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Abstract
Potential Energy (PE) between 2 bodies with mass, refers to the relative gravitational pull between
them. Analogously, in the context of a graph, nodes can thought of as objects where a) the product
of the degrees of nodes acts as a proxy for mass, b) the clustering coefficients of common neighbours
as a proxy for gravitational acceleration, and c) the inverse of the shortest distance between nodes as
a proxy for distance in space, which allows for PE calculation as introduced in prior work. In this
work, we are investigating the effects of incorporating PE in Link Prediction (LP) with Relational Graph
Convolutional Networks (R-GCN). Specifically, we explore the benefits of including PE calculation as
an informative prior to the LP task and in a follow-up experiment as a learnable feature to predict. We
performed several experiments and show that considering PE in the LP process has certain advantages
and find that the information PE provides was not captured by the embeddings produced by the R-GCN.
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1. Introduction

Nowadays, Knowledge Graphs (KGs) are widely used in a variety of different fields [1], and
have become the backbone of different AI-driven applications which are employed in diverse
domains [2, 3, 4]. They have a long history, but after the term Knowledge Graphs was used
by Google [5], other companies followed the trend [6, 7, 8, 9, 10]. The information encoded in
Knowledge Graphs can be used as an input to solve various tasks, including Link Prediction
(LP), Question Answering, Recommender Systems and more [4].

Traditional LP employed topological features of graphs to predict edges between nodes that
are not present, yet are true. More recently proposed LP approaches employ advancements
in Machine Learning and specifically in the area of Graph Neural Networks to learn latent
representations for entities and relations in a graph. These representations are then used to
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perform the LP task. However, there are cases where the underlying topological features of the
graph get lost in the transition to vector space in the form of multi-dimensional embeddings.

Potential Energy in graphs, as introduced by Kumar and Sharma [11], refers to the potential
energy between two nodes in the graph. It is a measure that takes into account topological
characteristics of the graph; specifically node degrees, clustering coefficients, and the inverse
shortest distance between two nodes of interest.

In this work, we evaluate PE as an additional signal for performing LP in a co-authorship
network. We further investigate whether PE can be predicted by the vanilla R-GCN architecture
[12]; if that would be the case, then we would not necessarily need to add the pre-calculated PE
as an additional signal, but would just have to incorporate its prediction in the link prediction
component. With the intent of answering said questions, we developed a GNN-based architec-
ture and specifically employed an R-GCN [12], which we further on enhance with the additional
information of PE in our experiments. Our initial experimental results suggest that PE improves
the accuracy of LP when included as an additional signal to the R-GCN. Furthermore, our
results suggest that the information given by the PE cannot be obtained from the embeddings
generated by the R-GCN, implying loss of topological information.

2. Building Blocks

We consider link prediction (recovering of missing triples) in a transductive setting, as our task.
Missing pieces of information in graphs can be predicted using the neighborhood information
of nodes. For example, knowing that Michael works with a person with whom Wouter works
as well, implies that it is likely that the triple (Michael, friend_with, Wouter) belongs to the
Knowledge Graph. Our link prediction model follows the work of Schlichtkrull et al. [13]. The
model consists of a) an encoder, the R-GCN, and b) an enhanced decoder version of DistMult [14].
The enhancement lies in the proposed decoder that leverages the Potential Energy [11] between
two nodes as an additional feature.

2.1. Relational Graph Convolutional Networks

The Relational Graph Convolutional Network (R-GCN) is Graph Neural Network that operates
on relational data. This means that the data is a graph with directed typed edges. The update
for layer 𝑙 + 1 and node 𝑖 is:
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where 𝒩 𝑟
𝑖 denotes the set of neighbor indices of node 𝑖 under relation 𝑟 ∈ ℛ. 𝑐𝑖,𝑟 is the number

of incoming edges of type 𝑟 to node 𝑖, 𝑊𝑟 is the weight matrix of relation type 𝑟, and 𝑊0

the weight matrix used to sure the next update of a node retains the information from the
previous state (simulating a self loop). This update accumulates feature vectors of neighbors
via a normalized sum after performing a relation specific transformation. Executing the neural
network means evaluating Equation (1) for each node in the graph, for each layer (sequentially).
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Figure 1: On the left: Depiction of the potential energy, represented as a light blue lightning , for nodes
𝐴 and 𝐵. in a Bipartite graph. On the right: Depiction of the potential energy, represented as a light
blue lightning , for nodes 𝐴 and 𝐵 in a Non-bipartite graph. The green and red links represent the
triangles used in the calculation of the clustering coefficients for the common neighbours of node 𝐴
(i.e. VU Amsterdam) and 𝐵 (i.e. Triply).

