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Abstract
This paper introduces a hardware software ontology from the microelectronics domain that suffers
from the reasoning runtime bottleneck. We present it in detail, with a focus on the axioms related to
reasoning. Further we explain the application in the GENIAL! project and make a runtime analysis of
current reasoners on the ontology. We report a high runtime on a relatively small ontology, identify the
reason and sketch (potential) solutions.
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1. Introduction

A 2020 study by Acatech1 showed that the manufacturing industry is still lagging behind
expectations in the design of systematic transformation programs. A survey by the Industry 4.0
Maturity Center came to the following conclusion: eighty percent of the companies surveyed
have reached the second of six development stages toward Industry 4.0. The study shows a
lack of standardization and a lack of implementation of technological concepts. One concept
in this context is ontologies. Since real-world ontologies have a high degree of complexity,
reasoners often fail here in live applications, making it impossible to work comfortably on the
ontologies. Reasoning performance and tasks are significant bottlenecks for the breakthrough
of semantic technologies and applications at a large scale. For ontologies that are applied and
currently developed, for example for the IoT, reasoning is minimal or absent. In these cases,
a domain description contains axioms mostly as a conceptualization of the domain, and that
conceptualization then serves as a way to enable interoperability by opening up the data silos
and serve as common semantic API. In this sense ontologies can also be useful without needing
to use reasoning capabilities. An application is for example defining just the semantics to
use them in e.g. triple stores. However, they then do not realize their potential and complete
purpose.
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This paper intends to contribute to the Reasoner Community by providing a real world needs
ontology ”in the hopes of directing reasoner developer attention to real user performance needs”
(as stated in [1]). These cases are still rare, and are even less available online. And to support to
reduce the hen and egg problem, mentioned in the SEMantic Reasoner Evaluation Challenge
(SemREC) of 2021. Namely, that few real world ontologies are built, because reasoners are slow
and hence, there are few examples to use to train and advance reasoner performance. We also
seek solutions enabling the further building and realization of our application.
In this paper we describe an ontology for the microelectronics domain, called GBO (GENIAL!
Basic Ontology) and a Hardware Software Domain Ontology, its parts related to reasoning
and its application. Thus far, there has not been a consistent description of microelectronic
systems, components, their context, properties, dependencies and functions. We introduce
the current status of our ontology in detail. We explain how it is used in the context of our
project and elaborate on the performance of the current reasoners. We further analyze possible
improvements and workarounds. The paper is outlined as follows: In section 2 we give a brief
summary of related ontologies and their reasoning aspects. In section 3, we extensively describe
the ontology and its axioms related to reasoning. Further, we outline the profile and metrics of
the ontology. In section 4 we show and evaluate the performance for a starting point of the
evaluation challenge and depict solutions. Section 5 concludes and mentions future work.

2. State of the art

Awide variety of reasoners can be used for the process of reasoning when checking and merging
ontologies—the three best known and most widely used reasoners for protégé are FaCT++,
Pellet, and HermiT and are used in this paper for evaluation.
In a 2006 paper by Tsarkov and Horrocks [2], FaCT++ was presented as a description logic
reasoner that implemented a Tableaux decision procedure for the well-known SHOIQ description
logic. The reasoner has a standard DIG interface so that reasoning services can be provided to
ontology engineering tools. The focus of this reasoner is on reducing the number of subsumption
tests during the classification.
Sirin [3] presented the reasoner Pellet in 2007, which, on the other hand, is characterized by
its complete reasoning. The reasoner is called the complete OWL-DL reasoner by the authors.
Pellet was created with most of the state-of-the-art optimization techniques provided in the
DL literature. These functions include normalization, simplification, absorption, semantic
branching, back jumping, caching satisfaction status, top-bottom search for classification, and
model merging.
The reasoner HermiT was developed by Glimm and introduced in 2014 as a new type of reasoner
fully compliant with OWL 2 Direct Semantics [4]. This reasoner is based on the Hypertebleau
calculus, supports standards and optimizations that improve the performance of ontology
inference. HermiT also supports several functions outside of the OWL 2 standard. Examples of
this are SPARQL queries and description graphs.
In a recent paper Glimm [5] uses parallelisation and an individual derivation cache approach
to significantly improve ABox reasoning performance. Recent advances in machine learning
foster their application to description logic-based reasoners. A recent contribution by Singh



