created our own environment for object tracking

tasks and encapsulated it into Gym-gazebo package.
There are two main observations to do for this step:
first, we needed to correctly build the environment
class following OpenAI Gym format; second, we had
to fully integrate our own environment file inside
the Gym-Gazebo toolkit, by inheriting the properties
of python language. A common interface of OpenAI
Gym environment provides three main methods to be
implemented: reset, step, render. The function reset
is used to re-initialize parameters for new episodes; the
step function is called during training, and the render
function is used to run Gazebo server. In Figure 5 it
shows the architecture of the Gym-Gazebo toolkit and
how it is extended for our implementation.

4.2. Reinforcement learning
Reinforcement Learning (RL) is an area of machine learn-
ing where a software agent learns by interacting with an
environment, observing the results of these interactions
with the aim of achieving the maximum possible cumu-
lative reward. This imitates the trial-and-error method
used by humans to learn, which consists of taking actions
and receiving positive or negative feedback. In general,
agent learning is based on a policy function that maps
states to an action at each time step. The agent learns
how to maximize the total rewards returned from the

environment. State space - For the considered object
tracking and human following task, the state consists
in a sequence of RGB images, acquired from an action
camera mounted on the robot head, and collected over
time. The input sequence of images includes 15 camera
frames sampled from a list collected in 0.5 seconds. Im-
ages are pre-processed, reshaped to size 128x128x3 and
normalized before to be provided as input to the model.
Action space - The agent action space is discrete and
consists in three control commands: go forward, rotate
left and rotate right, as described in more detail in the
table Table 1, while the human walking speed along the
trajectory is set to 0.55 m/s.

Table 1
Action space

Action Forward Rotate Rotate
left right

Linear velocity (m/s) 0.8 0.05 0.05
Angular velocity (rad/s) 0.0 0.7 0.7

Network model - The neural architecture defined for
the implemented RL algorithm is shown in Figure 1. We
experimented a more complex and deep neural model
with respect to the network defined in [19], among the im-
provements proposed, the observation encoder contains
more convolutional layer and also the size of features
maps and kernels are changed. Moreover, the actor-critic
framework is modified to be more suitable for our task.
The detailed description of network architecture is pro-
vided in Table 2.
The observation encoder covers layers 1 to 4, the sequence
encoder consists in the recurrent layer 5 and the actor-
critic network is represented by the two fully-connected
layers 6. The observation encoder extracts the features
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Table 2
Network architecture

Layer 1 2 3 4 5 6

Parameter C3x3 32S2 C3x3 32S2 C3x3 32S2 C3x3 32S2 LSTM 256
FC3
FC1

map of input images acquired from the environment; in-
put features are collected over time by an LSTM recurrent
layer.

4.3. Advantage actor-critic architecture
(A2C)

In the developed RL-A2C learning framework, the obser-
vation encoder 𝑓(𝑠𝑡) extracts from the raw images a fea-
ture vector 𝜑𝑡 which is then used as input for a sequence
encoder. The latter is implemented by a LSTM layer as a
function 𝜃𝑡 = 𝑓(𝜑1, 𝜑2, ...𝜑𝑡) of the observation history
(𝜑1, 𝜑2, ...𝜑𝑡). After the new feature representation 𝜃𝑡
is extracted from the observation, it is provided as in-
put to both the actor and critic networks. The target of
LSTM layer is to organize the process state over time, in
this case the information of human position in the image
frame acquired by the robot camera sensor. Each time
the human moves, the agent needs to collect information
to choose a suitable action. Processing the input state
as a sequence of images provides much information and
speeds up the network update. In this project, the encoder
function is re-implemented in the form of the function
ℎ(𝑡) = 𝑓𝑠(ℎ(𝑡− 1), 𝜑𝑡) where ℎ(𝑡) is the hidden state
of the recurrent network at time step 𝑡. Reward func-
tion - The reward function used to evaluate the outcome
of the actions chosen by the robot during the learning
episodes is based on the transform relationship between
the robot and human coordinates reference frames (RF).
In particular the following parameters are considered:

• 𝛼 is the relative angle orientation of the human
w.r.t. the robot (the angle between the x-axis of
the human RF and the x-axis of the robot RF).

