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Abstract
Musical composition is a combinatorial art where composers extend sequences by choosing from a vast set of possible
feature combinations that yield the compositions their distinctive qualities. Increasingly, composers are using generative
models, such as music transformers, for crafting their pieces. Unfortunately, for composers to “steer” these models to satisfy
their qualitative features typically requires retraining (which can be prohibitively expensive); further, existing models are
unable to deal with arbitrary combinations of features at scale. In this paper we build on lightweight fine-tuning methods,
such as prefix tuning and bias tuning, to propose a novel contrastive loss that enables us to steer music transformers over
arbitrary combinations of logical features, with a relatively small number of extra parameters. We provide both quantitative
and qualitative evaluations of our method which demonstrate its efficacy with respect to existing methods, as well as a
case-study where our method was used to compose long-form musical pieces. Musical examples are available for listening
online. 1
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1. Introduction
Musicians and novices are increasingly experimenting
with generative models in music making [44, 19, 18]. Yet
generative models are often not trained to support human
objectives (such as controllability) but to maximize proxy
metrics that are easy to automate (such as likelihood of
data according to a model), making it difficult for users
to steer these models towards expressing users’ musical
intentions [44, 19, 32]. In the language domain, recent
research in making generative models (such as large lan-
guage models) more controllable and useful in real-world
applications have focused on ways of adapting uncondi-
tioned language models to perform well on conditioned
tasks they were not initially trained on. Methods such as
fine-tuning, side-tuning, bias-tuning, and prompt or pre-
fix tuning have emerged as lead candidates for such tasks
such as steering the sentiment of or words mentioned
in a sentence [2, 28, 27, 8]. However, such tasks are nor-
mally presented in a non- or minimally-compositional
approach (possibly controlling for two orthogonal vari-
ables, such as sentiment and topic [25], but rarely more
than that).

In contrast, in the domain of music generation, se-
quence continuation is inherently a highly compositional
problem: the user likely has many aspects of the output
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they would like to control, such as speed, dynamics, har-
mony, or texture, each of which can be decomposed into
multiple sub-features. Furthermore, the relationship be-
tween these features and the output is more diffuse than
in the NLP settings: while in examples such as [25], in-
dividual words indicate the different conditions being
satisfied, in music the entire sequence of tokens are used
in evaluating a single feature (for instance, average pitch
over a span of time depends on all tokens representing
that span). This makes compositionality even more chal-
lenging than in the text generation setting. On the other
hand, music is a sequential domain where there are clear
logical features which can be examined, such as average
dynamics or number of notes per second. This further mo-
tivates using music as a test-bed for highly compositional
tasks involving simultaneously steering an autoregres-
sive model towards several particular desired attributes
according to different classifiers.

As a more immediate motivation, consider the follow-
ing scenario: a composer wants to sample from the pre-
trained Music Transformer [20] to complete a musical
phrase. In addition to the overall musical quality of the
continuation, they want it to stay in key and switch to us-
ing block chords (i.e. a few notes played together at once).
Repeatedly sampling continuations from the model and
cherry-picking a good sample (rejection sampling) would
be very labor-intensive, but assuming they can compute
binary features for “stays in key” and “uses block chords”,
the composer could sample a large number of continu-
ations and cherry-pick from the smaller set of contin-
uations which exhibit all features (thereby delegating
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Figure 1: Showcasing a prime from the test set steered in two different ways. The original continuation has arpeggiation
(the steep rising and falling lines) throughout. The right piano rolls were steered with a logical feature that checks for many
simultaneous notes (block chords). In particular, the bottom right piano roll shows that the model learned to "exploit" the
logical feature by repeating a low note, while still sounding musical. Hear this example online.

part of the accept/reject step). While significantly less
labor-intensive, this solution could potentially require
sampling enormous amounts of continuations if, for in-
stance, the requested features significantly differ from
those of the priming sequence (such that it and the de-
sired continuation form an unlikely sequence according
to the generative model). In other words, the pre-trained
model could be a poor proposal distribution for some
applications.

On the ML side of this work, we are interested in devel-
oping better proposal distributions through an adaptation
approach which can steer the generative model towards
continuations which i) are significantly more likely to
exhibit the requested feature, and ii) exhibit a satisfactory
musical quality. The approach should be able to accom-
modate a large number of features without adding signif-
icant memory or computation overhead. We achieve this
by making features composable, making it possible to
steer features independently and also multiple features at
once. Figure 1 shows that when using a pre-trained trans-
former model augmented with a relatively small number
of additional parameters, we are able to steer towards ar-
bitrary logical music features and achieve realistic music
generation simply by sampling directly from the model.
In contrast, the same unconditional transformer model
fails to produce any examples satisfying those features
even when generating a hundred samples.

Our approach can be used to support human-AI co-
creation, where musicians can compose on the level of
musical “features” as opposed to notes. Musicians can
prototype the high-level “shape” of the music by specify-
ing how various features change throughout the piece,
and in turn steer and curate music transformers to cre-
atively fill in the details. With our method, a composer
can control both the short-chunk features, and the long-

form structure, by chaining together chunks steered in
different directions (using different combinations of fea-
tures), while maintaining long-term coherence (by lever-
aging the transformers’ full self-attention receptive field).
Listen to examples on this page 1 for longer steered ex-
amples, and compositions semi-automatically generated
using our feature tuning approach in a musician-directed
way.