and Mutharaju[6] that combines an ontology-based embedding model with reinforcement
learning shows promising results. They are further working on combining approximation
and concurrency to increase runtime for dedicated purposes and on distributed reasoning. In
[7] the authors made an analysis on why the reasoning is so costly, applied machine learning
techniques and could outperform existing reasoners.
Digital Reference (DR)2 [8] is a neighbouring ontology describing terms for the semiconductor
supply chain. It serves rather as a light structured vocabulary with fewer, but some axioms
used for reasoning (often equivalent classes). It contains a larger axiom count (around 7,000
in 2021) than this ontology and had a reasoning time of 15 seconds with pellet full reasoning
on the MacBook Air machine that is used in the evaluation in section 4. In comparison with
Digital Reference, our basic ontology intended to capture the domain of hardware and its parts
with a consistent domain description and application of consistency checking of definitions,
whereas DR is rather a reference for relevant terms.
A major development is the deployment of ontologies in IoT infrastructures in the context of the
Horizon2020 programs. One such project VICINITY [9] enabled bottom-up interoperability as a
service in the internet of things domain for smart neighbourhoods. Its ontology34 has significant
overlap with this ontology and has slight differences in conceptualization (e.g. System, Device,
PhysicalThing and Sensor). However, reasoning did not play a significant role.
The ontology of units of measure and related concepts[10] consumes a high amount of reasoning
time, which made us not import this ontology. Checking for right units allocation for example
seems a useful benefit, but since it was not practical, we just adopted the conceptualization of
quantity, measure and unit to consistently describe our properties and constraints.
The SSN ontology [11] is a small ontology that does not suffer from long reasoning. In this
regard, the ontology in this paper is one of the few examples for a reasoning bottleneck in our
domain.
Our ontology includes a top level approach with some mediating middle-level classes and is
a good candidate for further integration of neighbouring ontologies. Recent developments
in modularization approaches that can lessen load on reasoning are for example MODDALS
[12]. The identification of knowledge areas and their proper partitioning into common domain,
domain-variant, domain-task and application layer supports a high degree of reuse and use
ability.

3. Hardware Software Domain Ontology

3.1. Application

3.1.1. In Context of the Projects

In the context of the GENIAL! project, GBO was introduced to facilitate the development of
microelectronic components (and innovations related to automotive and electronics in general)
across the automotive value chain. We create a tool that helps the value chain coordinate, evalu-
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ate and explore architectures, performances, and innovations. These functions are accomplished
by an exchange of models and interdependencies throughout OEM, Tier1, and Tier2.The tool
checks the constraints, does consistency checking in the form of formulas, and then allows
to further make estimations based on roadmap defined predictions. We formulate constraints
as boolean or arithmetic formulas described in a self developed language called APPEL [13].
This allows (1) constraints to be linked to the knowledge base and (2) easy to understand and
use descriptions and (3) a practical way to explore changing constraints and ranges. The tool
consists of

• Frontend (to interactively explore the model and its constraints, visualizations, user
management)

• Backend (ArangoDB database intertwined with OWL and APPEL)
• jAADD library (For symbolic computation of constraints, which saves all dependencies
among variables and constraints)

For doing the exchange, we also need a consistent description of our models that is common
to all participants along the value chain. In this sense, GBO is imported as top level across a
distributed architecture for every participant using our tool. This supports computer assisted
tasks, like for example the application of rules, the exchange of models or simply good data
quality.
In the Arrowhead Tools project, we create system-of-systems (SoS) interoperability along with
the SoS toolchain. Targeting for the first time tools, rather than devices or other specific domain
descriptions. There, candidate ontologies are currently evaluated in the Industry 4.0 domain and
ours helps integrate the domains. The ontologies are linked with other languages like SysML to
integrate the SoS domain, like in [14].

3.1.2. In Context of Ontologies

GBO5 was designed to yield a consistent description based on a well-established standard called
ISO26262. It is a standard in safety to describe related terms in the context of automotive and
functional safety of microelectronics. Moreover, the Hardware Software Ontology contains the
vocabulary that GBO controls with its axioms. When there is not a reasoner error, all terms are
adhered to and they are correctly classified through the standard (because we often use strict
universal restrictions).
In the project, we develop several ontologies in microelectronics. Usually we refer to their
application in car innovation and they are related to roadmap models, that for example include
battery density and price predictions. Further a neural net accelerator knowledge base we use,
also has increased reasoning time by applying transitive and inverse hasParts relations, but is
just yet acceptable in runtime. The repositories to download the ontologies can be found on
github with a saved status for the reasoner challenge and an introduction of GBO can be found
on a website. The links are provided in the appendix of the online resources at the end of the
paper.