• 𝑑 is the desired distance between the center of
the human RF and the center of the robot RF).

The following equation implements the reward function:

𝑟 = 𝐴−𝐵 * (𝑑−
√︁

𝑥2
ℎ + 𝑦2

ℎ)
2 − 𝐶 * |𝛼| (1)

Where 𝐴 is the maximal reward; 𝐵 is a scale parameter
for the human position w.r.t robot frame; 𝐶 is a scale
parameter for the relative orientation of the human w.r.t
robot; 𝑥ℎ and 𝑦ℎ are the position coordinates of the hu-
man in the robot RF. The reward shows that if the human
is in front of the robot (so fully captured by the camera
sensor) and at most two meters far from the robot, the

obtained reward is maximized. If the human moves away
and changes it orientation w.r.t. the robot, the reward
reduces, so the robot has to learn how to move such that
the human is always in front of the robot and at the right
distance (since also in case the human is too close to the
robot, the reward value gets worse).
From the reward function in Equation 1 it is computed
the discount reward𝑅𝑡:∞ = 𝑟𝑡+𝛾*𝑟𝑡+1+𝛾2*𝑟𝑡+2+...,
that is used to generate the value function for the actor-
critic learning algorithm.

Actor-Critic Networks - In A2C, the advantage func-
tion 𝐴𝜋(𝑠, 𝑎) = 𝑄𝜋(𝑠, 𝑎)− 𝑉 (𝑠) is approximated to a
linear function by neural network. The action value func-
tion 𝑄(𝑠, 𝑎) = 𝐸[𝑅𝑡:∞|𝑠 = 𝑠𝑡, 𝑎 = 𝑎𝑡, 𝜋] stands for
the expected future reward of choosing an action at a par-
ticular state, and the value function 𝑉 (𝑠) = 𝐸[𝑅𝑡:∞|𝑠 =
𝑠𝑡, 𝜋] expresses the value of being in a specific state. The
critic network approximates the value function 𝑉 (𝑠𝑡) ,
which provides the expected future reward. The actor
network outputs the policy distribution 𝜋(·; 𝑠𝑡) used for
action decision. In A2C,𝑉 (𝑠𝑡) and 𝜋(·; 𝑠𝑡) are used to op-
timize the network weights during the training process.
Thus the value and policy functions are evaluated on
the updated model parameters 𝑉 (𝑠, 𝜃′) and 𝜋(𝑎|𝑠𝑡; 𝜃′).
Then, the networks can learn by stochastic policy gradi-
ent

𝜃 ← 𝜃+𝛼∇𝜃log𝜋(𝑎𝑡|𝑠𝑡; 𝜃)𝐴(𝑠𝑡, 𝑎𝑡)+𝛽∇𝜃𝐻(𝜋(𝑎|𝑠𝑡; 𝜃))
(2)

𝜃′ ← 𝜃′−𝛼∇𝜃′
1

2
(𝑅𝑡:𝑡+𝑛−1+𝛾𝑛𝑉 (𝑠𝑡+𝑛; 𝜃

′−)−𝑉 (𝑠𝑡; 𝜃))
2

(3)
Where 𝑅𝑡:𝑡+𝑛−1 is the discounted reward for 𝑛 steps;
𝜃 is the discount factor; 𝐻 is an entropy regularization
factor; 𝛽 is the networks regularization factor; 𝜃

′− is the
model parameters set in the previous time step.

