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Abstract
The idea of design patterns originated in the architecture domain, subsequently shaped the standardization
and communication of object-oriented system design for IT architectures, and facilitated the description
of best practices in business process design. Recently, the idea of design patterns not only stipulated
an initial collection and classification of machine learning patterns, but has also been used to structure
and document machine learning based systems from a traditional software engineering perspective. We
promote the idea of using design patterns as a general means to visualize the design of hybrid AI systems
and present how the strategy design pattern in particular can be used for a passenger counting system
by switching the implementation strategies from a standard YOLOv5 based object recognition with
Deep Sort tracking to a customized head-based YOLOv5 detection in combination with a customized
Deep Sort tracking strategy. In our example, the newly presented human head detector and tracker
could significantly improve the overall accuracy of passenger counting in dense and crowded situations.
Furthermore, we show, how rule-based symbolic decisions can be allocated to an AbstractStrategy class,
while the sub-symbolic machine learning task is delegated to the most appropriate person- or head-based
ConcreteStrategy class during run-time.
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1. Introduction

Design patterns have been established as elements of reusable object oriented (OO) software
design [1]. They are well known as Gang of Four design patterns (GoF-DP) and describe best
practice solutions to typical software design problems with the help of different UML (Unified
Modelling Language) [2] models such as UML class diagrams describing their structure or
UML sequence diagrams describing details about their behavior. However, other UML models
such as UML use case diagrams are also used to do requirements engineering and to specify
the usage of IT systems from a very high abstraction level. As such, UML is already a shared
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modeling language between business analysts and software developers, capable of modeling
many different aspects of IT systems and describing their structure as well as their behavior. It
seems a logical consequence to use UML and design patterns to describe not only the different
architectures and design ideas of software architectures, but also how machine learning models
are embedded into IT systems. Only recently, the idea of design patterns is also picked up by
the the machine learning community by Lakshmanan et al. [3]. In their book about Machine
Learning Design Patters (ML-DP), they present a comprehensive collection of tips and tricks from
experienced machine learning experts to serve machine learning practitioners as a collection
of best practice solutions to typical practical machine learning problems. Given that more
and more hybrid systems as a combination of symbolic and sub-symbolic AI components are
embedded into traditional software stacks, it would be beneficial to establish UML and design
patterns as shared vocabulary and visual expression language between traditional software
engineers, machine learning experts and knowledge engineers.

2. Related Work

Compared to the software development community, where Design Patterns (DP) are well
settled to communicate design ideas, to improve the overall system design or enhance the
maintainability and extendability of code, the use of DPs to communicate design ideas in
the field of machine learning is quite new and not yet well established. While the positive
impact of DP on the quality of software development is researched in a recent systematic
literature review from different perspectives [4], their manifestations in AI are still quite
diverse. In the aforementioned book about ML-DP, an initial set of 30 different patterns are
presented in a standardized format of addressing problems, solutions, trade-offs and alternatives
for each of the patterns, which is comparable to the GoF-DP template, which standardized
their descriptions into intent, motivation, applicability, structure, participants, collaborations,
consequences, implementation, sample code and known uses. The 23 GoF-DP are categorized into
creational, structural and behavioral DPs, while the newly proposed ML-DP are categorized into
Data Representation, Problem Representation, Model Training, Resilient Serving, Reproducibility
and Responsible AI.

Both pattern collection types provide domain specific guidance in form of best practices of
reusable problem solution pairs. However, the scope of the ML-DP is much broader and the
complexity much higher. The GoF-DP can easily be described with UML class and sequence
diagrams since these patterns focus on the collaboration of classes with appropriate interface
designs. Aspects of the software development lifecycle (SDLC), deployment of components,
aspects of performance or different data-types are out of scope of the GoF-DP, while the ML-DP
cover such aspects in order to provide some guidance for machine learning practitioners. In
the case of hybrid AI systems which combine sub-symbolic machine learning algorithms with
symbolic rule-based components, the complexity of the domain increases even further. To
visualize the interplay between data, symbolic and sub-symbolic components, Van Harmelen
and Ten Teye developed the concept of a boxology as a set of compositional DP defining their
own graphical syntax and semantics to describe all the possible solution designs of such hybrid
AI systems [5].