2.1.1. R-GCN for Link Prediction

Link prediction is the task in which we predict either missing edges in the graph, when the
graph is static, or potential future links that need to be added when the graph is dynamic.
Formally, let 𝒢 = (𝒱, ℰ ,ℛ) be our graph with vertices 𝒱 , edges ℰ , and relation types ℛ, which
we assume to be complete. Then, given an incomplete set of edges, ℰ̂ , the objective is to assign
scores to potential existing edges (𝑠, 𝑟, 𝑜) in order to determine how likely they are to belong
to ℰ . Following [13], we can tackle this problem using the R-GCN as an entity encoder and
the DistMult decoder as a scoring function. The output of the R-GCN for one node 𝑖 ∈ 𝒱 is a
real-valued vector 𝑒𝑖 ∈ R𝑑. DistMult uses the representation two nodes 𝑠 and 𝑜 and the learnt
representation of the relations types 𝑅𝑟 to compute the score for a triple as:1

𝑓(𝑠, 𝑟, 𝑜) = 𝑒𝑇𝑠 𝑅𝑟𝑒𝑜, (2)

Cross-entropy loss is used as the optimization objective for this task.

2.1.2. Input Features for the R-GCN

The nodes at the first layer of the R-GCN can be initialized with features. We initialize them
with a feature vector which represents the textual information we have available about the
node. To do this, we encode string attributes with a pre-trained BERT model [15]. If a textual
attribute has multiple tokens, we sum the outputs of the BERT model to obtain one embedding.
If an attribute is multi-valued, we sum the embeddings of the individual values.

1This representation is a diagonal matrix and learnt separately from the representations 𝑊𝑟 in the R-GCN.



2.2. Potential Energy

In this work, we want to see the effect of including a topological feature as additional information
for the link prediction of the R-GCN. We chose the Potential Energy (PE) as introduced by Kumar
and Sharma [11] for link prediction in a bipartite graph2. A bipartite graph is a graph 𝒢ℬ =
(𝒱𝒜,𝒱ℬ, ℰ), where 𝒱𝒜 and 𝒱ℬ disjoint sets of vertices, ℰ a set of undirected edges connecting a
node from 𝒱𝒜 with a node of 𝒱ℬ . The potential energy 𝑃𝐸𝐴𝐵 between two nodes 𝐴 ∈ 𝒱𝒜 and
𝐵 ∈ 𝒱ℬ can be computed, and is the product of three factors:

a) 𝑑𝐴𝑑𝐵 , the product of the degree of the nodes,

b)
∑︀

𝑧∈Γ(𝐴)∩Γ(𝐵) 𝑐𝑙𝑧 , the sum of the clustering coefficients of common neighbors , where Γ(𝑋)
the set of neighbors of X, 𝑐𝑙𝑧 the clustering coefficient of node 𝑧. If there are no common
neighbors, 𝑐𝑙𝑧 is defined as 0.1.

c) 1
𝑠𝑑(𝐴,𝐵) , the inverse of the length of the shortest distance (path) between the nodes.

In this definition we assume that if there is no path between two nodes, 𝑠𝑑(𝐴,𝐵) = +∞,
and hence the potential energy becomes zero.

2.2.1. Potential Energy for a Knowledge Graph

In this paper, we do not work with a bipartite graph, but rather a Knowledge Graph 𝒢 =
(𝒱, ℰ ,ℛ), as defined in Section 2.1.1. Hence, we have to (re-)define what Potential Energy
means. We make the following modifications, when computing 𝑃𝐸𝐴𝐵 :

1. We only have one set of nodes, and hence the nodes 𝐴,𝐵 ∈ 𝒱 .

2. To compute the shortest path, we ignore the relation types and regard the graph as
undirected.

Otherwise, we use the PE formula as stated above. In a Knowledge Graph, if the nodes are in
disconnected components, their PE is zero. We illustrate the PE in Figure 1.

3. Experimental Setup and Outcomes

3.1. Dataset

We evaluate our model on a Knowledge Graph with scholarly data; namely the IOS LD Connect
Scholarly Knowledge Graph3. All the metadata about the papers are serialized and published
as Linked Data following the bibliographic ontology4 and is accessible through a SPARQL
endpoint5.