5. Training process
The training is performed from scratch, without exploit-
ing pre-trained model weights. In the training process,
the human moving is set up to follow the trajectory
showed in figure Figure 6. Two training runs consist-
ing of 1000 and 2000 epochs respectively are performed.
The Adam optimizer for the training process is used to
speed up and stabilize convergence to the global mini-
mum in the gradient descent phase. For further details
about hyper-parameters refer to Table 3.
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Figure 6: Training trajectory

Table 3
Higher parameters

Train arguments Value Reward Value
parameters

Learning rate 1e-4 A 10
Max steps episode 150 B 5
Discount factor 0.99 C 10
Regularizer factor 0.01 d 2
Value loss coefficient 0.5

5.1. Training results
During the training process, the accumulated reward
per episode is collected. Figure 7 shows the trend of to-
tal reward increasing during the training epochs. This
demonstrates that A2C framework learned well how to
select robot actions to accomplish the considered visual
object tracking task. At the end of the training process,
the robot can follow the human along the whole trajec-
tory.

Table 4
Training time

Number episodes Training time
1000 9 hours
2000 27 hours

One of the main improvements in the training process
achieved in this project is the number of episodes re-
quired to get the cumulative reward converging to high
values, that is smaller with respect to the number of
epochs required to the training of RL algorithms for anal-
ogous tasks. This is mainly due to the use of the robot
model, instead of the camera view, in the RL process, that
is more suitable for robotics applications, and to have set
the empty room to make the learning process converging
quickly. But our training process also has disadvantage
that is the time of training. There are two main reasons
for that: in Gazebo simulator is not easy to change the
time speed as in game engines (frequently used as sim-
ulation environments for RL applications) and the low
computational resources available.

(a) Training results with 1000 episodes

(b) Training results with 2000 episodes

Figure 7: Accumulated rewards value during training
episodes, (a) 1000 epochs training; (b) 2000 epochs training

In general, the algorithm works well, and we think
that the developed system can be easily and effectively
adapted for real world robots because of the use of robot
APIs for the train and test processes.

6. Testing process
In this section it is described the testing framework used
to get quantitative and qualitative evaluations of the train-
ing process. The test process is articulated as follows:

• Three testing trajectories are defined to analyze
and evaluate the performances of the trained
model to track the human target in the same in-
door environment used for training.

• A new 3D simulation-world is created to test the
tracking performances of the trained model when
the robot has to move in an indoor environment
showing structural and textural differences with
respect to the training one.
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• Different values of robot speed, trajectory (path
and duration) for single action steps, reward func-
tion parameters are also evaluated during test
process.

6.1. Trajectories settings
The trajectories produced for the test process are de-
signed to show an increasing level of diversity with re-
spect to the trajectory defined for the training process,
which in turn also determines a gradual increase in the
complexity of the active tracking task to be learned by
the agent. Below a schematic view of the designed trajec-
tories and an overview of the main features are presented:
Base squared trajectory - A first evaluation of the ex-
perimental results is performed on the same trajectory
used in the training process, aiming to validate the learn-
ing results achieved in the training procedure. In this
case, the difference with respect to the training trajectory
is determined by changes made in the set-up of agent
parameters (speed, action steps) and environment param-
eters (speed of human targets, obstacles, light conditions).
See Figure 8(a).

Squared rotated and reshaped trajectory A second
level of evaluation is executed on a trajectory which start
showing changes in the shape and in the orientation
of the path with respect to the environment coordinate
frame. Also in this case a different set-up of robot and
world parameters is exploited to prove the robustness of
the model learning state. In particular, setting different
human target speed and robot action steps showed an
improvement in evaluation results. Refer to Figure 8(b).

