
Engineering Forensic-Ready Software Systems Using
Automated Logging
Fanny Rivera-Ortiz1,2

1University College Dublin, Belfield, Dublin 4, Dublin Ireland
2Lero, The SFI Software Research Centre, Ireland

Abstract
A forensic-ready software system can produce logs that represent potential evidence in digital forensic
investigations of potential security incidents. Logs can reveal the identity of offenders, what happened
during an incident and when and how the incident was performed. However, it is hard for developers to
implement security logging, especially in large software systems, because it requires identifying only the
relevant and necessary information to be logged to support a digital forensics investigation. Moreover,
developers might not have the security expertise to think in advance about potential security incidents
that can occur. Existing approaches in the software engineering community have mainly supported
logging to diagnose and fix either run-time or performance errors, without considering security logging.
Other research approaches have focused on engineering forensic-ready software systems, without
supporting the automated generation of security logs. The purpose of this PhD research is to assist
software developers to build forensic-ready software systems, which can implement logging functionality
to support digital investigations of potential security incidents. We propose a semi-automated approach
called Forensic-Ready Logger (FRL). Our approach help developers to elicit a set of potential software
misuse scenarios, expressed as annotated UML Sequence Diagrams. Such diagrams are subsequently
used to identify the exact location where logging instructions should be placed and the information
they should log. Finally, The Forensic-Ready Logger approach automatically injects logging instructions
within the software system.

We want to evaluate first the conclusion validity and the performance of the Forensic-Ready Logger
approach using a Computational Study where we will use a human resource management application
built from scratch and a third-party open-source software system. Second, We will also assess the
effectiveness of the Forensic-Ready Logger approach by using a Judgement study where we will seek
software practitioners to provide feedback on its usefulness and usability.

Keywords
forensic readiness, logs, security incidents, software systems,

1. Introduction

A forensic-ready software system can produce logs that represent potential evidence in digital
forensic investigations of potential security incidents. Logs can reveal the identity of offenders,
what happened during an incident, and when and how the incident was performed [1, 2, 3].

In: J. Fischbach, N. Condori-Fernández, J. Doerr, M. Ruiz, J.-P. Steghöfer, L. Pasquale, A. Zisman, R. Guizzardi, J.
Horkoff, A. Perini, A. Susi, M. Daneva, A. Herrmann, K. Schneider, P. Mennig, F. Dalpiaz, D. Dell’Anna, S. Kopczyńska, L.
Montgomery, A. G. Darby, and P. Sawyer (eds.): Joint Proceedings of REFSQ-2022 Workshops, Doctoral Symposium, and
Poster & Tools Track, Birmingham, UK, 21-03-2022, published at http://ceur-ws.org
$ fanny.riveraortiz@ucdconnect.ie (F. Rivera-Ortiz)
� 0000-0002-6853-6456 (F. Rivera-Ortiz)

© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:fanny.riveraortiz@ucdconnect.ie
https://orcid.org/0000-0002-6853-6456
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

Therefore, it is crucial to add logging mechanisms in software systems to collect valuable
information about security incidents that may occur. However, it is hard for developers to
implement security logging, especially in large software systems, because it requires identifying
only the relevant and necessary information to be logged to support digital investigations [1].
Additionally, developers might not have sufficient security expertise [1, 4] since they mainly
focus on implementing functional and performance requirements [5] or fixing bugs [1] during
their daily activities.

The purpose of this research is to help software developers to build forensic-ready software
systems, which can implement logging functionality to support digital forensics investiga-
tions. Hence, developers need to decide where to log, which are the locations where logging
statements should be placed, and what to log, which is the information to be recorded in the
logs [1]. In this Ph.D. research, we propose a semi-automated approach called Forensic-Ready
Logger (FRL)1. The Forensic-Ready Logger Approach helps developers elicit a set of potential
software misuse scenarios, expressed as annotated UML Sequence Diagrams. Such diagrams are
subsequently used to identify the exact location where logging instructions should be placed
and the information they should log. Finally, the Forensic-Ready Logger approach automatically
injects logging instructions within the software system implementation.

This research abstract is organised as follows. Section 2 presents previous research related to
Logging in the Software Engineering community. Section 3 addresses the research questions
that our work considers and describes the Forensic-Ready Logger approach. Section 4 discusses
the methodology and the evaluation we use, and Section 5 concludes.

