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Abstract
The development of computer-assisted diagnosis algorithms for analyzing pathological whole slide im-
ages (WSIs), consisting of giga-pixels, constitutes an important research topic. Such algorithms are
required to be accurate and explainable for their decisions to ensure reliability. WSI classification can
be formulated as multiple instance learning (MIL). The general approach of MIL is to train a model that
embeds each image patch into feature space and then aggregates feature vectors of the image patches
to classify WSIs. Recent MIL approaches have adopted convolutional neural networks (CNNs) with an
attention mechanism to train feature embedding and localize the key image patches that trigger WSI
classification. The key image patches are regarded as explainable for classification. However, it is un-
clear why these image patches are selected as important, and it is insufficient for the medical domain.
Hence, this paper proposes a dictionary-based explainable CNN method using the MIL paradigm, which
identifies some pathological findings in a target WSI and explains them by providing related dictionary
items that are considered representative and useful to classifying WSIs. In addition, the method can
learn the classifier and construct the dictionary based on the MIL scheme, thereby significantly alle-
viating the burden by exploiting diagnostic information that can be obtained through daily diagnosis
instead of fine-grained annotations. The experimental results showed that the proposed method identi-
fied pathological features that contributed to the classification, with high accuracy for two pathological
image datasets.
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1. Introduction

Pathological image analysis plays an essential role in cancer diagnosis and treatment. To make
diagnoses, pathologists inspect stained tissues on glass slides under high-powered magnification,
which requires significant effort and time as they must look through large normal tissue regions
to recognize the atypical cells and tissues. Thus, developing computer-assisted diagnosis (CAD)
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algorithms for pathological image analysis, for example, detecting cancerous cells and atypical
tissues, is required, which can significantly reduce the diagnostic workload and improve accuracy.
These algorithms must be accurate and their decisions must be interpretable for humans because
pathologists are ultimately responsible for their diagnoses. Thus, the trustworthiness of the
predictions of the CAD systems must be confirmed for reliability.

Recent developments in whole slide image (WSI) systems using slide scanners enable CADs
using machine-learning techniques. Because of their huge image size, WSIs are usually divided
into small image patches, and most approaches for classifying WSIs adopt patch-based analysis.
However, these approaches are costly as they involve expert pathologists making labels to many
image patches.

To deal with these issues, weakly supervised learning for WSI classification is being actively
studied [1, 2, 3]. Most of previous approaches on weakly supervised methods investigate a
multiple instance learning (MIL), where each WSI is considered as a bag that contains multiple
instances of image patches. WSIs are labeled as positive if any of their patches are positive,
otherwise negative. The general approach of MIL is to train a model that embeds each image
patch into a feature space and then aggregates feature vectors of the image patches to predict
WSIs. Recent MIL approaches have adopted convolutional neural networks (CNNs) owing to
the recent CNNs achievements in various tasks [4, 5, 6]. CNNs are beneficial to learn feature
space embedding and can localize the key instances that trigger bag prediction. Localizing
such instances are considered explainable because these instances sometimes correspond to
the cancer region [7, 8, 9]. However, it is not clear why these instances are important in the
decision-making process because their importance is evaluated in an embedded space that
humans cannot understand.

Therefore, we propose a dictionary-based CNN that can explain its decision by presenting
images of the findings. The main idea of the method is to provide examples that can be
understandable by human users. The examples are selected from a dictionary comprised of a
set of representative patterns (e.g., pathological findings) that can influence the classification in
a dataset learned by the CNN. (Fig. 1).

Specifically, the proposed method makes decisions to the input WSI, summarizing the results
of the comparison between the local region and the dictionary items constructed to have
representative findings useful for pathological diagnosis during the model’s training process.
The dictionary consists of the feature vectors of the images of the findings. The feature vectors
are allocated weights indicating their contribution to discriminate normal and lesion areas in
the deep feature space using CNN. An area where a local region meets a dictionary item with
a large weight is regarded as a notable area. The proposed method presents the decision via
visualized notable areas and the dictionary items corresponding to them. In this way, the users
understand the diagnosis and how it was generated. To locate notable regions in WSIs, we adopt
attention-based MIL [7] that exploits diagnosis information assigned to WSIs. The attention
mechanism calculates the relative importance of each instance, that can be flexibly assigned
depending on input images. In addition, the use of MIL is practical because it can reduce users’
burden for creating a training dataset.