2. Problem formulation
Music Transformer is an autoregressive language model
which decomposes the joint probability of a sequence
of tokens 𝑥1, . . . , 𝑥𝑁 (where 𝑥𝑛 ∈ 𝒦, and 𝒦 is a set of
categorical tokens) into

𝑝(x = 𝑥1, . . . , 𝑥𝑁 ) = 𝑝(𝑥1)

𝑁∏︁
𝑛=2

𝑝(𝑥𝑛 | 𝑥1, . . . , 𝑥𝑛−1).

(1)
It leverages a common modeling approach which repre-

sents the conditional probabilities 𝑝(𝑥𝑛 | 𝑥1, . . . , 𝑥𝑛−1)
using a neural network [3]. As its name implies, Mu-
sic Transformer uses a Transformer network architec-
ture [48]. Each token 𝑥𝑛 is first mapped to a real-valued
embedding e𝑛 (for instance using a lookup table), then
the network maps each sequence e1, . . . , e𝑛−1 to a prob-
ability distribution for the value of 𝑥𝑛 over the elements
of 𝒦.

Sequence continuation in an autoregressive language
model works by repeatedly sampling from its distribu-
tion over the next token given the previous tokens. Start-

1Listen to musical examples at https://storage.googleapis.com/
composing-features/index.html
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ing from some priming sequence x𝑝 = (𝑥0, . . . , 𝑥𝑀 ),
we first sample 𝑦𝑀+1 ∼ 𝑝(· | 𝑥0, . . . , 𝑥𝑀 ), then
𝑦𝑀+2 ∼ 𝑝(· | 𝑥0, . . . , 𝑥𝑀 , 𝑦𝑀+1), and so on, until the
end of the continued sequence x𝑐 = (𝑦𝑀+1, . . . , 𝑦𝑁 ). 2

Many downstream tasks can be cast as sequence continu-
ation problems, including the steerable music generation
problem investigated in this work.

We are given a set of features Φ = {𝜑𝑗}𝐽𝑗=1, 𝜑𝑗 ∈
𝒦𝑁 → {0, 1}. Each 𝜑𝑗 takes the value 1 if a prime-
continuation pair exhibits that feature (which we note as
(x𝑝,x𝑐) |= 𝜑𝑗 ), and 0 otherwise. Note that the features
must take both prime and continuation sequences as
input, since some continuation features may be relative
to the priming sequence (e.g. “significantly higher pitch”).
Our true objective with respect to feature 𝜑𝑗 is to steer
the model towards a distribution which maximizes

Ex𝑐|x𝑝

[︀
(x𝑝,x𝑐) |= 𝜑𝑗

]︀
(2)

while maintaining musicality. This objective is
non-differentiable because (x𝑝,x𝑐) |= 𝜑𝑗 is a non-
differentiable satisfiability criterion.

In addition to the single-feature problem, we also con-
sider the problem of composed features Φ̂, i.e.

(x𝑝,x𝑐) |= Φ̂ ≡
⋀︁

𝜑𝑗∈Φ̂⊆Φ

(x𝑝,x𝑐) |= 𝜑𝑗 , (3)

to account for scenarios where a user is interested in
steering the model towards multiple features (such as
in the “stays in key” and “uses block chords” scenario
discussed in the introduction).

3. Proposed approach
We start by describing our proposed approach in the
single-feature case and later on explain how we adapt it
to the compositional case.

3.1. Likelihood-based training
While approaches using reinforcement learning—such
as KL-regularized deep Q-learning [21]—could be used
to overcome the non-differentiability problem, in this
work we consider a proxy loss in the form of the negative
log-likelihood

𝑙 = − log 𝑝𝜃(x𝑐 | x𝑝), (4)

which we use in two ways:

2To simplify the discussion, we assume a fixed sequence length
𝑁 , but the explanation applies to sequences of varying lengths as
well.

1. Positively: given a prime–continuation pair
(x𝑝,x𝑐) |= 𝜑𝑗 , we find an adaptation 𝜃𝑗 of the
model’s parameters 𝜃 that minimizes 𝑙✓ (we use
the symbol ✓ to denote the fact that 𝑙 is com-
puted using the correct parameters 𝜃𝑗 ). By using
prime–continuation examples that sound musical,
we ensure that the steered model stays musically
grounded.

2. Negatively: we can also take advantage of other
features 𝜑𝑖 for which (x𝑝,x𝑐) ̸|= 𝜑𝑖, by maximiz-
ing 𝑙× (we use the symbol × to denote the fact
that 𝑙 is computed using the incorrect parameters
𝜃𝑖).

The positive case corresponds to maximum-likelihood
training. Additionally, we can exploit the intuition that
the adapted parameters 𝜃𝑗 should “explain” the prime–
continuation pair (x𝑝,x𝑐) |= 𝜑𝑗 better than 𝜃𝑖 (for
some feature 𝜑𝑖 for which (x𝑝,x𝑐) ̸|= 𝜑𝑖) or 𝜃 (the non-
adapted model parameters, with a corresponding loss
𝑙∅). In other words, we can maximize the probability of
choosing 𝜃𝑗 over 𝜃𝑖 and 𝜃 by minimizing a contrastive
loss of the form

− log

(︂
𝑝𝜃𝑗 (x𝑐 | x𝑝)

𝑝𝜃𝑗 (x𝑐 | x𝑝) + 𝑝𝜃𝑖(x𝑐 | x𝑝) + 𝑝𝜃(x𝑐 | x𝑝)

)︂
= − log

(︂
𝑒−𝑙✓

𝑒−𝑙✓ + 𝑒−𝑙× + 𝑒−𝑙∅

)︂
(5)

We propose a loss that interpolates between Equations
4 and 5 using an 𝛼 coefficient (which is treated as a hy-
perparameter):

ℒ𝑗 = 𝛼·𝑙✓−(1−𝛼)·log
(︂

𝑒−𝑙✓

𝑒−𝑙✓ + 𝑒−𝑙× + 𝑒−𝑙∅

)︂
(6)

Intuitively, the maximum-likelihood setting should
suffice to achieve our adaptation goals, but in practice
we find that the approach benefits from the inclusion of
negative cases through a contrastive loss term. We tried
different 𝛼 values and found 𝛼 = 0.8 to work well in
practice. See Figure 2 for an illustration of the training
setup.