2. Related Work

In the Literature review, we found that Logging has categories such as Information Systems
(Workflows), Databases, and Software Engineering. Our research focused on Logging into
Software Systems for Security purposes. Hence, our research does not consider the other two
categories.

Previous software engineering research has focused on understanding how developers imple-
ment logging in software systems. For example, Chen and Ming [6] conducted an empirical
study to understand which logging utilities are used by developers, how many logging utilities
on average are used inside software projects, and the reasons associated with the use of multiple
logging utilities in software systems (i.e., interaction between different logging utilities and for-
matting logging messages). Zhi et al. [7] conducted an empirical study with 10 open source and
industrial projects written in Java to understand the current practice of logging configurations.
Later, they presented 10 findings of logging configurations such as logging management, logging
storage, logging formatting, and logging-configuration quality. Finally, they implemented a
tool to detect invalid logs in logging configurations and reported these issues to developers.
Other work, instead, proposed tools to automate the implementation of logging mechanisms
to facilitate program comprehension, maintenance, and identify performance problems. For
example, Li et al. [8] analysed manually seven open-source software systems to identify the
placement of logging instructions. Based on this analysis, they propose a framework based on

1A Java-based implementation of the system is available publicly at https://github.com/friveraortiz/Projects.git

https://github.com/friveraortiz/Projects.git

deep learning to suggest logging locations at the block level. Then, Yao et al. [9] propose an
automated approach, Log4Perf, which uses a statistical performance model of a software system
to identify the locations that influence software performance. These represent the locations
where logging should be performed to identify performance problems. However, all these
approaches have not focused on analysing or facilitating security logging.

Researchers in the software engineering community have proposed approaches to guide
security logging. For example, William and King [3] performed an empirical study in four
open-source health care software systems to evaluate how logging practices can support the
detection of security incidents. Also, they proposed seven principles indicating at a high level
where and what information security logs should store (e.g., logs should indicate the action
performed by the human user in the system). Ohmori [10] suggests storing network and server
logs to detect a computer security incident. He defines the requirements for logging messages
that should be recorded from computer networks and servers and proposes a new logging
system architecture to support computer security incident response. However, these approaches
provide rather high-level guidelines on how security logging should be performed and do not
suggest exactly how logging statements should be implemented [11] by providing a tool to
implement in a software system.

Finally, another line of work has tried to incorporate satisfaction of forensic readiness require-
ments [12] in the software development life-cycle. These requirements refer to the capability of
software to collect and produce forensically sound evidence that is tamper-proof and admissible
in court. Daubner et al. [13] propose high-level and unproved guidelines to verify whether a
software system generates potential evidence and, thus, can be considered forensic-ready. Yu et
al. [14] provides an approach to collect evidence related to drone incidents that is forensically
sound and that could demonstrate whether the drone violated any regulations. Although this
research supports evidence collection to facilitate drone incidents investigations, such evidence
is only collected from physical sensors recording drone flight data. Alrajeh et al. [15] propose an
approach to represent evidence preservation requirements considering the preservation of the
minimal amount of data that would be relevant to a future digital investigation. This approach
automatically generates a software specification indicating how to store minimal and relevant
to investigate a security incident. However, it does not automate the implementation of logging
statements within software systems.

Therefore, more effort is required to propose the usage of logs for security inside Software
Systems[11] to provide information for forensic analysis to help answer who, what, when,
where, and how a security incident happened[3][2][11][1].

3. Research Direction

3.1. Research Questions

The purpose of this research is to help software developers to build forensic-ready software
systems, which can implement logging functionality to support digital forensics investigations.
To achieve this aim, we answer the following research questions:

1. RQ1: How can we elicit security logging requirements that can be traced to software
components and method invocations?

2. RQ2: How can we generate automatically logging instructions that comply with forensic-
ready software systems requirements, such as relevance and minimality?

To answer RQ1 we provide an approach to generate automatically a model of a security
incident by emulating the misuse of a software system. This model is represented as a sequence
diagram, where message exchanges have a direct mapping to method invocations. We also
allow annotating this model by specifying conditions that determine whether an incident is
occurring. To answer RQ2, we use the information provided in the incident model to identify
where logging should be implemented and which information should be logged. Finally, we
propose an approach to instrument the software system to inject the logging statements at
specific points of the software system implementation.