The contributions of this paper are as follows: (i) This paper proposes a dictionary-based CNN
that can learn discriminative pathological features as dictionary items for explainability without
fine-grained annotations. (ii) The method is verified using two types of pathological image
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Figure 1: Illustration of the key idea to improve interpretability of the notable region for the decision
made by CNNs.

datasets: one is “NCT-CRC-HE-100K” [10], which is a publicly available patch-based dataset
for colorectal cancer classification, and the other is a private dataset, which was constructed
from WSIs of biopsied lung tissues obtained from Nagasaki University Hospital, Japan. The
experimental results showed that the proposed method yielded high classification accuracy
while providing the basis behind the decision regardless of the differences in organs.

2. Related Work

2.1. Explainability for CNNs

Explainability or interpretability for CNNs has been actively studied in recent years owing to
their importance. Various highlight-based methods that suggest class discriminative pixels in an
image have been proposed [11, 12] and popularly used [13]. However, these methods can yield
misleading results [14] because they do not explain the basis of the decision made by the CNNs.
Several studies have attempted to provide the basis for CNN’s decisions [15, 16, 17, 18]. These
methods provide evidence for CNN’s decisions by comparing observations and representative
features in the training dataset. However, they cannot be directly applied to WSI classification
because they are designed to classify ordinary-sized images, namely, patch-level classification.

2.2. Multiple instance learning

Several studies have adopted CNNs in pathological image analysis for patch-based classification
[19, 20, 21] or semantic segmentation [22, 23]. However, these works require fine-grained anno-
tations, which are pretty expensive because it involves pathologists to make the annotations.

To address this problem, methods based on weakly supervised learning have been actively
studied. MIL is a weakly supervised learning method that can train machine learning models



using only the weak labels [24, 25, 26]. Specifically, data called a bag consists of multiple instances
or feature vectors and labels are assigned to only entire bags. Learners cannot access to each
label of instance in the learning process. The MIL assumption is suitable for medical imaging
[27, 28]. Because fine-grained annotations are not required, it has attracted particular attention
in the field of digital pathology. Ilse et al. [7] proposed a neural-network-based weighted
average pooling that corresponds to the attention mechanism for improving interpretability
and flexibility. Chikontwe et al. [8] proposed a framework that can train both instance and bag
classifiers with center loss to concentrate the distributions of embedded features extracted from
the same bag. Campanella et al. [9] conducted cancer classification using a deep neural network
model trained in the MIL framework. Their diagnoses are based on a recurrent neural network
that receives top-ranked suspicious samples selected by an instance predictor trained using MIL.
Yao et al. [29] efficiently combined multiple-instance segmentation and attention-based pooling
for survival period prediction. These MIL methods can identify highly influential instances for
making decisions. Often these decisions are interpretable because these instances sometimes
correspond to the cancer region. However, it is unclear why these instances are important in
the decisions, especially when these instances were selected from irrelevant regions. In contrast,
our proposed method enhances explainability by providing notable instances and the dictionary
items that are most similar to those instances.

3. Proposed Method

3.1. Problem Formulation

We formulate the WSI classification problem as a MIL classification problem. In MIL, the training
dataset 𝐷 = {𝑆𝑖 : 𝑖 = 1, 2, ..., 𝑁} is considered as a bag consisting of multiple instances (WSIs
consisting of multiple image patches). For binary classification, let 𝑆𝑖 = {(𝑥𝑖,𝑗 , 𝑦𝑖,𝑗) : 𝑗 =
1, 2, ...,𝑀𝑖} be a WSI, where 𝑥𝑖,𝑗 is an image patch in the WSI, and 𝑦𝑖,𝑗 ∈ {0, 1} is an image
patch label that is an unknown. The number of image patches 𝑀𝑖 varies for different WSIs.
Each WSI has a label 𝑌𝑖 ∈ {0, 1}, which is positive (𝑌𝑖 = 1) if the WSI has at least one positive
image patch, otherwise it is negative (𝑌𝑖 = 0) as follows:

𝑌𝑖 =

{︃
1,

∑︀
𝑦𝑖,𝑗 > 0

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,
(1)

where 𝑖 is an index of the WSI, while 𝑗 is an index of the image patch in the 𝑆𝑖.

3.2. Dictionary-based Explainable CNN

Figure 2 shows an overview of the proposed framework. The framework consists of the explain-
able feature representation and the feature integration. The explainable feature representation
is a mapping of patch-level feature vectors to a feature dictionary that can be easily interpreted
by humans, whereas the feature integration summarizes all patch-level features in one feature
vector for WSI classification.
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Figure 2: Overview of the proposed framework.

3.2.1. Explainable feature representation

The feature extractor 𝐹 converts all image patches {𝑥𝑖,1, ..., 𝑥𝑖,𝑀𝑖} in a WSI 𝑆𝑖 to multiple
feature vectors {𝑓𝑖,1, ..., 𝑓𝑖,𝑀𝑖}. Thereafter, each vector is used for calculating two values: the
influence score 𝑎𝑖,𝑗 and the similarity vector 𝑠𝑖,𝑗 . The influence score determines the degree to
which an image feature impacts WSI classification, and the patch-level feature vector with a
large influence score has a greater impact on the decision. The influence estimator calculates
the scores using the soft-max method to present relative importance among image patches in a
WSI as follows:

𝑎𝑖,𝑗 =
exp{𝑤⊺tanh(𝑉 𝑓⊺

𝑖,𝑗)}
𝑀𝑖∑︁
𝑙=1

exp{𝑤⊺tanh(𝑉 𝑓⊺
𝑖,𝑙)}

, (2)

where 𝑗 and 𝑙 denote an index of vectors, and both 𝑤 and 𝑉 are the trainable parameters.
The similarity vector 𝑠𝑖,𝑗 represents similarity between the patch-level image feature and

all items in the dictionary 𝑄 = {𝑞𝑘 : 𝑘 = 1, ...,𝐾} consisting 𝐾 items. Thus, the vector
consists of 𝐾 values and each value in the vector 𝑠𝑖,𝑗,𝑘 is calculated based on the distance
between embedded features of image patches and an item 𝑞𝑘 in the dictionary. The distance is
transformed similar to [16] as follows:

𝑠𝑖,𝑗,𝑘 = log

(︃
||𝑓𝑖,𝑗 − 𝑞𝑘||22 + 1

||𝑓𝑖,𝑗 − 𝑞𝑘||22 + 𝜖

)︃
, (3)

where 𝑘 is an indicator of the dictionary items and 𝜖 is a small positive number.

3.2.2. Feature integration

After calculating the influence scores (equation 2) and the similarity vectors (equation 3), we
aggregate the vectors weighted by the influence scores as a WSI-level feature vector 𝑧𝑖 for



representation of a WSI 𝑆𝑖 so that the diagnosis is robust to the irrelevant image patches. This
is similar to the adaptive pooling proposed in [7], and corresponds to the attention mechanism
[30] as follows:

𝑧𝑖 =

𝑀𝑖∑︁
𝑗=1

𝑎𝑖,𝑗𝑠𝑖,𝑗 . (4)

Finally, the last layer of the framework, which is the classifier ℎ, makes a decision based on
WSI-level features. We adopt single layer perceptron as the classifier. Because each value in the
WSI-level features is calculated based on similarities to the input image patches and dictionary
items in the embedding space that are non-negative, the dictionary items assigned positive
weights to the class 𝑐 would belong to class 𝑐, whereas the items assigned negative wights have
a lower probability of being in class 𝑐. This property allows easy interpretation of the decisions
made by this framework.

