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Abstract
CaLiGraph is a large-scale cross-domain knowledge graph generated from Wikipedia by exploiting the
category system, list pages, and other list structures in Wikipedia, containing more than 15 million typed
entities and around 10 million relation assertions. Other than knowledge graphs such as DBpedia and
YAGO, whose ontologies are comparably simplistic, CaLiGraph also has a rich ontology, comprising
more than 200,000 class restrictions. Those two properties – a large A-box and a rich ontology –
make it an interesting challenge for benchmarking reasoners. In this paper, we show that a reasoning
task which is particularly relevant for CaLiGraph, i.e., the materialization of owl:hasValue constraints
into assertions between individuals and between individuals and literals, is insufficiently supported by
available reasoning systems. We provide differently sized benchmark subsets of CaLiGraph, which can
be used for performance analysis of reasoning systems.
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1. Introduction

In the recent decade, open cross-domain knowledge graphs have been recognized as an interest-
ing ingredient to build intelligent systems. This gave rise to the development of various open
knowledge graphs, such as DBpedia [1], YAGO [2], and Wikidata [3]. While those knowledge
graphs come with large-scale A-boxes comprising millions of entities, their T-boxes are usually
not very expressive, defining mainly a class hierarchy and relations with domains and ranges,
but not using complex class constructors [4].
CaLiGraph is a comparatively new knowledge graph, which is constructed from categories,

list pages, and other lists in Wikipedia. It uses DBpedia as a training set to derive interpretations
of lists and categories [5]. This allows to extract more entities from list pages [6] and other
listings [7], making the A-box comprise more than twice as many entities as DBpedia. At the
same time, the definitions of the derived classes are also maintained in the T-box, making it
more expressive than the ontologies of other knowledge graphs.
With those characteristics, CaLiGraph creates some interesting tasks to reasoners, since it

requires the materialization of individual and literal assertions, and, at the same time, poses
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Figure 1: Example of a Category in Wikipedia

high scalability requirements when asking a reasoner to materialize 10 million A-box assertions.
Since those requirements are hardly met by currently available reasoners, the materialization of
the CaLiGraph A-box is carried out by custom code, not by running a reasoner, albeit being a
standard materialization task which an OWL2 EL reasoner should be capable of performing.

In this paper, we report on experiments with three reasoning systems on the materialization
of CaLiGraph. Furthermore, we introduce differently sized subsets of CaLiGraph, which allow
for performing scalability experiments.
The rest of this paper is structured as follows. Section 2 gives a short introduction into

CaLiGraph. In section 3, we describe a set of experiments we conducted to investigate the
fitness of existing reasoners for processing CaLiGraph. We close with a short summary and an
outlook on future work.

2. The CaLiGraph Ontology

As described above, CaLiGraph processes categories and list pages in Wikipedia, and derives
classes and instances from those. For example, when processing the Wikipedia category
Swedish Rock Musicians ,1 shown in Fig. 1, it will create a class clgo:Swedish_rock_musician ,2

1https://en.wikipedia.org/wiki/Category:Swedish_rock_musicians
2The following name space conventions are used throughout this paper:

clgo=http://caligraph.org/ontology/
clgr=http://caligraph.org/resource/

https://en.wikipedia.org/wiki/Category:Swedish_rock_musicians


and heuristically assign the following subclass axioms to it:

clgo:Swedish_rock_musician
a owl:Class ;
rdfs:subClassOf

clgo:Rock_musician ,
clgo:Swedish_musician ,
[
a owl:Restriction ;
owl:onProperty clgo:birthPlace ;
owl:hasValue clgr:Sweden

] ,
[
a owl:Restriction ;
owl:onProperty clgo:genre ;
owl:hasValue clgr:Rock_music

] ,
[
a owl:Restriction ;
owl:onProperty clgo:occupation ;
owl:hasValue clgr:Musician

] .

clgo:Swedish_rock_guitarist rdfs:subClassOf clgo:Swedish_rock_musician .
clgo:Swedish_rock_singer rdfs:subClassOf clgo:Swedish_rock_musician .

The subclass axioms are derived from the subcategory relations in Wikipedia, the restrictions
are created using a mix of statistic and textual heuristics [5, 6].
As shown in this example, restrictions using owl:hasValue are quite frequently used in

CaLiGraph. Overall, the current release has more than 200,000 of such restrictions, most of
them using a resource as their object, but some also using literals (e.g., restrictions on birth
years).