3.2. The Forensic-Ready Logger Approach

We propose a semi-automated approach named Forensic-Ready Logger(FRL) [1]2 to guide de-
velopers to implement logging statements inside software systems and to support organisations
in the detection and investigation of software misuses [11].

The kind of software misuses that our FRL approach considers are based on the STRIDE[16]
model. This is a model of threats that validates the application design. Some examples of threats
are spoofing identity, tampering with data, repudiation, information disclosure, the elevation
of privilege. Such software misuses are relevant to discover in a software system because
they provide accountability of bad behaviour conducted by personnel in the organisation
(e.g., Software Administrators, Managers, employees) or former employees that might have
permissions to software systems and could seek revenge against the organisation[17].

Figure 1: The Forensic-Ready Logger Approach

The Forensic-Ready Logger approach provides the following main functionalities:

2A Java-based implementation of the system is available publicly at https://github.com/friveraortiz/Projects.git

1.- Incident Modelling: We assume that a security engineer, who is the expert in security
inside the organisation, runs a software system usage scenario that emulates an incident of
interest.

The Security Engineer will decide which incidents are relevant to emulate based on previous
work conducted by a security team in the organisation. First, the security team elicits a set
of possible abuse cases[18] that describe the system’s behaviour under attack. These abuse
cases are related to possible software misuse scenarios. Second, the security team does a risk
analysis[18], where they rank the abuse cases based on the priority of mitigating such risk.
The Security Engineer will test the abuse cases using Penetration Testing[18, 19] to act as an
adversary user[20].

An example of a misuse scenario is an insider, a system administrator of a human resource
management system, exploits their privileges to impersonate a line manager and approve
their own travel request. This scenario represents a security incident because it violates an
organisation’s policy claiming that only a manager can authorise a travel request [1].

From the execution of a software misuse, we provide a technique to generate an incident
model, i.e. a UML sequence diagram that represents the steps of the security incident by
referring specifically to software system components (e.g., packages, classes, and methods) [1]
that relate to data changes without including the entire software behaviour[11]. The incident
model is generated by instrumenting the software system using Aspect-Oriented Programming
(AOP) [21]. This allow us to keep track of the sequence of method invocations that occur in a
system when an incident happen. Note that, instead of recording all the method invocations,
we consider only methods invocations leading to data access or modifications to the database.
This assumption is based on the following observations. First, one of the OWASP Top 10
vulnerabilities [22] is accessing and/or modifying sensitive information. Furthermore, King and
Williams [3, 23] and Chuvakin[2, 24] advice to insert logging statements related to data changes
(e.g., creation, modification, consultation, and destruction).

2.- Incident Annotation: During this stage, the Security Engineer annotates the UML se-
quence diagram including relevant information for logging. Such annotations include conditions
that should be satisfied when a specific method is executed to indicate that a security incident
is taking place. In our previous example, a user login should be recorded only when the role of
the user is a manager. This is important because it can indicate situations in which a malicious
actor is impersonating a manager. We allow expressing annotations on the value of the input
and output parameters of a specific method.

3.- Logging Generation: In this final stage, the Forensic-Ready Logger approach instruments
the software system to inject the logging statements in the locations and fields specified in the
previous stage. We use again AOP to inject such logging statements. This allows creating a log
statement every time a method that is part of the incident model and satisfies the condition
specified in the annotation is executed. The information that the log statement will contain to
answer the who, what, where, how the security incident happened inside the software system is
a) Information about the Operating System such as, name, current time, IP Address, Hostname,
and UserName (i.e., Mac OS X, 02/02/2022 01:42:51 PM GMT, 192.168.1.150, Bob-MacBook-
Pro.local, bobsmith); b) Information about the Method like, name, return type, return value
(i.e., model.TravelRequestDatabase.save, boolean, true); c) Information about the attribute
such as name, type (i.e., status, class model.Status, Approved). and d) Information about the

annotation type (i.e., Method, Parameter or Return Value).
Jørgen Bøegh[25] presents the ISO/IEC 9126 software quality model used by developers

and researchers, which describes the quality requirements for software (e.g., Functionality,
Reliability, Usability, Efficiency, Maintainability, Portability)[25]. Our research considers the
Efficiency and Usability quality requirements.