3.2. Feature-conditional adaptation
Fine-tuning all model parameters can be prohibitive if the
number 𝐽 of features is large (let alone combinatorially
large in the compositional case); however, recent work
provides effective and lightweight alternatives:

1. Prefix tuning [28] works by prepending learn-
able task embeddings e−𝐾 , . . . , e−1 to the prim-
ing sequence embeddings e1, . . . , e𝑀 . The loss

3
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Figure 2: Overall training setup, where the (positive) feature being learned is 𝜑𝑗 (with parameters 𝜃𝑗 ), and the negative
feature is 𝜑𝑖 (with parameters 𝜃𝑖). The parameters 𝜃, used for the unconditional negative log-likelihood, are not learned.

gradient is then backpropagated through the lan-
guage model and into the task embeddings.

2. Bias-tuning [2] works by adapting a small sub-
set 𝜃𝑏 ⊂ 𝜃 of the transformer’s parameters,
namely the biases of its affine transformations.
Since these biases amount to a small fraction of
the model’s parameters, in the case where the
number of tasks is relatively small, tuning sepa-
rate 𝜃𝑏 for each task becomes feasible. We present
an extension to bias-tuning where the number of
tasks is exponential in the number of total classi-
fication functions, using an approach which nev-
ertheless only requires a number of tuned param-
eters linear in the number of total classification
functions.

In practice, while prefix tuning showed promise in
the single-feature setting, we were unable to make it
work in the compositional setting. We therefore focus
our investigation on bias-tuning for the compositional
domain.

In the compositional setting, a naive approach requires
learning 2|Φ|−1 model adaptations. Instead, we propose
to express the adaptation for a composed feature Φ̂ as the
combination of the 𝜃𝑗 of its underlying features 𝜑𝑗 ∈ Φ̂.
More specifically, for bias-tuning we average the adapted
biases as

𝜃𝑏 =
1

|Φ̂|

∑︁
𝜑𝑗∈Φ̂

𝜃𝑏,𝑗 . (7)

Note that we do not simply use the above heuristic
to compose feature adaptations post-hoc; we train the
model in a compositional setting (by sampling prime–
continuation pairs (x𝑝,x𝑐) |= Φ̂ for various composed
features) so that the single-feature adaptations can learn
to work well in conjunction with each other. See Figure 3

for an illustration of our prefix-tuning and bias-tuning
setup.

4. Experimental setup
In this section we describe our experimental setup: the
musical features we want to enable users to control, the
procedure for setting up the training data for adapting
the feature-conditional parameters, and the details of the
prefix tuning and bias tuning setup.

4.1. Musical and dataset features
Musical features To support users in controlling dif-
ferent aspects of music, such as harmony, texture, speed,
and dynamics, we implemented eighteen features (see
Appendix A for a complete list).

We included both absolute and relative features. Ab-
solute features apply only to the continuation, while
relative features describe the relationship between the
prime and the continuation, such as the average pitch
in the continuation being significantly higher than that
in the prime or the rhythmic density in the continuation
being significantly lower than that in the prime. Note
that this type of model should work with any feature
function which takes in sequences and returns a Boolean.
In this paper, we chose examples that have clear musical
meanings and are easy to implement.

Dataset features Before adapting model parameters
to specific binary musical features, we may first need
to “fine-tune” a model to better fit the general musical
style of a given dataset (in order to support the scenario
where a user brings their own dataset). We refer to these
dataset-level features as 𝜑𝒟 .

4
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Figure 3: Schematic of how prefix tuning and bias tuning augments the Transformer architecture. Prefix tuning works by
prepending learnable embeddings to the the priming sequence, while bias tuning works by adapting the biases in the feed-
forward layers of the Transformer. To support steering multiple features at once, these embeddings and biases are averaged
before they are added to the original Transformer.

4.2. Training data and setup
The unconditioned model we adopt as a base for adapta-
tion is a pretrained music transformer 3 trained on tran-
scribed YouTube piano performances (where the music
was typically more melodic). To mimic the user bringing
their own dataset with a distinctive style, we use the Mae-
stro dataset [14], an open-source collection of virtuoso
performances of classical piano music.

To prepare the prime–continuation pairs needed for
likelihood based training, we serialize the Maestro piano
performances into event-based encoding [33] (the same
representation that the pretrained music transformer was
trained on) and then take random crops of length 200
tokens (which lasts approximately 4 to 20 seconds long).
We then split each crop in half, resulting in a prime x𝑝

and continuation x𝑐 pair that is each 100 token long.
To prepare training sets for feature-specific adapta-

tions, for each feature 𝜑𝑗 ∈ Φ we take the subset (with
replacement) of all the pairs that exhibit the feature (i.e.
(x𝑝,x𝑐) |= 𝜑𝑗 ). Note that since all prime–continuation
pairs are drawn from the Maestro dataset, we implicitly
assume that (x𝑝,x𝑐) |= 𝜑𝒟 always holds.

Single-feature setting For the non-contrastive set-
ting, for each feature 𝜑𝑗 we minimize the loss introduced
in Equation 4 to adapt its parameters 𝜃𝑗 to better fit the
set of prime–continuation pairs where (x𝑝,x𝑐) |= 𝜑𝑗 .