5http://w3id.org/gbo



3.2. GENIAL! Basic Ontology

The GENIAL! Basic Ontology is based on BFO (Basic Formal Ontology). BFO is a widely used
top-level ontology that is meant to facilitate interoperability between ontologies. It contains
classes to model for example objects, functions and qualities. Its basic definitions supported
a clearer classification and structuring of basic terms in our ontology and its basic axioms
support reasoning with disjoint axioms. The upper part of figure 1 shows the BFO part of
the continuant in GBO. Some basic terms in GBO that for example are used to define a GBO
controller and that can also be found in figure 1, among others, are: element, non system level
element, system level element, function, property, software element (software), hardware element
(hardware), processor, system, hardware part, software unit, hardware elementary subpart, hard-
ware subpart, unit, measure, quantity, sensor, actuator, operating time, component, hardware
component, software component, controller, dependency and context. Hardware component and
hardware part for example are connected with a hierarchical has part directly relationship and a
cardinality restriction (hardware part is the next hierarchical level). We use has part directly as
non-transitive in order to reason with existential restrictions. Defining an existential restriction
with the transitive has part produces an error. The function term is defined twice, once in BFO
and once again more precisely in GBO for our scope. All terms in GBO are labeled terms and
Webprotege just displays some with underscore and some not.

Figure 1: Explicit Definition of a GBO Controller with its Superclasses and Relationships



The ISO terms were formalized according to their definitions. It structures the hardware (and
software) in five (three) stratified decomposition levels from system to hardware elementary
subpart. Terms are linked with object properties:

• has part directly / part of directly (elements and others), has part / part of (elements and
others)

• implements / is implemented by (functions), executes / is executed by (HW / SW)
• has property (properties), depends on (dependencies, constraints)
• has value (measures, concrete values), has unit (for units)

3.2.1. Reasoning Axioms

Figure 2: Small Collection of GBO Axioms

We used a breadth of reasoning constructs together in this ontology, when seen as appropriate
to use. Some of which are illustrated in the following:

• Equivalent Classes, Existential and Universal Restrictions, Cardinality Restrictions, Logical
Operations (Figure 2 a)

• Covering Axioms, Disjointedness (Figure 2 b), Domain and Range Axioms (Figure 2 d)
• Nested Restrictions (Figure 2 c), Transitivity, Symmetry and Inverse Relations (Figure 2 d)

Figure 2 a shows the definition of hardware component, figure 2 b disjointedness of hardware
component, figure 2 c the property definition and figure 2 d the is executed by definition.

In GBO, we did not make use of property chains and rules. It was observed that the definitions
provided by ISO26262 were well organised and included knowledge of ontology principles.
Thus far, it did not create problems with the reasoner (in terms of incorrect definitions and
conceptualizations), when building the library at this point. Although the creators certainly did
not create an OWL file and check this against real definitions in a formal model.



Figure 3: Excerpt from the Filter Domain from Hardware Ontology

3.3. Microelectronics Domain Ontology

So far the ontology consists of

• a neural net accelerator use case from processor experts. It describes its components,
functions and its properties and allocates software components or software units to the
processor on which they are executed

• components of a simulation library of cyber-physical systems (with a years long back-
ground in high level HW/SW co-design, power profiling and verification)

• wikipedia and expert articles

Which we then divide into application specific and common terms. Figure 3 shows an excerpt
of the hardware domain with a few filter classes. It can be noted, that the filter system here,
actually is a component which is disjoint to a system. But since that is an ISO definition with a
namespace, there is no contraction. It just shows, that different parties use different words for
the same thing. The figure illustrates the use of the has parts, implements and has property
relations to yield the formal definitions of our parts. GBO is inherited and controls, if the digital
filter system really is a component. By for example requiring, that an analog to digital converter
(ADC) is a hardware part. Also a component is something which consists of both, hardware
and software and is part of a system.



Figure 4: Excerpt from Hardware Parts, Hardware Subparts and Software from HW / SW Ontology

Figure 4 shows further classification of hardware parts, hardware subparts, and software ele-
ments, in order to illustrate parts of the ontology. Functions, properties and more parts are
omitted due to reasons of space. Sometimes definitions and definition sources are provided. But
already the size is large enough so that the ontology is difficult to be maintained for a single
person. Reasoning axioms were kept minimal for the neural net use case. And the classifications
are just basic enough for working with a handful of hardware experts and for one use case.
We see various memories, processors, electronic components, functional units, memory access
units and more parts that are relevant for processors. The software components are used for
keyword spotting and voice activity control of the neural net on a cnn accelerator.

3.4. Ontology Profile

Figure 5 shows the metrics and profile of our ontology. According to official classifications, it
is a rather small to medium ontology. It was designed in a minimal fashion, with few object
properties and data properties. We made more use of appropriate annotations, especially in
GBO, in order to give usage examples, references, the ISO definitions and labels. And tried to
avoid axioms that do not yield actual benefit in application.