When populating the A-box, CaLiGraph creates entities forWikipedia pages, as well as entities
found on list pages. The only axioms created for those entities are the class memberships for
the classes derived from the corresponding categories and list pages; the remaining axioms
are materialized according to the class definitions. In the example above, given that the entity
Dennis Lyxzén is found in the category Swedish rock singers (which is a subcategory of the
above mentioned Swedish rock musicians , CaLiGraph will produce the following axiom:

clgr:Dennis_Lyxzén a clgo:Swedish_rock_singer .

Given the T-box above, the derived axioms according to the definition above should include:

clgr:Dennis_Lyxzén a clgo:Swedish_rock_musician .



No. of classes 1,061,598
No. of relations 338
No. of subclass assertions 1,711,270
No. of restrictions
...with individuals 214,248
...with literals 12,925
No. of classes with direct restrictions 223,552
No. of classes with direct or inherited restrictions 488,364
No. of instances 14,452,393
No. of direct type assertions 50,169,052
No. of transitive type assertions 138,713,499
No. of relation assertions
...with individuals 9,637,354
...with literals 969,022

Table 1
Statistics of the CaLiGraph ontology

clgr:Dennis_Lyxzén a clgo:Rock_musician .
clgr:Dennis_Lyxzén a clgo:Swedish_musician .
clgr:Dennis_Lyxzén clgo:birthPlace clgr:Sweden .
clgr:Dennis_Lyxzén clgo:genre clgr:Rock_music .
clgr:Dennis_Lyxzén clgo:occupation clgr:Musician .

The first three axioms are obtained by materializing the subclass relations, the latter three
by materializing the restrictions based on owl:hasValue . Note that the example only depicts a
subset of the information on the instance clgr:Dennis_Lyxzén in CaLiGraph, which also contains
information on his birthplace and birth year.3

While CaLiGraph uses a custom implementation to materialize those A-box axioms, this is a
task which should, in principle, be possible to carry out for an OWL DL reasoner. Moreover,
since restrictions with owl:hasValue are possible in OWL2 EL andOWL2 RL [8], wewould expect
that reasoners supporting those fragments should be capable of carrying out that materialization
as well [9].
The characteristics of the most recent version 2.1.0 of CaLiGraph are shown in table 1. The

table shows that a reasoner, provided with the 14 million individuals and their 50M direct type
assertions, should in principle be able to derive 139M transitive type relations, as well as 10M
relation and literal assertions.

This kind of reasoning – at least at that scale – is rather underrepresented in current reasoning
benchmarks, and often not evaluated at all. For example, in the ORE2015 benchmark, the task
of materialization is defined as the computation of all instances for all named classes in the
ontology [10]. In other words: in that benchmark, the task is to infer all class assertions for
an instance given all its literal and individual assertions, while for CaLiGraph, we require the
reverse direction.
Among the 1,920 test cases in the ORE2015 benchmarks [10], there are only 311 which use

owl:hasValue constraints with an individual (max. 6,455 in a single file), and 279 which use
3http://caligraph.org/resource/Dennis_Lyxzén

http://caligraph.org/resource/Dennis_Lyxzén


owl:hasValue with a literal (max. 1,104 in a single file). Themore recent OWL2Bench dataset [11],
proposed in 2020, contains exactly one owl:hasValue restriction, mainly for checking whether
or not a reasoner supports that construct, but does not allow for evaluating that support at scale.
In contrast, the CaLiGraph ontology makes much heavier use of those constructs, as shown
above, and therefore imposes more challenging scalability requirements with respect to that
reasoning task.

3. Experiments

To validate how far reasoning systems actually meet those challenges, we conducted a series of
experiments, both with CaLiGraph as a whole and with differently-sized subsets of CaLiGraph.

3.1. Reasoning Systems

In our experiments, we chose three commonly known reasoners: ELK [12], HermiT [13], and
Pellet [14]. All of them claim to be able to process OWL2 EL ontologies. We used the latest
non-commercial versions, i.e.:

• ELK version 0.4.3
• Pellet version 2.3.6
• HermiT version 1.4.5.456

The reasoning systems were called through OWL API4 using the respective connectors to the
reasoners. As the reasoners rely on different versions of OWL API, we provide an individual
dependency configuration for each of them in our implementation. Note that since OWL API
does not support restrictions with explicit URIs and labels, we transformed them to blank nodes
(as shown in Fig. 2) before importing them with OWL API.

