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Abstract  
For the task of automated scheduling of classes in the higher educational institutions, a model 

of the space of all possible states of the lesson schedule has been developed. The model is 

developed in terms of relational algebra. The solution to the problem is found by means of a 

relational DBMS. Using the proposed approach allows you to get an initial solution to the 

problem of scheduling classes in a higher educational institution. Also, the model of the space 

of possible states of the lessons schedule allows you to adjust the schedule when it is further 

optimized or if it is necessary to make changes to the finished class schedule. The initial solution 

to the problem is found using an iterative process, which at each step chooses the lesson with 

the least freedom of scheduling or the lesson of the teacher who has the most busy schedule. 

Freedom of scheduling classes and the density of teachers' schedules are variables that are 

calculated at each iteration for a subset of classes not yet scheduled. 

The optimality of scheduling each lesson is determined by a set of criteria that are summed up 

using fuzzy logic methods. 
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1. Introduction 

The multicriteria task of scheduling classes in 

the higher educational institutions (HEIs) still 

does not have a generally accepted solution. R. A. 

Oude Vrielink, E. A. Jansen, E. W. Hans, J. van 

Hillegersberg in their article “Practices in 

timetabling in higher education institutions: a 

systematic review” made a very detailed review 

of methods and programs for scheduling classes 

in higher educational institutions, developed since 

the 70s years of the 20th century and up to 2017 

inclusive [1]. They showed that the problem of 

automated scheduling of classes still does not 

have a generally accepted solution. At the same 

time, the need to obtain an acceptable solution 

does not decrease over the years, but only 

increases, since the number of restrictions to the 

optimal schedule increases.  
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The works of recent years are mainly devoted 

to the development of genetic algorithms and 

swarm algorithms, sometimes modifications of 

the simulated annealing method are being 

developed [2] – [7]; in this case, the initial 

approximation of the solution to the problem is 

obtained using the Tabu method or graph coloring 

[8]. 

 “These approaches are defined as heuristics 

that solve strategies that are used for complex 

optimization problems. A specific set of 

algorithms, called heuristic algorithms, have 

proven to be effective in generating the best non-

optimal solution. Such algorithms can give an 

approximation that is considered an acceptable 

solution. Thus, heuristic algorithms seem to be 

superior to traditional methods, and such 

algorithms are even combined to strengthen each 

other” [1].  



The purpose of this work is to develop a new 

method for automated scheduling of classes and 

its practical implementation by means of 

relational DBMS. The mathematical model is 

built in terms of relational algebra; practical 

implementation involves the development of a 

database and server software for it. 

The proposed method belongs to a variety of 

simulation methods. An algorithm based on the 

principles of simulation should have a set of non-

formal (heuristic) rules: 

1. Choosing the next lesson from the list. 

2. Determining the best position for it in the 

schedule. 

3. Evaluating the resulting schedule. 

To select the next lesson from the list, a 

multilevel sorting of the list of unallocated lessons 

is used according to the criteria of increasing the 

freedom of the arrangement of the lesson in the 

schedule and decreasing the density of the 

teacher's lessons. Fuzzy logic methods with 

heuristic coefficients determining the weight of 

each of a large set of criteria for evaluating the 

optimality of the lesson schedule are used to 

determine the best position for taking a position in 

the schedule and assess the resulting schedule. 

2. Mathematical model of the 
problem being solved in terms of 
relational algebra 

The task of automated scheduling of classes is 

characterized by a large amount of data that must 

be stored in a database. However, the tools of 

relational database management systems 

(RDBMS), together with methods of relational 

algebra, can be used to solve this problem. 

No international standards have been adopted 

for the operations of relational algebra, so there 

are currently at least four notations to denote these 

operations. This paper uses the notation of 

relational algebra operations, described in detail 

in the book by Thomas Connolly and Carolyn 

Begg [9]. 

2.1. Sections of the space of 
possible states of the lesson schedule 

Consider the formulation of the problem of 

scheduling classes in a university in terms of the 

theory of relations and relational algebra. Let's 

call one academic pair in one academic group in 

one academic discipline “lesson”. Let the relation 

𝐺 describe academic groups; 𝐻 – possible types 

of activities (lectures, seminars, laboratory 

studies); 𝐷 – academic disciplines; 𝐶 – University 

curricula. 