There are also many ways, how GoF-DP and Machine Learning (ML) can be combined. Possi-
ble combinations range from applying ML algorithms to detect the GoF patterns in programming
code [6] up to the opposite scenario of applying GoF DP to design the architecture of ML-based
systems, such as proposed only recently by [7]. In their paper, Take et al. use different GoF DP
such as Factory Method as a representative of creational DPs or the Strategy DP for implementing
deep ensemble learning, which belongs to the structural GoF-DPs. Their Strategy interface ML
Model exposes the methods prediction() and train() to the client code. We propose a slightly
different approach for the implementation of the Strategy DP and factor the process of training
the models out of the Strategy Interface and propose to reduce the API to the application of
different strategies at run-time (e.g., focusing on the method predict()). Furthermore, we will
show, how the choice of the specific run-time strategy can be delegated to an AbstractStragegy
hosting the symbolic rules for the application of the specific ConcreteStrategies, which in turn
apply the most appropriate sub-symbolic ML evaluations at hand.

3. Strategy Design Pattern in Hybrid AI Systems

We like to go a little bit deeper into the implementation details of applying the strategy DP
in the context of combining symbolic and sub-symbolic components for the allocation of
responsibilities to the typical classes involved in this structural DP. As stated by Gamma et
al., the intent of the strategy DP is to define a family of algorithms, encapsulate them and
make them interchangeable. Strategy and Context interact in order to determine the the most
adequate algorithm, or in our case of hybrid AI systems, the most adequate ML model. When
calling the Strategy, the Context either passes all the necessary data as arguments to the Strategy
for calling the predict() method, or the Context might pass itself as an argument to the Strategy
(see figure 1) in order that the Strategy itself can determine which of the concrete strategies
maps best to the current prediction task at hand.

Different ML models can be encapsulated in ConcreteStrategies and as such, can change
the behavior of the Strategy which is seen by the Context. However,the first thing when
implementing a new extended functionality in a software system is to decide where to allocate
the additional code. In object oriented programming one basically has only two choices, either
to use inheritance or delegation. In case of using inheritance, you extend one of the existing
classes to reuse the existing functionality and add additional methods or overwrite or override
existing methods. When implementing software systems with OO languages such as Java,
C++ or Python, it is also a good practice to reduce the coupling in the overall class design
as much as possible, by programming client code towards an interface and not towards an
implementation. In the case of hybrid AI system design, the forces are somehow different.
Knowledge Engineering (KE), ML, and OO programming are mostly disjoint disciplines and
some of the current shortcomings come rather from to little than to tightly coupling. The
idea of optimizing the overall system design in terms of coupling and decoupling of individual
components remains the same. But in the domain of ML, it is not yet defined how to model their
domain specific characteristics, where part of the models can be "reused and extended" with
the help of transfer learning, which would be kind of similar to inheritance in OO class design.
However, what we can visualize, is the aspect of encapsulating the different ML models in form



Figure 1: Strategy Design Pattern

of different ConcreteStrategies, where the Strategy DP can be used to modify the behavior of
the ML model, as it is perceived by calling the interface of the Strategy of the Context class.
However, in the long run, it would also be quite nice to show explicitly the reuse of pre-trained
ML models, which can be adapted for the different business purposes. Nevertheless, we show
in the following section, how the strategy DP and different ConcreteStrategies can be used to
model and optimize the implementation of a passenger counting system.