3See blog post "Generating Piano Music with Transformer"
https://magenta.tensorflow.org/piano-transformer.

In the contrastive setting, we minimize the con-
trastive loss introduced in Equation 6. For each prime–
continuation pair (x𝑝,x𝑐) |= 𝜑𝑗 used to compute 𝑙✓,
we also need to select a “negative” case for comput-
ing 𝑙×. We achieve this by selecting another feature
𝜑𝑖 at random, and a prime–continuation pair where both
(x𝑝,x𝑐) |= 𝜑𝑖 and (x𝑝,x𝑐) ̸|= 𝜑𝑗 holds.

Compositional setting Training with a contrastive
loss yielded more effective models in the single-feature
setting (see section 5 for details), hence we adopt the
contrastive loss for all of the subsequent experiments in
the compositional setting.

To prepare training examples for steering any num-
ber of features at once, we first extend Φ so that each
feature has a corresponding “negated” feature (e.g. “has
both loud and soft pitches” vs “no contrast in dynamics”),
bringing the total number of features from |Φ| = 18 to
2 · |Φ| = 36. By definition, each prime–continuation pair
exhibits exactly 18 features. When sampling a prime–
continuation pair (x𝑝,x𝑐), we compute 𝑙✓ with respect
to a random subset of those 18 features (with size drawn
at random from 𝑈 [1, 12]). We compute 𝑙× by negating
some of the sampled features.

4.3. Evaluation metrics
During training time, we minimize a likelihood-based
proxy loss to fit the prime–continuations pairs as well as
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possible, either non-contrastively or contrastively. How-
ever, there is no guarantee that a model trained this way
with a lower loss would be more effective in being steered
to produce requested musical features. Hence, we pro-
pose to evaluate our “downstream” true objective using
the following two axes:

• Sampling efficacy When steered to generate a
particular feature, sampling efficacy is measured
as the proportion of generated samples exhibiting
the requested feature. As all of our current musi-
cal features are implemented as logical functions
that return a Boolean value, we can algorithmi-
cally compute this.

• Musical quality Not only do we want the gen-
erated samples to exhibit a requested feature, we
also want the musical quality of that sample to be
high. To evaluate this, we carried out a listening
test with musicians to compare the musical qual-
ity of samples generated from the unconditioned
model and adapted models (see subsection 6.2 for
details).

In the section below, we define how we evaluate sam-
pling efficacy and explain how we break down reporting
results according to the “inherent” difficulty in steering.

4.3.1. Sampling efficacy

At test time, what we care about is when a user requests
a feature 𝜑𝑗 , regardless of what the prime x𝑝 is, what
is the probability that a tuned model can achieve it (i.e.
generate continuations x̂𝑐 that exhibit feature 𝜑𝑗 ).

Hence, we propose the following sampling efficacy (i.e.
probability of achievement) as our true evaluation metric
to quantify on average using rejection sampling, what
proportion of a model’s generated continuations x̂𝑐 ex-
hibit feature 𝜑𝑗

Ex𝑝Ex̂𝑐|x𝑝

[︀
(x𝑝, x̂𝑐) |= 𝜑𝑗

]︀
(8)

where the first expectation is under the data distribu-
tion (approximated by sampling primes x𝑝 from a given
dataset), and the second is under the model being evalu-
ated (approximated by conditioning on a prime x𝑝, and
then using the model to generate continuations x̂𝑐).

Steering difficulty Intuitively, given a prime x𝑝, cer-
tain musical features would follow more musically than
others. That is, the prime can impact how difficult it is to
steer a model to generate continuations x̂𝑐 that exhibit a
certain feature 𝜑𝑗 , hence affecting the sampling efficacy
of a model on that feature.

To address this “confounding factor”, we propose to
breakdown our analysis of sampling efficacy based on if a
feature musically follows a prime or not. To approximate
this, we check in the dataset (that a model was trained
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Figure 4: Using the unconditioned model, the probability of
achieving a feature is higher when a feature is a cofactual to
a prime (x-axis) versus when it is counterfactual to a prime (y-
axis). Each blue dot represents a feature (there are 18 features
total). All the dots are below the diagonal line, demonstrating
that this phenomenon holds for all features.

on) if the continuation of a prime carries a feature or not.
We group primes in the following two categories

• Cofactual prime A prime x𝑝 is considered co-
factual to a feature 𝜑𝑗 when the prime has a con-
tinuation (in the dataset) that exhibits that feature,
that is (x𝑝,x𝑐) |= 𝜑𝑗 .

• Counterfactual prime A prime x𝑝 is con-
sidered counterfactual to a feature 𝜑𝑗 where
(x𝑝,x𝑐) ̸|= 𝜑𝑗 .

The unconditioned music transformer model allows
us to establish a baseline for “inherently” how difficult
or easy it is to achieve a certain feature by priming the
model and measuring how often its generated continua-
tion carries that feature.

Figure 4 shows for each feature (blue dot) the probabil-
ity of achieving it when the unconditioned music trans-
former was primed with cofactual primes (x-axis) versus
counterfactual primes (y-axis). Intuitively, we expect it
to be more difficult for a prime that is counterfactual
to a feature to produce continuations with that feature,
indeed this is what we observe, i.e. in the figure all the
blue dots are below the diagonal line. Given this consis-
tency, whenever we report results on sampling efficacy
(probability of achievement) in the paper, we breakdown
our results to compare how methods fare on the hard
(counterfactual) versus the easier (cofactual) cases.