Short and trapezoidal trajectory A further step in
the evaluation process is performed on a new trajectory
which shows no correlation with the training one. The
starting and final position of the agent is changed, the
shape and orientation of the path in the world frame are
different.
The main features of the trajectory set-up are the length
of the path that is less than the previous two test cases
also due to a very acute angle of the first path curve that
enhance the complexity of the visual tracking task.
Suitable settings of the agent action steps and of the hu-
man speed produced good results for this test case. See
Figure 8(c) Long eight-shaped trajectory Finally, the
task complexity is further increased defining a test case
on a new long trajectory characterized by: different start
and end position of the agent, complex shape with more
curvatures with acute and wider angles, orientation and
shaped changed with respect to the trajectory used in
all the previous test cases. Also in this case it has been
possible to define a suitable set-up for the agent and envi-
ronment parameters allowing the model to successfully
track most of the human target motion along the whole
trajectory. Refer to Figure 8(d)

(a) Base squared trajectory

(b) Rotated & reshaped squared trajec-
tory

(c) New short & trapezoidal trajectory

(d) New long & height-shaped trajec-
tory

Figure 8: Trajectories used for test process

6.2. New test 3D simulation world model
To better analyse and validate experimental results, a new
simulation indoor world environment is created. The new
space is slightly wider in terms of squared meters area,
with respect to the world model used for training and for
the test study cases described in paragraph 6.1. Moreover,
it has a different shapes, with a more irregular intersec-
tion of the perimeter walls and also the presence of some
obstacles which can considerably affect the noisy of the
input images processed by the neural model and obstruct
the robot motion. Due to the strong differences in the
world setting and also the environmental simplifications
adopted in training process to speed up learning con-
vergence, the experimental results achieved in this test
case are not as concrete as for the results obtained using
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the original world simulation set-up, but they allow to
show anyway some interesting generalization properties
acquired by the neural network model in the policy learn-
ing process. The new experimental environment and the
related test trajectory are shown in Figure 9

(a) new (complex) simulation world environment

(b) trajectory performed by the actor (human)
model

Figure 9: Large (new) irregular-shaped room with obstacles
(a) and related test trajectory for the actor model (b)

6.3. Evaluation Metrics
Before analyzing the test results obtained for the con-
sidered visual tracking task, it is worth to introduce the
performance metrics used for the quantitative evaluation.

• Accumulated Reward: sum over the total num-
ber of episodes of the reward computed for each
action step. Note that the immediate reward de-
fined in Equation (1) measures the goodness of
tracking at some time step, so the metric Accumu-
lated Reward is conceptually much like Precision
in the conventional tracking literature. 1

• Episode Length: measures the duration of good
tracking, which shares the same spirit as the Suc-
cessfully Tracked Frames 2 used in conventional
tracking applications.

1In single-target short-term tracking Precision is defined as
the average overlap, i.e., the average value in the sequence overlap
between predicted target’s region form the tracker and the ground-
truth region.

2This measure reports the number of successfully tracked frames
from the tracker’s initialization to its (first) failure. The choice of
the failure criterion may impact the evaluation result.

• Failure Rate: number of fails (end-of-episode)
over the total number of episodes. This measure
is analogous to the homonyms metric used for
evaluation in the conventional tracking literature.

6.4. Experimental Results
Squared empty room environment – In this section
a qualitative evaluation is provided for the test scenar-
ios defined in 6.1 and 6.2. The following plots ad tables
show the accumulated rewards, the episode length and
the failure rate performance metrics for the testing pro-
cesses performed on both the typology of simulation
environment As for the test results achieved on the base
(training) trajectory (Figure 10) one can see that the ac-
cumulated reward values are quite high for the whole
test run, with peaks reaching a cumulative reward value
equal to 295. Also from the plot concerning the episode
length metric one can notice from the early epochs the
robot can follow the most and, in many cases, the whole
trajectory performed by the human, thus proving the
goodness and the stability of the training results. The
results obtained on the rotated and reshaped trajectory
(Figure 11) show a little decay of the model performance,
considering the mean value of the computed metrics, but
looking at the absolute values for the single episodes, we
can ascertain that the robot can still follow the entire tra-
jectory, as proved by the high cumulative reward values
collected in different episodes, but with a slightly incre-
ment of failed episodes. Very similar positive results are
also achieved for the short trapezoidal trajectory (Figure
12), for which they are still reached high cumulative re-
ward peaks and also the mean cumulative reward along
the episode runs and the mean episodes length testify
the ability of the model to adapt also to a trajectory with
different shape and turning directions with respect to the
training one. Finally, the performance indices evaluated
on the long eight-shaped trajectory (Figure 13) prove how
the trained model also scales and generalize quite well
on a completely different and more complex trajectory.
If the mean cumulative reward is the lowest with respect
to the previous test cases, they are still reaching high
absolute cumulative values in many episodes run and
also the mean episode length value is close to that of the
previous (simpler) test cases.