4. Use Case: Implementation of Passenger Counting System

While the initial experiments of using video based passenger counting systems as cost effective
alternative for passenger counting in public transportation systems has been investigated with
Basler Verkehrsbetriebe BVB [8, 9], it turned out to be easier to continue experiments with real
video material from Shenzhen, rather than doing similar investigations in Basel. The Shenzhen
Metro serves over 5.5 million passengers daily and is one of the fastest growing and largest
metro networks in the world [10]. During rush hours, large crowds of people commute in
the network with 238 metro stations to change lines, to enter or to leave the metro system.
Measuring and tracking these passenger flows within the metro stations in real time with
AI-based models poses inherent problems. Due to the dense crowding, people are occluded by
other people or objects and are thus not always immediately visible to the detector. This leads
to objects being detected too late, twice or incorrectly.

4.1. Initial engineering and testing of the machine learning models

A collaborative student project between SZTU School of Urban Transportation and Logistics
and FHNW School of Business [11] focused on exploring potential approaches for solving this



challenge. Initially, the task was defined as counting the persons within a defined view of a
surveillance camera by augmenting a line. Any objects that traverse this line are counted. To
achieve this contextual objective, a standard AI-based architecture for passenger detection
and tracking was implemented. Based on the observations from various experiments with the
available video data, possible solutions have to be designed, verified and tested within a single
application in order to optimize the overall accuracy of the passenger counting system.

Having defined the methodology of this project, the individual approaches and their imple-
mentations shall henceforth be explained. To provide a starting point for this project, YOLOv5
[12] was chosen for detection and Deep Sort [13] for continuous object tracking. Both im-
plementations were integrated with their standard configurations and models. No additional
configurations were made for either YOLOv5 or Deep Sort. The objective of this standard
implementation was to explore how capable the deployed AI architecture was to handle the
passenger counting scenario. Subsequent experiments proved that many people are not de-
tected by YOLOv5, particularly in large crowds. The selected angle of the surveillance camera
causes the detection to ignore the bodies of people who are either located further back in dense
crowds or are occluded behind objects. Based on the research of Hong et al. [14] and the initial
experimental results, a decision to adapt the standard model of YOLOv5 was made. Rather
than detecting entire humans, heads should be focused, as they appear to have a less higher
probability to be occluded compared to bodies.

Figure 2: Standard Setup (left) vs. Custom Setup (right)

Approximately 1000 data samples were gathered and labeled from various recordings from
different camera angles of the Shenzhen Metro. Subsequently, the YOLOv5 model was re-trained.
Since the detector now passes bounding boxes of heads to the tracking, the feature extractor
of Deep Sort must be adapted as well. To accelerate the training and embedding process, the
concept and implementation described by Maiya [15] was adopted. Thereby a Siamese network
[16] is used, which is ideally suited for feature mapping tasks. Another 5000 data samples were
collected for the training of this network.

Once all the components had been merged together, it was time to run the experiments. For
this purpose, various video sequences were selected from the available Shenzhen Metro data.
Different sizes of passenger flows were taken into account and the number of people passing
the augmented counting line was determined for each video. Using these video clips combined



with the ground truth of the number of passengers, both the standard models and the adapted
models could now be examined for their counting accuracy. The customized setup achieved a
Mean Average Error (MAE) of 1.7714 and the standard setup a MAE of 6.4857. The results as
shown in figure 3 impressively illustrate how the adapted AI setup can significantly measure
the number of passengers with higher accuracy compared to the standard setup. Even under
very complex movement patterns and large crowds, the adapted system was able to perform
highly accurate counts.

Figure 3: Evaluation between the Standard Setup and the Custom Setup

Besides the higher counting accuracy, the customized setup also recorded significantly more
tracks per frame. Unlike the standard setup, which only achieved between 6-10 tracks per
frame, the customized setup as illustrated in figure 2 was able to register up to 80 tracks per
frame. This increase in active tracks could be achieved as assumed by reducing occlusion effects.
Nevertheless, negative features of the adapted version could be observed as well. Since the
object size is considerably reduced by the shift from entire bodies to heads, the number of
pixels also decreases the further back the person is located in the image. Thus, especially in the
background where the pixel density is small, a re-identification of the objects frequently occurs.
This problem can be solved relatively easily by excluding parts of the area, so that only objects
located in a certain range in front of the counting line are tracked.