3.2. Sandbox Example

As a first sanity check, we extracted a simple sandbox example from CaLiGraph, which we
coin clg_10 in the following. The sandbox example contains two classes with one owl:hasValue
restriction each, one using an individual, one using a literal. For each of the two classes, there
is an individual, so that an OWL2EL reasoner should be capable of inferring one individual and
one literal assertion. The sandbox example is shown in Fig. 2.
From our three reasoners, only Pellet is capable of inferring both assertions. HermiT can

infer the resource-valued assertion, but not the literal-valued one, while ELK does not infer
any of the two. Table 2 summarizes the results of the sandbox experiment. Here, Disjointness
materialization refers to the addition of disjointness axioms to subclasses. In the example above,
if clgo:Swedish_Rock_Musician was defined as a subclass of clgo:Person , and clgo:Person is
disjoint with clgo:Organization , the reasoner would also infer that clgo:Swedish_Rock_Musician
is disjoint with clgo:Organization (and its subclasses). However, we just inspected that out of
curiosity, and removed disjointess axioms from the larger scale datasets.

4https://github.com/owlcs/owlapi

https://github.com/owlcs/owlapi


@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix owl: <http://www.w3.org/2002/07/owl#> .
@prefix clgo: <http://caligraph.org/ontology/> .
@prefix clgr: <http://caligraph.org/resource/> .

clgo:Agent a owl:Class;
rdfs:subClassOf owl:Thing .

clgo:Organization a owl:Class;
rdfs:subClassOf clgo:Agent .

clgo:Person a owl:Class;
rdfs:subClassOf clgo:Agent;
owl:disjointWith clgo:Organization .

clgo:International_organization a owl:Class;
rdfs:subClassOf clgo:Organization .

clgo:Organization_based_in_Asia a owl:Class;
rdfs:subClassOf clgo:Organization .

clgo:Organization_based_in_China a owl:Class;
rdfs:subClassOf clgo:Organization_based_in_Asia .

clgo:headquarter a owl:ObjectProperty .

clgr:China a owl:NamedIndividual .

_:b1 a owl:Restriction;
owl:onProperty clgo:headquarter;
owl:hasValue clgr:China .

clgo:International_organization_based_in_China a owl:Class;
rdfs:subClassOf clgo:Organization_based_in_China, clgo:International_organization, _:b1 .

clgr:International_Center_on_Small_Hydro_Power a owl:NamedIndividual,
clgo:International_organization_based_in_China .

clgo:Organization_disestablished_in_1939 a owl:Class;
rdfs:subClassOf clgo:Organization .

clgo:activeYearsEndYear a owl:DatatypeProperty .

_:b2 a owl:Restriction;
owl:onProperty clgo:activeYearsEndYear;
owl:hasValue ”1939”^^xsd:integer .

clgo:Military_unit_or_formation_disestablished_in_1939 a owl:Class;
rdfs:subClassOf clgo:Organization_disestablished_in_1939, _:b2 .

clgr:46th_Mixed_Brigade a owl:NamedIndividual, clgo:Military_unit_or_formation_disestablished_in_1939 .

Figure 2: Sandbox example for testing the reasoners’ capabilities of processing restrictions (with
individuals and literals) and disjointness axioms



Reasoner ELK HermiT Pellet
Subclass materialization X X X
Disjointness materialization X X
Restrictions with individuals X X
Restrictions with literals X

Table 2
Reasoner capabilities as evaluated in the sandbox experiments

Dataset Triples Classes Restrictions Instances Inferrable Assertions
Trans. Types Individuals Literals

clg_10 35 9 2 3 10 1 1
clg_10e2 510 101 3 70 425 20 1
clg_10e3 43,120 1,000 79 18,072 4,500 514 5,706
clg_10e4 297,266 10,006 1,299 115,501 73,683 12,085 10,369
clg_10e5 4,641,400 99,923 12,147 1,968,282 42,820 187,929 7,120
clg_full 54,914,982 1,061,598 227,173 14,452,393 138,713,499 9,637,354 969,022

Table 3
Overview of the different CaLiGraph subsets used for the evaluation

We tried a couple of other reasoners, which were not capable of completely processing the
Sandbox example, including

• jcel [15] version 0.24.121
• Snorocket [16] version 4.0.17
• Konclude [17] version 0.7.0

Those did either not produce any of the desired statements, or reported by themselves that they
do not support inference based on owl:hasValue constructs. Thus, we decided to only keep ELK
as a representative of those reasoners which cannot produce the inferences sought to compare
its performance to those which can, and discarded the rest.