The relations 𝐺, 𝐻, 𝐷, 𝐶 are tables that contain 

the initial data for the task of scheduling classes. 

Also, the initial data is contained in the relation 𝑇 

– the list of teachers, and in relation to the 𝐴 – list 

of recitation room. 

𝐷𝐶(𝑖𝑑𝑐, 𝑖𝑑𝑑, 𝑖𝑑ℎ, ℎ𝑜𝑢𝑟) is a derived relation 

(associative type of entity) that describes the 

distribution of academic hours between different 

types of classes in academic disciplines of all 

curricula: 

𝑖𝑑𝑐 – curriculum identifier; 

𝑖𝑑𝑑 – discipline ID; 

𝑖𝑑ℎ – activity ID. 

The public budget.  The main purpose of the 

public budget is to empower citizens and NGOs 

to propose their own local development projects 

and influence the allocation of a certain share of 

the budget funds by voting for certain projects. 

Let the derived relation 𝐺𝐶(𝑖𝑑𝑔, 𝑖𝑑𝑐)  describe 

the attachment of groups to curricula; here 𝑖𝑑𝑔 is 

academic groups ID. Then the classroom load of 

academic groups is described by the relation 

𝑄(𝑖𝑑𝑔, 𝑖𝑑𝑐, 𝑖𝑑𝑑, 𝑖𝑑ℎ, ℎ𝑜𝑢𝑟) (1):  

𝑄 ← 𝐺𝐶 ⊳⊲ 𝐷𝐶, (1) 
where 𝑅 ⊳⊲ 𝑆 – the relational operation of 

naturally joining a relation 𝑅 with a relation 𝑆 

over the entire set of common attributes. 

The curriculum for each course in each 

specialty contains data on the number of academic 

weeks in a semester.  

From the relation Q the stored procedure of the 

database forms a derived relation 

𝑊(𝑖𝑑𝑠, 𝑖𝑑𝑔, 𝑖𝑑𝑐, 𝑖𝑑𝑑, 𝑖𝑑ℎ, 𝑛𝑢𝑚), which contents 

data of classroom activities of academic groups; 

where 𝑖𝑑𝑠 – lesson ID. 

In relation 𝑊, the 𝑛𝑢𝑚 attribute is necessary 

for unambiguous identification within one 

academic week of each pair of classes in the case 

when in a certain discipline for a certain type of 

classes, for example, lectures, 𝑁 hours are 

provided per week, where 𝑁 > 2. Then, for this 

type of lesson in this discipline, there should be 

𝑛𝑝 training pairs in the schedule (2): 

𝑛𝑝 = 𝑁 2⁄ , 𝑛𝑢𝑚 = 1. . 𝑛𝑝, (2) 
For the relation 𝑊 the set of attributes  

(𝑖𝑑𝑔, 𝑖𝑑𝑐, 𝑖𝑑𝑑, 𝑖𝑑ℎ, 𝑛𝑢𝑚)    is a unique key. 

Composite key identification is inconvenient, so 

the primary key 𝑖𝑑𝑠 is added to the 𝑊 relation. 



Let 𝑇𝐿(𝑖𝑑𝑡, 𝑖𝑑𝑠) be a derived relation that  

describes the distribution of classes among 

teachers, where 𝑖𝑑𝑡 – teacher identifier. Then the 

activities to be scheduled are described by the 

relation 𝑆(𝑖𝑑𝑠, 𝑖𝑑𝑔, 𝑖𝑑𝑡) (3):  
𝑆 ← 𝜋𝑖𝑑𝑠,𝑖𝑑𝑔,𝑖𝑑𝑡(𝑊 ⊳⊲ 𝑇𝐿) (3) 

where 𝜋𝑎1,..,𝑎𝑘(𝑅) – the relational operation of the 

projection of a relation 𝑅 onto a subset of its 

attributes 𝑎1, … 𝑎𝑘. 