4.2. Refactoring to Patterns

From a functional perspective, the implementation of the use case has been completed, but
from a software engineering perspective, the code needs to be refactored in order to properly
allocate responsibilities to classes and to improve the overall system design [17, 18]. In order
to encapsulate the functionality of specific ML algorithms and to provide the flexibility of
switching and comparing the different passenger counting approaches, the Strategy DP can be
used, as illustrated in figure 4.

The Context class holds the attribute frame and counts values for each person passing the
augmented line in one of the two possible directions (either the objects enter or leave the metro).
Two separate strategies are used for the detection and tracking, which both can be implemented
with the standardized as well as the customized version. In chronological sequence within the



application, frame by frame, this sequence of detection strategy followed by one of the tracking
strategies can be repeated. Both abstract classes DetectionStrategy and TrackingStrategy expose

Figure 4: Strategy Design Pattern for Passenger Counting Use Case

the interface from the ConcreteStrategies and hold a reference to the Context, which can be
passed at the method call determineModel(). This allows us to dynamically evaluate the concrete
strategy based on different input parameters, which could be implemented in form of a decision
table [19], which in turn is a typical representative of a rule-based system. With the help of
the Decision Model and Notation DMN, entire decision hierarchies might be compiled, such as
shown in figure 5, where the specific implementation strategy is determined as combination of
a SystemContext and a BusinessContext.

The SystemContext might refer to specific technical circumstances such as the current
hardware type, camera resolution or number of GPUs available, while the Business Context
might consider different situations such as people density or even different business purposes
such as counting the number of persons or counting the number of persons wearing a mask, as
it might be of interest in the current situation of COVID-19.

Figure 5: Strategy evaluation using Decision Requirements Diagrams (DRD)



4.3. Deployment Lifecycle

Although the development of hybrid AI-based software systems follow similar software de-
velopment lifecycle stages and concepts as traditional IT systems, some of them are special
due to the different nature of ML and KE. The ML lifecycle needs dedicated phases of data
extraction, data preparation, model training evaluation and testing, until it can be deployed into
operations. Not only the kind of reuse such as OO with established inheritance mechanisms,
but also the maturity of these reusable concepts are different. Nevertheless, an increasing
number of ML models are stored in standardized model repositories such as TensorFlow Hub
[20], facilitating reuse in different BusinessContexts and SystemContexts. Hence, continuous
delivery and automation pipelines can be built to enable the development and operation of large
software systems, known as DevOps and MLOps, respectively.

Hybrid AI systems thus require a combination of disciplines from the selection and develop-
ment of the model up to the final deployment. Figure 6 illustrates a possible solution path for
this process. Once the model engineering is started, possible model reuse opportunities must be
considered. Based on the requirements and the context, an existing model can be used either
completely or as a starting point for transfer learning. This manually executed task facilitates
the description of the abstract class using the Strategy DP. By using UML and standardized
DP as proposed by this paper, a generally understandable blueprint can be developed, which
can later be implemented in the system by different domain specialists. Subsequently, the
necessary rules for the run-time strategy selection have to be defined. Based on the possible
parameters of the context, a DRD diagram or a decision tree can be used as shown in Figure
5. To complete this first design phase within the lifecycle, all partial elements must now be
tested for their compatibility and performance. Once the tests are successful, all symbolic and
sub-symbolic elements can be deployed. Within the run-time environment, a monitoring can
now be performed to determine whether the hybrid AI system is able to perform the given task.
If the performance is either faulty or poor, or if the strategy requirement suddenly changes,
adjustments can now be made dynamically to both the strategy and the decision model. Due to
the standardization, these parts can be easily exchanged and deployed in a very short time.