3.2.3. Training objectives

We train the network to achieve two objectives (i.e., classification and dictionary construction)
as follows:

ℒ = 𝜆1ℒCE + 𝜆2ℒDICT, (5)

where 𝜆1 and 𝜆2 are hyper-parameters to balance the loss function. The parameter 𝜆1 is
responsible for classification, while 𝜆2 is responsible for the similarity of embedded image
features and dictionary items in the feature space. We set 𝜆1 to 1.0 and 𝜆2 to 0.5.

The classification loss is the cross-entropy function that penalizes misclassification of the
WSI based on WSI-level feature vectors. The loss is calculated as follows:

ℒCE = −
𝑁∑︁
𝑖=1

𝐶∑︁
𝑐=1

𝑌𝑖𝑐 · log(ℎ ∘ 𝑧𝑖𝑐), (6)

where 𝑌𝑖𝑐, corresponding to WSI 𝑆𝑖 is a binary indicator for class 𝑐.
The second objective is to construct a dictionary of representative pathological features. It

consists of two types of losses and is calculated as follows:

ℒ𝐷𝐼𝐶𝑇 = ℒ𝐷𝐼𝐶𝑇1 + ℒ𝐷𝐼𝐶𝑇2 , (7)

Minimizing 𝐿DICT1 requires each dictionary item to be close to the closest patch-level feature
in the embedding space. In contrast, minimizing 𝐿𝐷𝐼𝐶𝑇2 requires every patch-level feature in
a mini-batch to be close to one of the closest item in the dictionary, causing the patch-level
features to construct clusters around the dictionary item in the embedding space. The losses
are calculated as follows:

ℒDICT1 =
1

𝑐

𝑐∑︁
𝑘=1

min
𝑗∈[1,𝑀𝑖]

||𝑞𝑘 − 𝑓𝑖,𝑗 ||22, (8)

ℒDICT2 =
1

𝑀𝑖

𝑀𝑖∑︁
𝑗=1

min
𝑘∈[1,𝑐]

||𝑓𝑖,𝑗 − 𝑞𝑘||22. (9)



4. Experiment

4.1. CNN architecture

The network architecture of the feature extractor in the proposed method consists of three
convolutional layers. The kernel sizes for the layers were 4 × 4, and they were applied in two
strides in one padding. After applying the convolutional operation, we adopted a rectified linear
unit function and max pooling to promote parameter training.

To construct the dictionary, we set the number of items to be 30 and the dimension of each
item to 128. We used the same network architecture for the following experiments.

4.2. CRC dataset

The CRC dataset is a set of image patches from pathological images of colorectal cancer and
normal tissues. There are two types of datasets: “NCT-CRC-HE-100K” and “CRC-VAL-HE-
7K”. “NCT-CRC-HE-100K” contains 100,000 images, while “CRC-VAL-HE-7K” contains 7180
images. These datasets do not onverlap. All images contained in these datasets have the size
of 224 × 224 pixels and are assigned class labels: adipose (ADI), background (BACK), debris
(DEB), limphocytes (LYM), mucus (MUC), smooth muscle (MUS), normal colon mucosa (NORM),
cancer-associated stroma (STR), and colorectal adenocarcinoma epithelium (TUM).

We created a new dataset from the CRC dataset for the MIL problem similar to [7]. A bag was
made up of randomly selected image patches from the dataset. The number of image patches in
the bag was determined based on the Gaussian distribution. We defined that a bag containing at
least one “TUM” class of image patches was positive, and otherwise negative. Bags for training
and test were selected from “NCT-CRC-HE-100K” and “CRC-VAL-HE-7K”, respectively. The
numbers of training and test bags were 1,000 and 200. Each bag contained approximately 100
image patches.

4.2.1. Results and discussion

We compared classification accuracy of our method with that of the baseline method proposed
by Ilse et al. [7]. The CNN architecture for its feature extractor was the same as that of the
proposed method. For the classification of this dataset, our method yielded an accuracy of
92%, whereas the comparison method yielded an accuracy of 90%. Although our method was
constrained to provide the rationales of its decisions, its performance was slightly higher than
that of the baseline model.