Derived relations 𝑃𝑇(𝑖𝑑𝑡, 𝑖𝑑𝑝), 𝑃𝐺(𝑖𝑑𝑔, 𝑖𝑑𝑝) 

and 𝑃𝐹(𝑖𝑑𝑎, 𝑖𝑑𝑝) describe the lists of study pairs 

allowed for classes, respectively, for teachers, 

academic groups and classrooms; 𝑆𝐴(𝑖𝑑𝑠, 𝑖𝑑𝑎) – 

lists of acceptable classrooms for lessons. Here 

𝑖𝑑𝑝 is the ID of the study pair; 𝑖𝑑𝑎 – classroom ID. 

Let 𝑍(𝑖𝑑𝑠, 𝑖𝑑𝑔, 𝑖𝑑𝑡, 𝑖𝑑𝑝, 𝑖𝑑𝑎) be a relation that 

describes all possible options for a class schedule. 

The ratio 𝑍 is calculated using relational algebra 

operations by the formulas (4) – (5): 

𝑇𝑇 ← (𝑆𝐴 ⊳⊲ 𝑃𝐴 ⊳⊲ 𝑃𝑇), (4) 
𝑍 ← 𝜋𝑖𝑑𝑠,𝑖𝑑𝑔,𝑖𝑑𝑡,𝑖𝑑𝑝,𝑖𝑑𝑎(𝑆 ⊳⊲ 𝑇𝑇 ⊳⊲ 𝑃𝐺) (5) 

where 𝑇𝑇 is an auxiliary relation (intermediate 

relational variable). 

The 𝑆 and 𝑍 relations do not include an activity 

such as streaming lecture – lecture for academic 

stream (stream of academic groups).  

To take into account this type of occupation, it 

is necessary to enter into the database schema two 

more additional entities. The basic entity type 

𝑅(𝑖𝑑𝑟, 𝑅𝑛𝑎𝑚𝑒) (stReam) describes the list of 

streams, and the associative entity type 

𝑅𝐺(𝑖𝑑𝑟, 𝑖𝑑𝑔) describes the composition of the 

stream: which groups are included in the stream. 

Let 𝐷𝑅(𝑖𝑑𝑑, 𝑖𝑑𝑐, 𝑖𝑑𝑟)   be a derived relation 

containing data: on which disciplines of which 

curriculum lectures are given on streams, and on 

what streams. 

Streaming lectures will be described by the 

derived relation 𝑊𝑅𝑅, which is calculated by the 

formula (6) – (7): 

𝑇𝑇2 ← 𝑊 ⊳⊲ 𝑅𝐺 ⊳⊲ 𝐷𝑅 (6) 
𝑊𝑅𝑅 ← 𝜋𝑖𝑑𝑠,𝑖𝑑𝑔,𝑖𝑑𝑑,𝑖𝑑ℎ,𝑛𝑢𝑚,𝑖𝑑𝑟(𝑇𝑇2) (7) 

where 𝑇𝑇2 is intermediate relational variable. 

Each streaming lecture in relation 𝑊𝑅𝑅 takes 

up as many tuples as there are groups in the 

stream. Let's introduce an additional key attribute 

𝑖𝑑𝑠𝑟 – the stream lesson ID.  

By projecting the 𝑊𝑅𝑅 relation onto the  𝑖𝑑𝑠𝑟, 

𝑖𝑑𝑟, 𝑖𝑑𝑑,𝑛um attributes, we obtain the 𝑊𝑅 

relation – a list of all streaming lectures (8): 

𝑊𝑅 ← 𝜋𝑖𝑑𝑠𝑟,𝑖𝑑𝑟,𝑖𝑑𝑑,𝑛𝑢𝑚(𝑊𝑅𝑅) (8) 
In relation 𝑊𝑅, each streaming lecture is 

described by one tuple, and the 𝑖𝑑𝑠𝑟 attribute is 

the primary key of this relation. 