2In that work, the authors do not combine this measure with a learning approach.
3http://ld.iospress.nl
4http://bibliontology.com/#sec-sioc-rdf
5http://ld.iospress.nl:3030
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Figure 2: Vanilla R-GCN: The R-GCN for LP with an additional dense layer to reduce the dimension
of the textual embeddings, eR-GCN: The energized R-GCN - utilizing the additional signal of PE for
prediction, note that PE comes directly from the input graph topology, also note the trainable parameter
𝛼 that represents signal weight. PE Estimator: An MLP-Regressor trained to predict the PE between
nodes. eR-GCN-MLP: The combination of eR-GCN and PE estimator that optimizes 𝛼 based on both
the R-GCN and the PE Estimator. The light blue box indicates frozen parameters, which allows us to
isolate the effects of specific parts in the architecture.

Preprocessing. As a first data cleaning step, we removed all triples related to geometrical
information. Then, we gather nodes relevant for co-authorship link prediction; namely entities
of the following types with their respective textual attributes: authors with their full name,
articles with their title and keywords, and affiliations with their names. Then, we extract the
relations which link authors to the papers they wrote, co-authors of a specific paper to each
other, and authors to their affiliations. In parallel, we merged nodes if there were multiple nodes
representing the same entity, for example two nodes for the exact same author, as indicated by
the owl:sameAs relation. The resulting graph has 17748 edges, which we split in 65% (13330)
for training, 20% (2525) for validation and 15% (1893) for testing.

3.2. Model Architecture

To investigate whether the potential energy is beneficial to link prediction with an R-GCN,
we modify the decoder part of our architecture to incorporate the potential energy between
the nodes. We perform two experiments. In both, we initially train the R-GCN with the link
prediction objective, see Vanilla R-GCN on the far left side of Figure 2.



eR-GCN. For the first experiment, we incorporate the potential energy into the decoder by
taking a linear combination of the output of the original decoder and the calculated potential
energy amongst the specific pair of nodes in the triple, as such:

𝑓(𝑠, 𝑟, 𝑜) = (1− 𝛼)𝑒𝑇𝑠 𝑅𝑟𝑒𝑜 + 𝛼𝑃𝐸𝑠𝑜, (3)

We then optimize the parameter 𝛼 via the link prediction objective. The reason behind these
experiments lies in what we would like to observe. First of all, our goal is to showcase whether
PE improves the LP task and quantify said improvement. Hence, we would like to observe the
behaviour of the 𝛼 parameter and specifically whether post-training it is greater than zero. If
that is the case, it implies that PE as a metric holds valuable information for the LP task, that
either the R-GCN or the DistMult decoder failed to capture. We refer to the resulting model as
energized R-GCN or eR-GCN.

eR-GCN-MLP. In order to deduce whether it is solely the DistMult decoder which is unable
to decode the PE information, or whether it is an inherent weakness to the R-GCN, we setup a
second experiment. In the first stage of this experiment, we train a MLP which estimates the
potential energy from the embeddings created by the R-GCN, see PE Estimator in Figure 2. The
hypothesis is that if the embeddings contain the topological information necessary to predict
PE, then the MLP should be able to estimate it (the MLP is a universal function approximator).
We then utilise the output of the MLP to replace the actual computation of the PE and again
observe both the performance and the value of 𝛼, see eR-GCN-MLP in Figure 2. If the value of
𝛼 is similarly high compared to the first experiment, then this is a sign that a different decoder
would be able to capture the information contained in the PE. If 𝛼 is lower, then this means that
the topological information contained in the PE calculation is not captured by the embeddings.

3.3. Training and Parameters

The pre-trained BERT embeddings used have a dimension of 768, which is too computationally
expensive for our model to use, so we employed an MLP to reduce the dimensions to 64. This
is then also the input dimension of the nodes of our 3-layer R-GCN. On the first hidden layer,
the dimension is 14, the second and the output layer have a dimension of 32. In the R-GCN we
made use of basis decomposition, with 2 bases. The internal dimensions and number of bases
were optimized using a hyper-parameter search on the vanilla R-GCN , and then kept the same
for the other experiments. We used Adam as an optimizer for 300 epochs and a learning rate
of 0.01. Regarding the training objectives, the link prediction models are all trained using the
cross-entropy loss while for training the regression model to predict the PE, we employ the L1
loss (we also experimented with L2 loss, with comparable results).

Negative Sampling. Link prediction models are trained on both positive and negative sam-
ples. In the context of KGs, every triple that exists in the graph is considered true. However,
negative triples are not present. Hence, in order to train our model we generated negative sam-
ples by corrupting the subject or object of existing triples. We did this corruption by replacing
the head or tail of an existing triple, with another entity from the graph sampled uniform at
random. In every split, we included one negative triple for every positive one.