Our FRL approach can have two usages scenarios that can show the trade-offs between
enabling the capability of detecting security incidents in the software systems and these quality
requirements. The first scenario is, the Security Engineer selects manually the relevant methods
and necessary conditions to log to diagnose the security incident. Such a scenario impacts
Usability because there is required manual input from the Security Engineer. It also affects
efficiency in a positive way because the FRL approach will have a shortlist of methods and will
perform in less time. The second scenario is, all the methods are logged without any human
intervention. This scenario causes Usability that no manual input is required and it saves time
for the Security Engineer. About efficiency, it causes more overhead because more methods will
be included and it will require more time to perform our FRL approach.

Our Forensic-Ready Logger(FRL) approach is novel for two reasons. First, it generates a UML
Sequence Diagram automatically that presents the Incident Model, which includes the methods
invoked when the misuse scenario is replayed in the software system. We decided to use
such a Sequence diagram because we considered the work of Briand et al.[26], who suggested
reverse-engineering a Java Application by instrumenting the application using AspectJ[21].
However, such a diagram included the entire software system behavior and all components inside
the system. Labiche et al.[27] improved this approach by representing in the UML Sequence
Diagram the necessary components such as caller and callee objects, method signature, class
name, and line number of the call. We considered the work from Labiche et al.[27] and we
included in the UML Sequence Diagram the essential information about Java methods (e.g.,
caller, callee objects, method signature, class name)[11]. However, even with this consideration,
a software system can have a multitude of methods. Generating a UML sequence diagram that
includes all the method invocations that occurred during a security incident, might result in
an extremely extensive UML sequence diagram which can be extremely difficult for a security
engineer to understand the locations and the places to detect the security incident. To reduce
dramatically the number of methods included in the UML sequence diagram, we include only
the methods invoked when the misuse scenario is replayed in the software system. Furthermore,
these methods perform data access or changes in the database[1]. Hence, our Incident Model
represented as a UML Sequence Diagram provides an understandable and synthetic version of
the misuse scenario in the software system.

Second, our FRL approach provides a practical way to transform a software system into a
forensic-ready software system by generating and injecting logging instructions in the system
implementation. The logs generated by the Forensic-Ready Logger approach provide potential
evidence to demonstrate how a security incident related to software misuse took place [11].

4. Evaluation

To evaluate our Forensic-Ready Logger approach, we are using a mixed-method. First, we
evaluate the technical part of the Forensic-Ready Logger (FRL) approach. We will assess
the conclusion validity[28] of the FRL approach by verifying whether it can log data that is
relevant[12] to an incident and avoid collecting unnecessary data (minimality[12]). To assess
relevance will evaluate if the Forensic-Ready Logger (FRL) approach creates automatically
a UML Sequence Diagram that contains the actors, packages, classes, and methods that are
called when a Security Incident occurs in the software system. We will assess whether the
Forensic-Ready Logger (FRL) approach includes logging instructions that generate a log that
contains information to detect when and how a security incident of interest occurs. We will
also evaluate the performance of the Forensic-Ready Logger (FRL) approach to generate
an incident model and the logging instruction. To assess the external validity[28], we will
conduct a computational study[29] using Java Systems, a Human Resource Management System
implemented from scratch3 and a large scale open-source system available publicly, such
as OpenHospital4. Once we have finished evaluating the technical part, we will seek the
participation of Software Engineers to assess the effectiveness of the Forensic-Ready Logger
(FRL) approach by performing a judgement study[29] where we will ask them to use the
Forensic-Ready Logger approach to provide feedback on its usefulness and usability[25]. The
elements that the software engineers will evaluate in our FRL approach are, First, the practicality
of our approach to generating the misuse scenarios in the Incident Model, they will assess how
useful it is such model to detect the security incident that could happen in the Software System.
Second, is the practice of annotating the Incident Model, where they will assess the common
mistakes that happen while annotating such Model. Third, the format of the generated logs that
diagnose security incidents, where developers will evaluate if such format is understandable to
detect security incidents inside the software system.