For the convenience of fetching data and 

calculation formulas when setting classes in the 

schedule, it is desirable that the 𝑖𝑑𝑠𝑟 attribute 

receive its values from the same domain as the 𝑖𝑑𝑠 

attribute, and that the sets of values of these 

attributes do not overlap. This can be easily 

achieved if, when assigning a streaming lecture, a 

database stored procedure is used, which 

generates the value of the 𝐼𝐷𝑠𝑟 variable, which is 

used as the value of the 𝑖𝑑𝑠𝑟 attribute for the new 

tuple of the 𝑊𝑅 relationship. 𝐼𝐷𝑠𝑟 is calculated 

by the formula (9): 

𝐼𝐷𝑠𝑟 = MAX(MAX(𝑖𝑑𝑠), MAX(𝑖𝑑𝑠𝑟)) + 1 (9) 

Streaming lectures with attached lecturers is 

described by the SRR relation (10): 

𝑆𝑅 ← 𝜋𝑖𝑑𝑠𝑟,𝑖𝑑𝑟,𝑖𝑑𝑡(𝑊𝑅 ⊳⊲ 𝑇𝐿) (10) 
Then the relation 𝑍𝑅, which describes all 

variants of the lesson schedule for streaming 

lectures, is represented by the formula (11) – (12): 

𝑇𝑇3 ← 𝑆𝑅 ⊳⊲ 𝑇𝑇 ⊳⊲ 𝑃𝑅 (11) 
𝑍𝑅 ← 𝜋𝑖𝑑𝑠𝑟,𝑖𝑑𝑟,𝑖𝑑𝑡,𝑖𝑑𝑝,𝑖𝑑𝑎(𝑇𝑇3) (12) 

where 𝑇𝑇3 is intermediate relational variable; 

𝑃𝑅 is a derived relation that describes the sets of 

admissible study pairs for academic streams. 

The set of study pairs for each stream is equal 

to the intersection of the sets of admissible study 

pairs of all groups included in the stream. 

Classes of academic groups can also be 

conducted with a breakdown of the academic 

group into subgroups, for example, when 

conducting laboratory classes in specialized 

classrooms. 

The derived relation 𝐷𝑆(𝑖𝑑𝑑, 𝑖𝑑𝑔, 𝑖𝑑ℎ) stores 

data: in which disciplines in which groups of 

which types of classes are conducted with a 

breakdown into subgroups. Let 𝑆𝐵(𝑠𝑢𝑏) be an 

auxiliary relation that contains two tuples: 𝑠𝑢𝑏 = 1, 

𝑠𝑢𝑏 = 2, where 𝑠𝑢𝑏 is the number of the 

subgroup.  

𝑊𝑆 (𝑖𝑑𝑠, 𝑖𝑑𝑔, 𝑖𝑑𝑐, 𝑖𝑑𝑑, 𝑖𝑑ℎ, 𝑛𝑢𝑚, 𝑠𝑢𝑏) is a 

relation that describes group lessons that are 

carried out by dividing the group into subgroups 

(13):  
𝑊𝑆 ← (𝑊 ⊳⊲ 𝐷𝑆) × 𝑆𝐵, (13) 

where  𝑆 × 𝑅 – relational operation of the 

Cartesian product of the relations 𝑆 and 𝑅. 
The 𝑆𝑆 relation contains a list of all classes 

conducted with the division of groups into 

subgroups, with teachers attached to them (14): 

𝑆𝑆 ← 𝜋𝑖𝑑𝑠,𝑖𝑑𝑔,𝑖𝑑𝑡,𝑠𝑢𝑏(𝑊𝑆 ⊳⊲ 𝑇𝐿) (14) 

In relation to SS, the primary key is composite: 

(𝑖𝑑𝑠, 𝑠𝑢𝑏). 



Then the ratio 𝑍𝑆, which describes all possible 

options for the schedule for classes in subgroups, 

is represented by the formula (15) – (16): 

𝑇𝑇4 ← 𝑆𝑆 ⊳⊲ 𝑇𝑇 ⊳⊲ 𝑃𝐺 (15) 
𝑍𝑆 ← 𝜋𝑖𝑑𝑠,𝑖𝑑𝑔,𝑖𝑑𝑡,𝑠𝑢𝑏,𝑖𝑑𝑝,𝑖𝑑𝑎(𝑇𝑇4) (16) 

where 𝑇𝑇4 is intermediate relational variable. 