3.4. Results

Model Training loss Validation AUC-ROC Test AUC-ROC Scaling factor (𝛼)

R-GCN 0.3782 ±0.0252 0.8923 ±0.0191 0.8912 ±0.0173 n.a.

eR-GCN 0.2014 ±0.0352 0.9186 ±0.0230 0.9209 ±0.0221 0.2925 ±0.0097
eR-GCN-MLP 0.3665 ±0.0001 0.8997 ±0.0001 0.8993 ±0.0001 ≈ 0

Table 1
The outcomes of the experiments on the vanilla R-GCN, the eR-GCN and the eR-GCN-MLP.

The results obtained for the two baseline and the two experiments are in Table 1. These are
the mean and standard deviations of the training loss, validation and test accuracy and scaling
factor over 30 runs.

Baseline. As a baseline of our experiments, we compare against the standard R-GCN version
for link prediction without the enhanced DistMult decoder. The results of this model are on the
first row on Table 1, denoted by R-GCN. We introduce and compare the baseline against two
variants of our introduced eR-GCN model.

eR-GCN. The first experiment utilises the pre-calculated PE as an additional feature for
performing LP. The 𝛼 parameter remains trainable, allowing for further insights on the trade-off
between utilising and not utilising PE. We observe that that the eR-GCN the scaling factor
is relatively large, meaning that the potential energy is incorporated, and provides useful
information which the standard decoder cannot capture.

eR-GCN-MLP The second experiment employs an additional MLP to perform a regression
task over the PE. Intuitively, we would like to see whether the latent node representations
retain some original graph topological features, by trying to predict the PE from them. We
observe that the scaling factor becomes zero, meaning that it does not contribute positively to
the predictive power of the model and thus the information provided by the potential energy
was not captured in the embeddings which the R-GCN gave when trained with the DistMult
objective.

4. Related Work

eR-GCN and Link Prediction. Our encoder-decoder model approach to LP is based on
DistMult in the decoder [14], enhanced by the Potential Energy [11]. There is a plethora
of different approaches to perform LP, categorized in 4 large clusters i.e Similarity-based,
Probability-based, Dimensionality Reduction-based, and "other" [16]. Given the definition
in Kumar et al. [16], we can see that our eR-GCN approach is combining elements from both
the first and the third cluster (similarity and dimensionality reduction). Specifically, we utilise
embeddings (that fall under dimensionality reduction) and local similarity indices (that fall



under similarity-based). In addition to that, we employ Learning-based methodology (under
category other), since we train a neural network architecture to perform the task.

Enhancing Graph Neural Networks. In terms of our neural architecture, our eR-GCN is
closely related to the R-GCN by Kipf and Welling [12] and the underlying Message-Passing
mechanism behind it. Previous research on enhancing GNNs employed graph features in two
flavours; 1) by enhancing the GCNs directly with the use of topological graph features as done
in [17] with the use of specific graph motifs and 2) by incorporating topological graph informa-
tion in the embeddings creation process as in [18], where they employ an attention mechanism
to recognize positional and centrality qualities. However, to the best of our knowledge, none of
these directions considered investigating whether topological features of high-complexity such
as PE can be captured by an R-GCN and aid in the LP task.

5. Conclusion & Future Work

We have introduced the energized relational graph convolutional network (eR-GCN) and inves-
tigated the impact of employing Potential Energy between nodes as an enriching factor in LP.
Furthermore, our findings suggest that the vanilla R-GCN architecture cannot capture PE, at
least not when trained with a DistMult decoder. Moreover, enriching the factorization model
with the PE metric proved valuable for the link prediction task, yielding a small improvement
of the AUC-ROC over the R-GCN baseline.

There are several ways in which our work could be extended. First, we can probe into adding
more layers or residual connections to the R-GCN, aiming to increase its generalization power
towards topological graph features, such as the PE. Additionally, we would like to investigate if
the lack in ability for R-GCNs to capture PE, is true for other topological features of the graph.
Lastly, in order to solidify our findings further, it would be necessary to run more extensive
experimentation using a wider selection of datasets, to measure the effect of the properties of
the graph on the reported improvements. Finally, a detailed theoretical analysis of the GNN used
in our experiments could provide further insights on why the network is unable to capture the
Potential Energy. Besides, there might be other GNN architectures which can capture complex
topological features, such as PE, of the graph. Further investigation should be carried out to
determine whether this is only a restriction of the R-GCN specifically.
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