4.4. Implementation
Single-feature setting We use a standard prefix tun-
ing model as per [28], associating every feature 𝜑𝑗 with
a prefix 𝑣𝑗 . As in their paper, we used the finding that
a relatively low-dimensional embedding space of fea-
ture prefixes (200 dimensions) projected to a higher-

6
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Figure 5: Comparing training losses for bias-tuning (in the single-feature setting), the visually “diverging” curves in the
contrastive setting (right) show that this setting is more effective in learning parameters that discriminate between positive
(blue curve, 𝑙✓) and negative cases (orange curve, 𝑙×).

dimensional embedding (2048 dimensions) using a shared
MLP across feature prefixes worked well. The pre-trained
transformer model had no parameters modified, but was
changed to accept these 2048-dimensional vectors as
four 512-dimensional vectors prepended before the 512-
dimensional vectors representing the input tokens (as
the transformer’s latent embedding was 512 dimensions).
The resulting sequence of vectors were masked using
causal attention in order to predict x𝑐.

Compositional setting The loss used in the composi-
tional setting is almost identical to Equation 6, the main
difference being in the contrastive loss implementation.
The features used to compute 𝑙× are obtained by negating
some of the features used to compute 𝑙✓, and the fraction
𝛽 of negated features is used to modulate the interpola-
tion coefficient as 𝛼′ = 𝛼−min(𝛼, 𝛽). The intuition is
that the differences in steering should be more noticeable
when comparing feature sets with less overlap.

5. The single-feature setting
We first examine the single-feature setting, before going
into the compositional setting. For the experiments in
this section, we focus on investigating if our proposed
contrastive loss (introduced in Equation 6) is beneficial.
We find that indeed it is, that training with a contrastive
loss not only enables learning of parameters that better
“explain” musical features in a more “discriminate” fash-
ion, but also results in a more steerable model, i.e. when
conditioned on a musical feature, more likely to generate
samples that exhibit that feature.

5.1. Likelihood-based training dynamics
Intuitively, the maximum-likelihood setting should suf-
fice to achieve our adaptation goals, but in practice we
find that the approach benefits from the inclusion of neg-
ative cases through a contrastive loss term (introduced
in Equation 6), as demonstrated in Figure 5. The positive
case (blue line) corresponds to the maximum-likelihood
term, while the negative case (orange line) corresponds
to the contrastive loss term. The visually “diverging”
training curves in the contrastive setting show that it has
learned to “explain” features using very different parame-
ters. That is, when evaluating a prime–continuation pair
(x𝑝,x𝑐) with parameters 𝜃𝑖 adapted for feature 𝜑𝑖 that
the pair does not exhibit (x𝑝,x𝑐) ̸|= 𝜑𝑖, the likelihood
loss becomes very high.

5.2. Sampling efficacy
In this section, we compare how different methods per-
form “downstream” on the objective we care about, that
is when the user brings a prime and a desired feature,
how likely is a model able to generate a continuation
that exhibits that feature. The sampling efficacy metric
(defined in in subsection 6.1) gives on average a method’s
probability in achieving requested features.

Procedure In the following experiments, to compute a
method’s sampling efficacy on a feature, we take 512 ran-
dom primes from the feature’s validation set, and for each
prime generate 10 continuations, and then check what
proportion of the continuations satisfy the requested fea-
ture. We then average among all features to obtain the
average sampling efficacy of a method. This is the co-
factual case. While for the counterfactual case, instead
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Prefix tuning

Contrastive Non-contrastive Unconditioned

Cofactual 0.58 ± 0.01 0.54 ± 0.01 0.38 ± 0.01
Counterfactual 0.39 ± 0.01 0.33 ± 0.01 0.23 ± 0.01

Table 1
Comparing sampling efficacy (i.e. probability of achievement, higher is better), prefixing tuning (especially with a contrastive
loss) significantly increases the probability of achieving a requested feature both in the easier cofactual cases and the harder
counterfactual cases. The ± gives the 95% confidence intervals.

of sampling primes from a feature’s own validation set,
we sample the primes at random from another feature’s
validation set.

Results In Table 1, we see that prefixing tuning (es-
pecially with a contrastive loss) significantly increases
sampling efficacy over the unconditioned model, both
in the easier cofactual cases, the harder counterfactual
cases. All of the improvements are of a large margin, for
example in the hard counterfactual cases, prefix tuning
with a contrastive loss increases the probabiliy of achiev-
ing a feature by 70%, and within prefix tuning, the gain
from switching from a non-contrastive loss to contrastive
loss is 18%.

As sampling efficacy can vary with prime and feature
requested, in Figure 6 we enumerate how different meth-
ods perform for each of the musical features (18 total).
We see prefix tuning (especially with a contrastive loss)
yields a higher sampling efficacy (y-axis) for most fea-
tures. As contrastive loss yielded more effective models
in the single-feature setting, we adopt the contrastive
loss for all of the subsequent experiments in the compo-
sitional setting.

6. The compositional setting
In the following experiments, we first illustrate how dif-
ficult compositional steering is under an unconditioned
model. Then, we show quantitatively how our bias-
tuning method can enable compositional steering with
much higher sampling efficacy, and also qualitatively
how it achieves this while also improving on the musical
quality of the steered examples (compared to if we were
generating from the “tail” of the unconditioned model).