 The relation 𝑊 contains all of the academic 

group lessons according to the curriculum, 

including those highlighted as streaming lectures 

and laboratory sessions conducted by subgroups. 

To obtain the final list of classes that are 

conducted for one whole group, and schedule 

these classes, we need to subtract from the relation 

𝑊 the tuples that entered the relations 𝑊𝑅𝑅 and 

𝑊𝑆 (17) – (20) using the relational difference 

operation: 

𝑊1 ← 𝜋𝑖𝑑𝑠,𝑖𝑑𝑔,𝑖𝑑𝑑,𝑖𝑑ℎ,𝑛𝑢𝑚(𝑊𝑅𝑅), (17) 

𝑊2 ← 𝜋𝑖𝑑𝑠,𝑖𝑑𝑔,𝑖𝑑𝑑,𝑖𝑑ℎ,𝑛𝑢𝑚(𝑊𝑆), (18) 

𝑊3 ← 𝜋𝑖𝑑𝑠,𝑖𝑑𝑔,𝑖𝑑𝑑,𝑖𝑑ℎ,𝑛𝑢𝑚(𝑊), (19) 

𝑊𝐺 ← (𝑊3 − 𝑊2) − 𝑊1, (20) 
where 𝑊1, 𝑊2, 𝑊3  are intermediate relational 

variables. 

Using the 𝑊𝐺 relation, we get the 𝑆𝐺 and 𝑍𝐺 

relations – a list of group lessons with attached 

teachers, and a list of all possible options for 

placing academic groups in the lessons schedule 

(21) – (23): 

𝑆𝐺 ← 𝜋𝑖𝑑𝑠,𝑖𝑑𝑔,𝑖𝑑𝑡(𝑊𝐺 ⊳⊲ 𝑇𝐿) (21) 

𝑇𝑇4 ← 𝑆𝐺 ⊳⊲ 𝑇𝑇 ⊳⊲ 𝑃𝐺 (22) 
𝑍𝐺 ← 𝜋𝑖𝑑𝑠,𝑖𝑑𝑔,𝑖𝑑𝑡,𝑖𝑑𝑝,𝑖𝑑𝑎(𝑇𝑇4) (23) 

where 𝑇𝑇4 is intermediate relational variable. 

The curriculum may include disciplines that 

have an odd number of academic hours per week 

for some types of classes, for example, 3 hours of 

lectures, or 1 hour of practical training (seminar). 

In this case, lesson by number 𝑛𝑝 will be held 

once every two weeks (2). It is necessary to select 

these classes from the general list, since the 

algorithm for setting them in the schedule has its 

own characteristics. 

To distinguish between weekly and biweekly 

lessons, add an attribute 𝑣 of type bit (bool) to the 

𝑊 relation.  

For lessons that are held weekly, 𝑣 = 1, for the 

rest – 𝑣 = 0. The values of the 𝑣 attribute for the 

tuples of the relation 𝑊 are assigned by the stored 

procedure, which forms the relation 𝑊 from the 

relation 𝑄. 

The 𝑣 attribute will also be included in all 

projections of the 𝑊 relation, that is, in the 

relations 𝑊𝑅, 𝑊𝐺, 𝑊𝑆, 𝑆𝑅, 𝑆𝐺, 𝑆𝑆,  𝑍𝑅,  𝑍𝐺,  𝑍𝑆. 

Then the formulas calculating the relations 

𝑍𝑅1, 𝑍𝐺1, 𝑍𝑆1, for lessons that are held weekly, 

take the following form (24) – (26): 

𝑍𝑅1 ← 𝜋𝑖𝑑𝑠𝑟,𝑖𝑑𝑟,𝑖𝑑𝑡,𝑖𝑑𝑝,𝑖𝑑𝑎(𝜎𝑣=1(𝑍𝑅)) (24) 

𝑍𝐺1 ← 𝜋𝑖𝑑𝑠,𝑖𝑑𝑔,𝑖𝑑𝑡,𝑖𝑑𝑝,𝑖𝑑𝑎(𝜎𝑣=1(𝑍𝑅)) (25) 

𝑍𝑆1 ← 𝜋𝑖𝑑𝑠,𝑖𝑑𝑔,𝑠𝑢𝑏,𝑖𝑑𝑡,𝑖𝑑𝑝,𝑖𝑑𝑎(𝜎𝑣=1(𝑍𝑆)) (26) 

where 𝜎𝐹(𝑅) – a relational operation of fetching 

tuples from a relation 𝑅 satisfying predicate 𝐹. 