5. Conclusion

To detect security incidents, software systems need to be prepared in advance. Hence, this
research presents how to transform software systems into forensic-ready software systems. Such
systems can generate logs that detect and diagnose potential security incidents. Furthermore,
this research contributes with a practical tool for software developers to implement security
incidents in Software Systems. To the best of our knowledge, this is one of the first approaches
to propose the automated generation of logging instructions that can cover relevant security
incidents [11]. We have completed the development of the Forensic-Ready Logger(FRL)
approach. Our next step is to create more attack scenarios that could happen in the Human
Resource Management Software System (HRM) and test them using our FRL approach. After
that, we will evaluate our Forensic-Ready Logger approach in a more complex Java Software
System using several attack scenarios, and finally, we will conduct a Case Study where we will
seek the participation of software developers to evaluate the practicality and usefulness of our

3A Java-based implementation of the system is available publicly at https://github.com/friveraortiz/Projects.git
4A Java-based open-source system https://github.com/informatici/openhospital

Forensic-Ready Logger approach.

Acknowledgments

This work was partially supported by Science Foundation Ireland grants 13/RC/2094_P2 and
15/SIRG/3501.

References

[1] F. Rivera-Ortiz, L. Pasquale, Automated modelling of security incidents to represent logging
requirements in software systems, in: Proceedings of the 15th International Conference
on Availability, Reliability and Security (ARES 2020), ACM, Virtual Event, Ireland, 2019,
pp. 1–8.

[2] A. Chuvakin, K. Schmidt, C. Phillips, Logging and Log Management. The Authoritative
Guide to Understanding the Concepts Surrounding Logging and Log Management., Syn-
gress, United States of America, 2013.

[3] J. King, L. Williams, Log your crud: Design principles for software logging mechanisms, in:
Proceedings of the 2014 Symposium and Bootcamp on the Science of Security (HotSos’14),
ACM, Raleigh, North Carolina, USA, 2014, pp. 1–10.

[4] H. Assal, S. Chiasson, “think secure from the beginning”: A survey with software devel-
opers, in: Proceedings of the 2019 Conference on Human Factors in Computing Systems
(CHI’19), ACM, Glasgow, Scotland, UK, 2019, pp. 1–13.

[5] D. Oliveira, M. Rosenthal, N. Morin†, K.-C. Yeh, J. Cappos, Y. Zhuang, It’s the psychology
stupid: How heuristics explain software vulnerabilities and how priming can illuminate
developer’s blind spots, in: Proceedings of the 30th Annual Computer Security Applications
Conference (ACSAC’14), ACM, New Orleans, Louisiana, USA, 2014, pp. 296–305.

[6] B. Chen, Z. M. J. Jiang, Studying the use of java logging utilities in the wild, in: Proceedings
of the 42nd International Conference on Software Engineering (ICSE ’20), ACM, Seoul,
Republic of Korea, 2020, pp. 1–12.

[7] C. Zhi, J. Yin, S. Deng, Y. Maoxin, F. Min, T. Xie, An exploratory study of logging
configuration practice in java, in: Proceedings of the 35th IEEE International Conference
on Software Maintenance and Evolution (ICSME’19), IEEE, Cleveland, Ohio, USA, 2019,
pp. 1–11.

[8] Z. Li, T.-H. P. Chen, W. Shang, Where shall we log? studying and suggesting logging
locations in code blocks, in: Proceedings of the 35th IEEE/ACM International Conference
on Automated Software Engineering (ASE ’20), ACM, Virtual Event, Australia, 2020, pp.
1–12.

[9] K. Yao, G. B. de Pádua, W. Shang, S. Sporea, A. Toma, S. Sajedi, Log4perf: Suggesting
logging locations for web-based systems’ performance monitoring, in: Proceedings of the
9th ACM/SPEC International Conference on Performance Engineering (ICPE 2018), ACM,
Berlin, Germany, 2018, pp. 127–138.

[10] M. Ohmori, A design of a logging system for a computer security incident response, IPSJ
SIG Technical Reports 46 (2019) 1–6.

[11] F. Rivera-Ortiz, L. Pasquale, Towards automated logging for forensic-ready software
systems, in: Proceedings of the 6th International Workshop on Evolving Secuirty and
Privacy Requirements Engineering (ESPRE’19), IEEE, Jeju Island, South Korea, 2019, pp.
1–7.

[12] L. Pasquale, D. Alrajeh, C. Peersman, T. Tun, B. Nuseibeh, A. Rashid, Towards forensic-
ready software systems, in: In Proceedings of the 40th International Conference on
Software Engineering (ICSE’18), ACM, Gothenburg, Sweden, 2018, pp. 1–4.