For providing the basis behind the decision as explanation, an example of identified key
image patches and corresponding dictionary items are shown in figure 3. The method could
localize image patches that are “TUM” class for classifying the bag. The corresponding items
denote the most similar pathological feature in the embedding space. The method learned two
types of pathological features as the dictionary items that can contribute to predicting bags
as positive. The contained image patches in the dictionary items actually belong to the target
class.
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4.3. Lung biopsy dataset

We conducted tissue classification in WSIs of a lung obtained by biopsy, provided by Nagasaki
University Hospital, Japan. All diagnostic labels, benign or adenocarcinoma (ADC), were
provided by pathologists at the university. This study was approved by an institutional review
board (ethics committee), and complied with all relevant ethical regulations.

We cropped the tissue images in the WSIs to the size of 2500 × 2500 pixels to create bag
dataset. The total number of benign and ADC images were 323 and 113, respectively. These
tissue images were divided into a ratio of 4:1 for training and test datasets. The 20% of training
data was used as validation dataset to select the model.

4.3.1. Result and discussion

We compared our method with the method [7] as in the subsection 4.2.1. Figure 4 shows the
receiver operating characteristics curve (ROC) for each method. These methods have similar
classification performance in terms of the area under curve (AUC) of the ROC. The proposed
method showed slightly higher accuracy than that of the baseline model similar to the subsection
4.2.1. Thus, our method has more advantages than the conventional method because it provides
explainability with the high classification accuracy.

Figure 5 shows an example of the factors learned by the proposed network as pathological
features that contributed to the classification in the dataset. The left and right sides of the figure
show the dictionary items that contributed to the classification of the tissue images as ADC, and
benign, respectively. The items assigned the highest contribution value to each classification
are listed on the top.

Figure 6 compares the dictionary items with high contribution to the classification and the
areas annotated by the pathologist as cancer areas. The red region highlights the area annotated
by the pathologist. The dictionary items constructed by the proposed method as contributing
to the classification of cancer were composed of image patches containing many cancer cells,
while the items that contributed to the classification of benign contained few image patches of
cancer cells within the instances of the dictionary items.

Figure 7 shows estimated influenced areas for decision making by the proposed method and
the areas contained cancer cells and were annotated by the pathologist. In the influence map,
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Figure 5: Illustration of the dictionary items constructed by our proposed network.

the brighter the color, the brighter the area that strongly influences the decision. Similarly, in
the ground truth, the white area indicates tissues with cancer. Both the brighter part in the
influence map and ground truth are similar, which means the proposed method recognized
cancer region as notable.

Figure 8 shows the dictionary item that was most similar to the strong activated area in the
influence map. A similar item was constructed as a cluster of images that contained cancer cells.



Figure 6: Cancer area in the dictionary items.

This implies that the proposed method made decisions based on highly influential instances,
which are similar to the dictionary items that contributed to the classification of ADC in the
training dataset. The classification process makes humans easily ascertain the basis of the
decision. From the pathologist’s perspective, they can judge whether the AI’s judgments are
appropriate or not based on the presented evidence. Furthermore, if those evidences are not
appropriate, it may be possible to improve the quality of the AI model by editing the items in
the dictionary.

5. Conclusion

This paper proposed a dictionary-based explainable CNN trained with a multiple instance
learning framework. The proposed method overcomes a challenging problem, which is explain-
ability of the basis behind the decisions made by CNN. We verified our method by using two
types of pathological images, namely colorectal cancer dataset and the biopsied lung tissue.
The results showed that the method yielded high classification accuracy while providing its
explanations regardless of the differences in organs. Our method has significant advantages
compared with the use of conventional methods. We believe that the proposed method will be
helpful in confirming trustworthiness of the diagnosis performed by CNNs. We plan to confirm
the dictionary items constructed by our method from a pathology viewpoint.
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