To describe lessons that are held once every 

two weeks, we introduce an auxiliary relation 

𝑊𝐾(𝑤) with two tuples: 𝑤 = 1  and 𝑤 = 2 – an 

odd-numbered academic week and an even-

numbered week. Then the formulas calculating 

the ratios 𝑍𝑅0, 𝑍𝐺0, 𝑍𝑆0, for classes that are held 

biweekly, take the following form (27) – (32): 

𝑅0 ← 𝜋𝑖𝑑𝑠𝑟,𝑖𝑑𝑟,𝑖𝑑𝑡,𝑖𝑑𝑝,𝑖𝑑𝑎(𝜎𝑣=0(𝑍𝑅)) (27) 

𝐺0 ← 𝜋𝑖𝑑𝑠,𝑖𝑑𝑔,𝑖𝑑𝑡,𝑖𝑑𝑝,𝑖𝑑𝑎(𝜎𝑣=0(𝑍𝐺)) (28) 

𝑆0 ← 𝜋𝑖𝑑𝑠,𝑖𝑑𝑔,𝑠𝑢𝑏,𝑖𝑑𝑡,𝑖𝑑𝑝,𝑖𝑑𝑎(𝜎𝑣=0(𝑍𝑆)) (29) 

𝑍𝑅0 ← 𝑅0 × 𝑊𝐾 (30) 
𝑍𝐺0 ← 𝐺0 × 𝑊𝐾 (31) 
𝑍𝑆0 ← 𝑆0 × 𝑊𝐾 (32) 

where 𝑅0, 𝐺0, 𝑆0  are intermediate relational 

variables. 

The relations 𝑆𝑅, 𝑆𝐺, 𝑆𝑆 contain a complete 

list of lessons that need to be scheduled. If we 

write this list of lessons in one relation 𝑆, then it 

must contain all list of the attributes that are 

present in at least one of these relations: 

𝑆(𝑖𝑑𝑠, 𝑖𝑑𝑠𝑟, 𝑖𝑑𝑔, 𝑖𝑑𝑟, 𝑠𝑢𝑏, 𝑖𝑑𝑡, 𝑣). 

Only two attribute, 𝑖𝑑𝑡, 𝑣  from the entire set 

of attributes is defined for all tuples of the relation 

𝑆. The remaining attributes are defined for some 

subsets of the tuples of this relation. 

The relations 𝑍𝑅1, 𝑍𝐺1, 𝑍𝑆1, 𝑍𝑅0, 𝑍𝐺0, 𝑍𝑆0 

make up the fuller space of possible states of the 

lesson schedule. This relations are sections of a 

given space. Dividing the common space into 

several sections is necessary to optimize the work 

of the class scheduling program.  

If the space of possible states of the lesson 

schedule is described using one relation, then it 

should include all the attributes that are present in 

at least one of the 6 relations 𝑍𝑅1, 𝑍𝐺1, 𝑍𝑆1, 

𝑍𝑅0, 𝑍𝐺0, 𝑍𝑆0, that is, the resulting relation 𝑍 

will have the following set of attributes: 

𝑍(𝑖𝑑𝑠, 𝑖𝑑𝑠𝑟, 𝑖𝑑𝑔, 𝑖𝑑𝑟, 𝑠𝑢𝑏, 𝑖𝑑𝑡, 𝑖𝑑𝑝, 𝑖𝑑𝑎, 𝑤) 

Only 3 attributes from this set: 𝑖𝑑𝑡, 𝑖𝑑𝑝, 𝑖𝑑𝑎, – 

are defined for all tuples of the relation 𝑍. The 

remaining attributes are defined for some subsets 

of the tuples of this relation. 