6.1. Sampling efficacy
Unconditioned model Intuitively, we expect it would
be ineffective to rely on rejection sampling (on an uncon-
ditioned model) to give us samples that include a specific
large number of features. Under a naive assumption of
independence among features, one would expect that the
efficacy of rejection sampling in achieving a total of 𝑛 fea-
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Figure 6: Prefix tuning a model (especially with a contrastive
loss) increases its sampling efficacy (y-axis) for most of the 18
single features. The colored dots that line up vertically corre-
spond to the same feature. Each feature’s steering difficulty
(x-axis) is quantified as the sampling efficacy of the uncondi-
tioned model, which gives a baseline of how difficult or easy
it is to sample that given feature. Most of the green (non-
contrastive) and orange (contrastive) dots are above the diag-
onal line, meaning prefix tuning increases the probability of
achieving them. The vertical dotted orange lines show the im-
provement in the contrastive setting over the non-contrastive
setting.

tures would roughly equal 𝑝𝑛, where 𝑝 is the probability
of a feature being satisfied.

While the above assumption is naive, we do find that
in the unconditioned setting, the sampling efficacy of the
unconditioned model drops substantially as the number
of requested features increases. For example, when the
number of requested cofactual features is 6, only 0.2% of
the time were all features achieved after rejection sam-
pling (see the unconditional line in Figure 7).

Bias tuning With bias tuning, sampling efficacy is
more effective overall and less brittle with respect to the
number of features. We see in Figure 7 4 that even though
sampling efficacy decreases for all methods when more

4Note that the single-feature steering efficacy presented in the
compositional setting (Figure 7) is much higher than that in Table 1
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Figure 7: Bias tuning is more effective overall and less brittle with respect to the number of steered features. While we expect
sampling efficacy to decrease with more steered features, bias tuning always outperformed all other methods (in both the
cofactual and the random case) and still retained a viable probability of achievement even when 6-feature combinations are
requested (at 7.9%, meaning 1 in 13 samples exhibits the requested features).

features are requested as expected, bias-tuning remained
a viable steering approach even in the 6-feature setting,
with a 7.9% probability of achievement versus only 0.2%
for the unconditioned model. This meant for the user,
using bias-tuning on average 13 samples is needed to ar-
rive at one that exhibits their requested 6 features, while
for the unconditioned model it would take 500 samples,
making the latter an unfeasible approach.

Comparing the other methods, bias tuning to the Mae-
stro dataset (without tuning for specific features) im-
proves over the unconditioned model slightly (with larger
gains in the 2 to 3 feature case in the cofactual setting),
and as expected underperforms bias tuning which is
tuned to also condition on specific features. Bias tuning
outperforms prefix tuning consistently in the composi-
tional setting.

6.2. Musical quality
The above experiments evaluate the effectiveness of
methods in achieving the requested features. To evaluate
the musical quality of these “successful” generations, we
conducted a listening study with musicians to compare
the steering of three features between our overall best
adaptation approach (i.e. bias tuning) and the baseline of

for the single-feature setting. This is due to difference in the pro-
cedure we used in the two settings. In the compositional setting,
we sampled features according to how they were distributed in the
datasets, while in the single-feature setting we sampled features uni-
formly at random. Hence, in the compositional setting, features that
appear often in the dataset (perhaps typical of the dataset’s musical
style) is sampled more often. The sampling efficacy is much higher
possibly because these feature are also easier to achieve.

rejection sampling on the unconditional model.

Listening study setup The listening test consists of
questions posed as pairwise comparisons of musical ex-
amples, where both examples started with the same prime
as the first half of the example, while one’s continuation
was generated by the unconditional model, while another
was generated with our bias-tuned model. The ordering
within the pairs were randomized. Listeners were asked
to rate which one they thought was more musical. To
prepare the samples, we randomly picked 120 primes
from the test set. For steering each prime, we randomly
chose a three-feature set that was present in the dataset
as the conditioning features.

Results We asked eight musicians to each rate fifteen
pairs. The results show that our bias-tuning approach
was much preferred over the unconditional, and the re-
sults were statistically significant (𝑝 < 0.0003). Bias
tuning won 63 of the pairwise comparisons, tied for 26
pairs, and lost for 31 pairs. This shows that our bias-
tuning approach is not only more effective in steering
features, but also produces musically more compelling
results.

Discussion It may seem surprising that bias-tuning
was able to produce samples that were perceived as more
musical than the original expressive unconditional model.
We hypothesize that this is because we are essentially
sampling from the “tail” of the unconditioned model’s
distribution when using rejection sampling (i.e. only
accepting samples that exhibit the requested feature).
Since the unconditional model is not trained to generate
specific features, we may have to disregard for example
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99.8% of the samples generated before finding a satisfac-
tory sample (as seen in the 6-feature setting described
in subsection 6.1). This resulting distribution is very dif-
ferent from the distribution of the unconditional model
without rejection sampling.

We further hypothesize that, via the proxy loss of in-
creasing the likelihood of a set of continuations with a
given feature, a bias-tuned model learns more likely ways
to satisfy that given feature. Hence, its continuations are
not only more likely to be effective at satisfying that fea-
ture, but also to do so in a musically likely manner, which
is often rated by listeners as more musical too.

7. Case study: Human-AI
co-creation

In the previous sections, we evaluated our approach algo-
rithmically, and found that it is quite effective in steering
music transformers to generate continuations with multi-
ple requested features present. In this section, we wanted
to understand how a generative model with such steer-
ability can be useful in a human-AI co-creation setting.
As a preliminary study, one asked one of our co-authors,
who was also a composer, to put our model to test by
carrying out computer-assisted composition.

User background and creative strategies Our com-
poser had a background in both purely human and algo-
rithmic composition. She experimented with using the
tool in several settings. In some settings, her goal was to
co-create music of a specific high-level “vibe", which she
accomplished through the inclusion of specific features
and manually curating the generated samples.