Table 5
Total test runs and failure rates for the four test cases on
(training) squared empty world environment

Test environment Total episodes Failure rate
Base (training) 50 0.28
Rotated & reshaped 50 0.38
Short & trapezoidal 50 0.46
Long & eight-shaped 50 0.51
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(a) Cumulative-per-episode
rewards (orange) & mean
cumulative reward over
the whole test run (blue)

(b) Average episodes lengths
over the whole test run

Figure 10: Evaluation results on base squared trajectory

(a) Cumulative-per-episode
rewards (orange) & mean
cumulative reward over
the whole test run (blue)

(b) Average episodes lengths
over the whole test run

Figure 11: Evaluation results on rotated & reshaped base
trajectory

(a) Cumulative-per-episode
rewards (orange) & mean
cumulative reward over
the whole test run (blue)

(b) Average episodes lengths
over the whole test run

Figure 12: Evaluation results on new short & trapezoidal
trajectory

Irregular-shaped with obstacles room environment
In the end, a further evaluation case is defined, to test the
generalization capabilities of the trained model and the
possibility to extend it also to a new environment with a
higher degree of complexity (characterized by an irreg-
ular perimeter shape and the presence of obstacles). To
let the model process in a good way the input (noisier
due to the obstacles appearing in the camera frames and
the larger field of view required in the considered wider
space, we run 100 test episodes, during which both the
mean length of the test run and the cumulative reward
gradually increase, reaching peak values comparable with
the ones obtained for the much simpler test cases con-
sidered in 6.1. In particular the robot was able to track

(a) Cumulative-per-episode
rewards (orange) & mean
cumulative reward over
the whole test run (blue)

(b) Average episodes lengths
over the whole test run

Figure 13: Evaluation results on new long & eight-shaped
trajectory

and follow the human motion for more than a half of
the total trajectory while also avoiding the obstacles dis-
placed in the traversed regions of the room (Figure 14)
The strong performance achieved in tracking and obsta-
cle avoidance task are further proved by the relatively
low failure rate of the test runs on the new environment,
as can be observed by comparing the values in Table 5
and Table 6

(a) Cumulative-per-episode
rewards (orange) & mean
cumulative reward over
the whole test run (blue)

(b) Average episodes lengths
over the whole test run

Figure 14: Evaluation results on new irregular-shaped room
with obstacles

Table 6
Total test runs and failure rates for the test case on new irreg-
ular shaped with obstacles world environment

Test environment Total episodes Failure rate
Irregular-shaped
with obstacles 100 0.59

7. Conclusions
In this project, we provided an improvement in visual
object tracking problem for robotics application. Our
aim was to accomplish the task of person following for a
mobile manipulator in an indoor environment for health-
care purposes. We modeled the learning task as a Markov
Decision Process and exploited the use of robot APIs, of
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the simulation engine Gazebo, and of the Robot Opera-
tive System framework, to set up and deploy the training
and testing processes for the Advantage Actor-Critic re-
inforcement learning algorithm used to make the robot
learning the desired task. Our approaches got signif-
icant results as shown by the performance evaluation
performed in different testing environments. In the fu-
ture, we aim to deploy this project in real TIAGo robot
platform to test the implemented algorithm in real envi-
ronments.
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