Figure 6: Deployment Lifecycle for the hybrid AI-based IT systems

Applied to the Shenzhen Metro use case, this lifecycle process was triggered by the need for



improved models for passenger detection and tracking. In this process, the already available
models YOLOv5 and Deep Sort were optimized to fit the head detection scenario. Furthermore,
the implementation was optimized according to the Strategy DP as described in Figure 4. Using
a decision table, various parameters from the context such as recognition targets, accuracy,
speed, density, etc. can be used to identify a concrete strategy. After successful integration
testing, the hybrid system could be deployed followed by real-time monitoring. In case of
accuracy degradations due to changing contexts or scenarios, strategies can be switched and the
system can adjust to the new situation thanks to the standardized interface and the recursive
optimization process.

5. Discussion

As shown in the implementation of the current application of passenger counting with the
potential switch between different implementation strategies based on head or entire body
detection, the structure of the strategy design pattern can easily be used to visualize the design
idea off implementing different behavior of different machine learning algorithms in the run
time environment. However, as described in the previous chapter about deployment possibilities,
the complexity of the decision about the best choice of the deployment of the specific ML models
can be huge and the number of facts and rules for proper selection by the DRD quite numerous.
The overall lifecycle of the most adequate algorithm, which can be engineered, trained and
validated based on the best practices of the ML-DP before it is deployed as strategy to the run
time environment is quite challenging, and appropriate build pipelines from the design-time to
the run-time environments, as they are known from the deployment of traditional software
components remain to be standardized. Appropriate visualizations, which can be used for
the abstraction of the different ML models are currently lacking. Could UML be extended
by additional diagram types that could visualize the re-use and modifications of existing ML
models? We raised this question already at the beginning when making the analogy of OO
inheritance to transfer learning in ML. How could the different modifications to the architectures
of existing ML models, which can be visualized as textual output in different ML models (e.g.,
the different layers of a Keras model with commands such as model.summary()) be visualized
in kind of UML class diagrams? Up to our knowledge, appropriate solutions are currently not
even proposed.

6. Conclusion and Outlook

While design patterns are state of the art for many years in software engineering, investigations
in machine learning design patterns only started recently. In order to build hybrid AI systems,
where machine learning and knowledge engineering should be combined within a single system,
the glue that enables this combination is still designed with traditional programming, and
appropriate software architectures need to be built up. Therefore current best practice solution
architectures which are built with the Gang of Four object oriented design patterns can be
used to embed the appropriate machine learning and knowledge engineering components.
We use strategy design pattern and show how rule based components can be embedded in



the abstract strategy which in turn calls the most appropriate machine learning solution as a
concrete strategy, solving the business problem at hand. In the use case of passenger counting
from scenes with crowded people in the Shenzhen metro, we use YOLOv5 and Deep Sort as
tracking and detection algorithms, we have shown that customized versions of both, which do
the counting based on head tracking instead of entire person tracking Can be seen as different
strategies showing superior performance in a given environment. We show how the rule based
and machine learning components can be embedded in an overall IT system by using the idea of
refactoring to patterns, which in turn can be visualized with UML. This strategy design pattern
is only one of the 23 GoF design patterns, and for the remaining design patterns appropriate
ways of how machine learning and knowledge-engineering components can be embedded and
combined for the design of hybrid AI-systems remain to be researched. Additional investigations
into how machine learning components that are reused in form of transfer learning, can be
visualized in analogy to the successfully standardized inheritance mechanism from software
engineering. Further investigations will be necessary in terms of mutual collaboration between
the The different communities of software engineering, machine learning and knowledge
engineering experts to foster common ways of finding optimal designs of hybrid systems. Other
than in the single domain of software engineering, where the GoF design patterns originated
from controlling typical defects of tight coupling of code, the same design patterns contribute
to embed more coupling between currently quite heterogeneous fields of research.
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