• To achieve “pleasant but low energy”, she chose
features such as diatonicism and harmonic stasis,
block chords, lack of extreme dynamic change, and
a mostly low rhythmic density. Listen to this ex-
ample and other “vibes” online. 5

• Inspired by a given prime that had a “roller-
coaster"-like quality, she wanted to write a piece
with a cyclic shape which oscillated between
melodic and textural extremes. She accomplished
this through the coupling and cycling of features
such as relative and absolute rhythmic density,
pitch height, and existence of block chords.

Seeing that it is possible to steer music transformer to
generate specific high-level “vibes” through low-level
features, our composer was inspired to compose a theme
and variation where each variation would continue the

5Listen to different co-created “vibes” at https://storage.
googleapis.com/composing-features/index.html#vibes.

same prime but with a different “vibe” by invoking a dif-
ferent set of low-level features. 6 This allowed her to
combine her knowledge of non-automated algorithmic
composition to compose a “quasi-algorithmic" suite of
variations. Algorithmic composition involves using com-
putational logic to choose notes; instead, in this piece,
she used computational logic to choose features.

Composer’s reflection The composer’s findings
were that the tool enabled her on every end of the human-
machine spectrum: as a composer who occasionally
wants to avoid using any generation tools in their final
output, as a composer who wants to co-create in order
to minimize both manual coding and manual composing,
and as an algorithmic composer. As a composer trying
to improve her “manual" composition and analysis skills
within specific scenarios (e.g., fast-paced and tense music
with chromaticism but also a degree of stasis), and who
is used to having to manually search for examples of
repertoire having such properties in order to learn from
them, the ability to generate a piece of music tailored to
a specific scenario forms a surprisingly powerful peda-
gogical tool which she found that she can leverage when
composing by hand.

The workflow of co-creating music made her feel like
she was the author (rather than the computer), but al-
lowed her to create piano music of a complexity and
virtuosity her piano skills do not currently afford. The
composer felt that this tool was even more powerful in
the context of algorithmic composition. Her typical work-
flow in algorithmic composition involves using tools such
as SuperCollider [51] to adapt an existing algorithm to
generate low-level notes; here she could still use algo-
rithmic thinking, but at a higher level of abstraction. For
instance, to compose the suite of variations presented
earlier, she wrote a python program to orchestrate which
set of musical features are used for each variation. In
contrast, while in the past she would invoke a Markov
chain to flesh out each variation, here she could invoke a
powerful generative model.

In this case study, as the composer was also the creator
of this tool, she was in a unique position to explore the
full potential of this tool. To make the tool accessible
to a broader audience, future work could include “Hello
AI”-like [5] exercises to introduce how to compose algo-
rithmically with transformers, akin to the ones found in
textbooks on SuperCollider and other algorithmic com-
position environments.

6Listen to a co-created theme and variation at https://storage.
googleapis.com/composing-features/index.html.
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8. Related Literature
Our work builds on language modeling, further exploring
ways to “tune” these models for user control, through
“fine-tuning” approaches such as prefix and bias tuning.
In particular, we leverage contrastive learning and com-
positionality to derive a lightweight augmentation for
steering large transformer-based language models. Our
approach enables human-AI co-creation, enabling users
to compose at a higher level of abstraction by specifying
features while music transformers fills in the notes. In
the following, we provide a brief overview for each of
the aforementioned related research areas.

Language models as generative models This work
would be impossible without the wealth of research on
transformer models for sequence generation tasks. Start-
ing with Vaswani et al. [48], researchers realized that this
paradigm enables far more coherent and diverse genera-
tion than the recurrent neural networks typically used
before [40]. Another milestone was the development of
GPT-3, which showed that with sufficient size/training
data such models could potentially perform few shot
learning [4]. Several subsequent papers, however, demon-
strated the inadequacy of few-shot learning for many
tasks [37]. A few alternatives to online few-shot learning
have since emerged.

“Finetuning” language models Prompt tuning was
initially explored ad-hoc in the context of finding ways
to produce interesting output by GPT-3, and was formal-
ized by [27]. While originally prompts were designed as
tokens from the transformer’s vocabulary, subsequent
studies generalized them to any embeddings prepended
to the input [28]. We extend research into prefix tun-
ing by considering aggregation methods among com-
positional prefixes. Feature-wise transformations, such
as elementwise scaling and/or biasing of features in a
network based on side-information (such as labels for a
conditioned task), have been applied in a wide variety
of problem settings—see [11] for an overview. We draw
direct inspiration from BitFit’s bias-tuning approach [2]
and cast it as a feature-wise transformation approach. By
factoring the additive perturbations in Figure 3 into their
preceding layers, our bias-tuning implementation can be
described as a multi-task variant of BitFit where the pa-
rameterizations are tied across features. A key difference
is that our feature-specific adaptations are designed to
be composable, which to our best knowledge has not yet
been explored in the context of large language models—
although compositional adaptations using feature-wise
multiplicative interactions have been studied in the con-
text of zero-shot image classification [38]. Similarly, side-
tuning, or summing task-specific features with general

language-model features, has shown significant enhance-
ments in few-shot learning, but is typically not performed
compositionally [53].