Figure 5: Ontology Profile and Metrics of HW / SW Ontology

4. Reasoning with the Ontology

4.1. Performance

Compared to other ontologies, the reasoning runtime was quite high for the size of the ontology.
Table 1 shows the machines on which we tested the ontology, as well as the runtime of Pellet,
HermiT, and FaCT. The only reasoner that had a more or less acceptable runtime was FaCT.
But still too slow when further axioms are added. Other reasoners (jcel, ontop, ELK) were not
able to handle the ontology at all. Likely because of its expressiveness. The HermiT reasoner
performed better than Pellet, but it is still too slow to enable active work with a running reasoner
on the ontology.
Table 1 clearly shows that commercially available computers, which can also be found in the
work-related environment of the industry, have problems with the ontology. The evaluations
showed that even computers with high computing power have problems running the reasoners,
and none of the reasoners can show a satisfactory runtime. Even the well-equipped Fujitsu
ESPRIMO P956 showed a very high CPU utilization of 90 percentage at times during the
execution of the Pellet Reasoner, whereby the utilization was at 16 percentage most of the
time. Memory usage was not maxed out. On average, the CPU utilization was between 16-60
percentage for all computers and the Reasoner application. The table shows that computing
power and memory alone are not the critical factor, but it hints at other bottlenecks.



Table 1
Machines and Reasoner Performance

Machine Reasoner Runtimea
Configuration Pellet HermiT 1.4.3.456 FaCT++ 1.6.5

MacBook Air, 8GB Memory
Intel i7 1,7 GHz, 2 cores, 4MB L3-Cache >15 min 3 min 50 sec

20 sec
-

1 min 15 sec

Fujitsu Lifebook, 16GB Memory
Intel i5 1,7 GHz, 4 cores, 6MB L3-Cache >15 min 2 min 33 sec

40 sec
-

1 min 20 sec

Lenovo Y50, 8GB Memory
Intel i7 2,6 GHz, 4 cores, 6MB L3-Cache >15 min

8 min
-

13 min 10 sec

2 min 40 sec
-

3 min 10 sec
Lenovo LNVNB161216, 8GB Memory

AMD A9 2,9 GHz, 2 cores, 2MB L2-Cache >15 min >15 min 2 min 26 sec

Fujitsu ESPRIMO P956, 32GB Memory
Intel i7 3,4 GHz, 4 cores, 8MB L3-Cache >15 min 2 min 30 sec 40 sec

aFull Reasoning/Inference.

4.2. Approaches for Performance Resolutions

4.2.1. Modularization

To simplify the reasoning, we thought of modularizing each part. But, if a certain specialization
of a filter system is having a specific ADC, both ontologies (of filters and ADC types) must be
imported for one specific reasoning task. Which might proof difficult for large scale usage and
if ontologies are very intertwined.

4.2.2. Outsourcing of Reasoning-Process

Another performance resolution could be outsourcing the reasoning process to a data center that
could perform the reasoning via a web service even with more complex ontologies. However,
the question arises, if industries are willing to map their sensitive data in an ontology to be
processed on another server. Such a concept can also be suitable for supply networks within an
industry through a merger of OEMs and 1-tier suppliers.

4.2.3. Removing Axioms

Removing the definition of component resolved the reasoning time for HermiT and FaCT.
Hermit (4 sec) even outperformed FaCT (6 sec) on the first machine after this change. However
Pellet was still suffering from long reasoning (aborted after 3 min). The definition of component
did not cause reasoning issues for just GBO. Nesting the definition with brackets or removing
equivalent object properties (comprised of equivalent to has parts directly) also was not the
problem and the formal definition was correct. In fact, the analysis showed that the axiom
”component part of directly some system” (see figure 1) was the reasoning issue. We can consider,



although contained in the ISO definition and correct, abstaining from using the axiom in this
case, since the reasoning time is not worth it (which is suboptimal). But we also suggest that in
theory handling this axiom can be improved by future reasoners.

5. Conclusion and Future Work

The authors see five major bottlenecks for the advancement of semantic web technologies.
Those are (1) reasoner performance has to be improved in the order of magnitudes. (2) automatic
construction of knowledge bases and harnessing the amount of information/data we have. (3)
the willingness and approaches to share ones own and interact with others data. (4) complexity
management and (5) quality of ontologies and their unification. This paper faced the challenge
of point (1). It presented the GENIAL! Basic Ontology (GBO) to describe basic parts of hardware
and software and related information. GBO was applied to a HW / SW Ontology Library that
created reasoning issues. We outlined some of its axioms in detail. Finally, we elaborated on
the performance runtime of some well-known and prevalent reasoners on our ontologies.
In future works, we will further look to workarounds and build reasoner test cases that allow to
check, if we actually modelled what we wanted to with a more consistent methodology and
library. Instead of just using it for consistency checking of our definitions, we want to infer
new knowledge and apply rules from expert systems, which will further strain the reasoner.
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