[13] L. Daubner, M. Macak, B. Buhnova, T. Pitner, Towards verifiable evidence generation in
forensic-ready systems, in: Proceedings of the 2020 International Conference on Big Data
(Big Data’20), IEEE, Virtual Event, USA, 2020, pp. 2264–2269.

[14] Y. Yu, D. Barthaud, B. A. Price, A. K. Bandara, A. Zisman, B. Nuseibeh, Livebox: A
self-adaptive forensic-ready service for drones, IEEE Access 7 (2019) 148401–148412.

[15] D. Alrajeh, L. Pasquale, B. Nuseibeh, On evidence preservation requirements for forensic-
ready systems, in: Proceeding of 11th Joint Meeting of the European Software Engineering
Conference and the ACM SIGSOFT Symposium on the Foundations of Software Engineer-
ing (ESEC/FSE’17), ACM, Paderborn, Germany, 2017, pp. 559–569.

[16] A. Hewko, Stride threat modelling: What you need to know, 2022. URL: https://www.
softwaresecured.com/stride-threat-modeling/.

[17] FBI, Medical equipment packaging company hacker sentenced, 2021. URL: https://www.
fbi.gov/news/stories/hacker-who-disrupted-ppe-shipments-sentenced-010621.

[18] G. McGraw, Software security, IEEE Security & Privacy 2 (2004) 80–83.
[19] B. Arkin, S. Stender, G. McGraw, Software penetration testing, IEEE Security & Privacy 3

(2005) 84–87.
[20] N. C. S. Centre, Penetration testing, 2017. URL: https://www.ncsc.gov.uk/guidance/

penetration-testing.
[21] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.-M. Loingtier, J. Irwin,

Aspect-oriented programming, in: Proceedings of the 11th European Conference on
Object-Oriented Programming (ECOOP’97), ACM, Jyväskylä, Finland, 1997, pp. 1–25.

[22] OWASP, Owasp top 10-2021, 2021. URL: https://owasp.org/Top10/
#welcome-to-the-owasp-top-10-2021.

[23] J. King, R. Pandita, L. Williams, Enabling forensics by proposing heuristics to identify
mandatory log events, in: Proceedings of the 2015 Symposium and Bootcamp on the
Science of Security (HotSoS’15), ACM, Urbana, Illinois, USA, 2015, pp. 1–10.

[24] A. Chuvakin, G. Petterson, How to do application logging right, IEEE Security and Privacy
8 (2010) 82–85.

[25] J. Bøegh (????).
[26] L. C. Briand, Y. Labiche, J. Leduc, Toward the reverse engineering of uml sequence

diagrams for distributed java software, IEEE Transactions on Software Engineering 32
(2006) 642–663.

[27] Y. Labiche, B. Kolbah, H. Mehrfard, Combining static and dynamic analyses to reverse-
engineer scenario diagrams, in: 2013 IEEE International Conference on Software Mainte-
nance, IEEE, 2013, pp. 130–139.

[28] R. Feldt, A. Magazinius, Validity threats in empirical software engineering research -
an initial survey, in: Proceedings of the 22nd International Conference on Software

https://www.softwaresecured.com/stride-threat-modeling/
https://www.softwaresecured.com/stride-threat-modeling/
https://www.fbi.gov/news/stories/hacker-who-disrupted-ppe-shipments-sentenced-010621
https://www.fbi.gov/news/stories/hacker-who-disrupted-ppe-shipments-sentenced-010621
https://www.ncsc.gov.uk/guidance/penetration-testing
https://www.ncsc.gov.uk/guidance/penetration-testing
https://owasp.org/Top10/#welcome-to-the-owasp-top-10-2021
https://owasp.org/Top10/#welcome-to-the-owasp-top-10-2021

Engineering and Knowledge Engineering (SEKE’10), ACM, Redwood City, San Francisco
Bay, USA, 2010, pp. 1–6.

[29] C. Williams, M.-A. Storey, N. A. Ernst, A. Zagalsky, E. Kalliamvakou, Methodology matters:
How we study socio-technical aspects in software engineering, ACM Transactions on
Software Engineering and Methodology 37 (2019) 1–22.

	1 Introduction
	2 Related Work
	3 Research Direction
	3.1 Research Questions
	3.2 The Forensic-Ready Logger Approach

	4 Evaluation
	5 Conclusion