Contrastive learning Contrastive learning is used in
representation learning to train a network which maps
“similar” (positive) inputs to nearby representations and
“dissimilar” (negative) inputs far away from the positive
inputs. See [26] for a theoretical framework and overview.
In generative modeling, contrastive divergence [15] was
proposed to train Restricted Boltzmann Machines [43],
image-to-image translation models [1, 35, 30], and condi-
tional [23] and unconditional [22] generative adverarial
networks [12]. Our contrastive formulation differs from
previous work in two ways. First, rather than selecting
positive and negative examples related to the condition-
ing signal (musical features in our case) and using the
contrastive loss to predict which example “agrees” with
the signal, we select positive and negative conditioning
signals (i.e. different musical features) and use the con-
trastive loss to predict which conditioning signal explains
the prime–continuation pair best. Second, we also treat
the absence of a conditioning signal (i.e. the original gen-
erative model) as a negative conditioning signal, meaning
that we want the model conditioned on the “correct” mu-
sical features to explain the prime–continuation pair bet-
ter than the unconditional model. Other work leveraging
language models for multiple tasks include CTRL [25]
and Plug-and-Play models [8]. However, CTRL has the
disadvantage that it requires knowing the tasks during
the training of the large language model, while Plug-
and-Play requires multiple passes through the language
model, which can be expensive for sufficiently large mod-
els.

Controllable generative models for music Ad-
vances in sequence modeling [46, 49, 47, 7] has enabled
long-form music generation in both the symbolic do-
main [33, 20, 36, 31, 16] and the audio domain [46, 14, 10,
9]. Similar to language, researchers in music generation
have been adapting these language models towards con-
trollable generation, such as by conditioning on one part
of a musical piece to complete the rest, such as melody
harmonization [41, 29, 6], or more generally arbitrary par-
tial score completion [17, 13]. Representational learning
approaches such as autoencoders (AEs) and variational
autoencoders (VAEs) have also been used for steering
interpolations or transformations along learned latent
dimensions, a low-level disentangled attribute-based di-
mension such as note density [39, 24], or a high-level
learned dimension such as energy level in mood that is
then realized through its mapping to low-level features
such as note-density and rhythm [45], controlling chord
progressions and texture independently [42, 50], or rear-
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ranging a piece to have increased polyphony or rhythmic
density [52].

Human-AI co-creation in music Controllable gener-
ative models typically does not offer users full control (i.e.
only allows users to specify a small number of low-level
or high-level controls, or through an example), while re-
lying on its learned stylistic distribution and/or features
encoded from the user-specified template piece to fill in
the rest of the musical details [44, 32, 19]. In contrast,
traditional constraint satisfaction based music generation
systems do not have prior knowledge of the desired stylis-
tic distribution, instead rely on users to specify a large
number of musical constraints to guide its search (see [34]
for a survey). When using the former systems, users may
still feel a lack of agency, while the latter can impose a
laborious process. Our approach explores the space in be-
tween, allowing users to compose multiple features along
different musical dimensions for short chunks (similar
to constraint specification), while leveraging pretrained
transformers‘ expressiveness to aid users in maintaining
coherence in virtuosic long-form composition.

9. Conclusion
We have shown that music transformers can be directed
towards a specific generative “task" using some of the
same methods as natural language transformers. In ad-
dition, we have studied compositionality in this domain.
Compositionality (including relatively high levels of com-
positionality) is critical in the music domain (and other
domains) if the user wants control over the output. We
establish that compositionality is a hard problem, and
propose adaptations of several solutions from the litera-
ture (bias-tuning and prefix-tuning) to address these chal-
lenges. We find success with bias-tuning, but not with
prefix-tuning. While our results are promising, there is
clearly significant room for improving on the efficacy of
steering a transformer compositionally.

We have provided a preliminary demonstration of how
our approach, compositional steering, enables human-AI
co-creation, where musicians can compose on the level
of musical “features” as opposed to notes. Musicians
can prototype the high-level “shape” of the music by
specifying how various features change throughout the
piece, and in turn steer and curate music transformers to
creatively fill in the details. We envision future work to
enable end-user machine learning where users can define
their own features or provide their own musical examples,
and leverage our lightweight compositional bias-tuning
approach to learn new controls to steer expressive music
transformers compositionally.
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A. Musical Features
Note that while some features may appear to be opposites
(e.g., “loud" vs “soft"), and while it is true that they are
mutually exclusive, in fact it is possible for a sequence to
satisfy neither (e.g., if it’s in a middle dynamic level).

Absolute features:

1. “Loud" - minimum velocity is greater than 60
2. “Soft" - maximum velocity is less than 60
3. “Has Dynamic Contrast" - Extreme Dynamic Con-

trast" - The sequence has two notes whose veloc-
ities differ by more than 30

4. “Extreme Dynamic Contrast" - The sequence has
two notes whose velocities differ by more than
70

5. “All consonances" - the sequence has no disso-
nances (simultaneous notes with an absolute dif-
ference modulo 12 of 1, 2, 10, 11, or 6)

6. “Long sharp dissonance" - the sequence has
a sharp dissonance (simultaneous notes being
played with a difference of 1 or 11) that lasts for
a significant amount of time

7. “Only melody" - only a single note is playing at a
time

8. “Few onsets" - when grouping notes according to
attack time, there are few groups per second

9. “Many onsets" - when grouping notes according
to attack time, there are many groups per second
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10. “Blocks of two" - there are groups of two notes
being played simultaneously

11. “Larger blocks" - there are blocks of three or more
notes being played simultaneously

12. “Within single key" - all notes fit within a single
major scale

Relative features:

1. “Significantly lower average pitch than prime"
2. “Significantly higher average pitch than prime"
3. “Significantly higher number of grouped attacks

than prime"
4. “Significantly lower number of grouped attacks

than prime"
5. “Significantly more notes per second than prime"
6. “Significantly fewer notes per second than prime"
7. “Could fit in the same key as the prime"
8. “Has 2 or more pitch classes (pitch mod 12) which

the prime doesn’t have"
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