3.3. Scalability Experiments

To conduct experiments for scalability, we extracted differently sized subsets of CaLiGraph, each
of which should have around 10𝑛 classes for different values of 𝑛. The resulting datasets are
depicted in table 3. The datasets were designed so that they create meaningful subtrees of the
overall hierarchy in CaLiGraph. The corresponding SPARQL query is depicted in figure 3. The
different datasets are generated by varying the inner SELECT statement which retrieves the leaf
classes. Datasets up to clg_10e4 are drawn from subclasses of clgo:Organization , while clg_10e5
is drawn from the complete ontology. The relatively low number of transitive types of the latter
dataset is explained by the fact that the average type depth of subclasses of clgo:Organization
is much higher than the overall average type depth.
We conducted experiments on a system with 32 Intel Xeon CPUs and 200GB RAM, and we

set a timeout of 72h. Overall, ELK was the only system capable of processing all datasets (but



PREFIX owl: <http://www.w3.org/2002/07/owl#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX clgo: <http://caligraph.org/ontology/>
CONSTRUCT {

?leaf ?leafPred ?leafObj .
?super ?superPred ?superObj .
?ind a owl:NamedIndividual, ?leaf .
?resPred ?resPredPred ?resPredObj .
?resObj ?resObjPred ?resObjObj .

} WHERE {
# Collect set of leaf classes to bootstrap sample from
# Sample subgraph can be changed by picking something else than clgo:Organization as basis
# Use a specific LIMIT for N to restrict the number of leaf classes in the sample
{

SELECT ?leaf {
?leaf rdfs:subClassOf+ clgo:Organization .
FILTER NOT EXISTS {?sub rdfs:subClassOf ?leaf}

}
LIMIT N

}
# Collect all relevant superclasses of the leaves
?leaf rdfs:subClassOf+ ?super ;

?leafPred ?leafObj .
?super ?superPred ?superObj .
# Collect individuals for the leaves
?ind a ?leaf .
# Add restrictions, if available
OPTIONAL {

?leaf rdfs:subClassOf+ ?res .
?res a owl:Restriction ;

owl:onProperty ?resPred ;
owl:hasValue ?resObj .

# Add information about the predicates and objects of restrictions to the sample
?resPred ?resPredPred ?resPredObj .
OPTIONAL {

?resObj ?resObjPred ?resObjObj .
}

}
# Discard disjointnesses as this would blow up the sample size
FILTER (?superPred != owl:disjointWith)
FILTER (?leafPred != owl:disjointWith)

}

Figure 3: SPARQL query to generate datasets for scalability experiments

not returning any of the inferrable individual and literal assertions, as discussed above). The
processing of the largest dataset with ELK took about 3.5 hours.

HermiT and Pellet, on the other hand, could only process clg_10e2 and clg_10e3 , respectively,
and timed out on the larger ones (with Pellet running out of memory on clg_full ). This shows
that those reasoning systems are still three to four orders of magnitude away from the reasoning
capabilities required for processing CaLiGraph.



Figure 4: Scalability of the Reasoning Systems investigated

4. Conclusion and Outlook

In this paper, we investigated three state of the art OWL2EL reasoners, i.e., ELK, HermiT, and
Pellet. The task for those reasoners was to materialize the A-box of the CaLiGraph knowledge
graph, particularly the creation of around 10M A-box assertions from owl:hasValue definitions.
As discussed above, this kind of reasoning at scale is currently not evaluated in benchmarks
such as ORE2015 and OWL2Bench.

The outcome of our experiments is that the reasoners evaluated are either (a) not capable of
performing that inference at all, as in the case of ELK, or (b) not scalable enough to process
knowledge graphs with 10k instances or more – which is some orders of magnitude below the
size of popular knowledge graphs [4].

With this work, we have also provided a benchmark suite of differently sized test sets.5 This
allows for running scalability experiments also with respect to materializing a large amount
of individual and literal A-box assertions. Moreover, the benchmark is suitable for running
evaluations with approximate reasoning systems, since recall and precision of the generated
A-box assertions can be quantified. Therefore, the datasets are also suitable for measuring the
trade-off between scalability and accuracy of approximate reasoning systems.
CaLiGraph is generated heuristically. Although the quality is high [7], it is not perfect. In

the future, we want to further analyze the impact of wrong statements in the graph, as well as
experiment with artificially adding noise to the different datasets.

While we have generated subsets of CaLiGraph using the SPARQL query in figure 3 and were
therefore experimenting with manual limits to get the desired amount of classes for the sample,
more sophisticated methods for generating subsets of knowledge graphs exist. For example,
Melo and Paulheim [18] propose a synthesis model for the generation of knowledge graph

5The datasets and the code for running the experiments are available at https://github.com/nheist/
CaLiGraph-for-SemREC.

https://github.com/nheist/CaLiGraph-for-SemREC
https://github.com/nheist/CaLiGraph-for-SemREC


benchmark datasets which strives to preserve characteristics like class, relation and instance
distributions. For future work, we consider to generate such more realistic benchmark datasets
with the help of synthesis models.
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