Undefined attribute values can be specified 

either with the NULL value, or we can provide 

some specific numeric values for them. Both of 



these methods lead to complex predicates in the 

WHERE clause of the SELECT statement when 

fetching data from a relation. But for relation 𝑆, 

the situation is more complicated, since among the 

set of attributes there are two keys that must 

uniquely identify the lesson that needs to be 

scheduled: 𝑖𝑑𝑠, 𝑖𝑑𝑠𝑟.  

The union of a selection of data (SELECT … 

UNION SELECT …)   from several relations with 

a simple structure and low cardinality is faster 

than a selection of data from one large table with 

several complex predicates in the WHERE clause. 

Thus, the representation of the space of possible 

states of the lessons schedule in the form of 6 

sections for different types of lessons provides a 

simpler design of queries to the database, as well 

as faster execution of them. 

2.1.1. Lists of study pairs allowed for 
lessons 

The cardinality of the relations 𝑍𝑅1, 𝑍𝐺1, 

𝑍𝑆1, 𝑍𝑅0, 𝑍𝐺0, 𝑍𝑆0 depends on the cardinality 

of the derived relations 𝑃𝑇, 𝑃𝐺, 𝑃𝐴 and 𝑆𝐴. 

The set of admissible study pairs for the lesson 

is equal to the intersection of the set of admissible 

study pairs of the group for which the classes are 

held, the teacher who conducts the classes and the 

classroom in which the classes are held. In 

formulas (4), (5), (11), (15), (22), the natural join 

operations applied to the relations 𝑃𝑇, 𝑃𝐺, 𝑃𝐴 

give the same result as the applying of the sets 

intersection operations with a simpler syntax of 

relational algebra formulas and a simpler notation 

of the SELECT command. The connection of 

relations is performed according to the condition 

of equality of the identifiers of study pairs for a 

given group, a given teacher and a given 

classroom. 

If classrooms are used for class only and are 

available on any class, the 𝑃𝐴 is the Cartesian 

product of the list of classroom IDs by the list of 

study  pair IDs. The 𝑃𝐺 relation can also be 

generated automatically if, for all academic 

groups, all study pairs of all days of the learning 

week are valid for classes. If for some groups 

there is a predetermined set of study pairs for 

which lessons cannot be assigned, this 

information should be specified as a source data. 

For example, on a given day of the week, the 

group is assigned duty in the laboratory, 

greenhouse, and the like. 

The 𝑃𝑇 relation is usually formed from the 

wishes and requirements of teachers for their 

timetable. The easiest way to fill in the 𝑃𝑇 data is 

for the teachers to list the desired pairs for the 

entire learning week. 

It is necessary to distinguish between the 

wishes and requirements of teachers. All teachers 

can put forward their wishes. Requirements can 

only be formulated by teachers with a sufficiently 

high rating. 

If there are wishes and requirements of 

teachers, the space of all possible states of the 

lesson schedule is divided into two subspaces: the 

subspace of desired states (SDSLS) and the 

subspace of admissible states (SASLS). 

Teachers can specify the desired and 

acceptable study pairs for classes not only in the 

form of a set of specific training pairs on specific 

days of the learning week, but also in the form of 

a range of possible values for the number of pairs 

during the day and the number of study days 

during the week. For example, the wishes and 

requirements of a teacher may look like this: no 

more than 3 study days a week, but preferably 2 

days.  

In this case, before the start of the scheduling 

of classes, all study pairs are considered desirable 

for the teacher. Therefore, all the lessons of a 

given teacher fall into the subset of the desired 

states of the lesson schedule, that is, they are 

tuples of relations 𝑍𝑅1, 𝑍𝐺1, 𝑍𝑆1, 𝑍𝑅0, 𝑍𝐺0, 

𝑍𝑆0 – depending on the type of lesson. 

Let us denote the relations of the subset of 

admissible states of the schedule of classes 

through 𝑌𝑅1, 𝑌𝐺1, 𝑌𝑆1, 𝑌𝑅0, 𝑌𝐺0, 𝑌𝑆0 – also 

depending on the type of lesson: streaming lecture 

weekly, a group lesson weekly, a subgroup lesson 

weekly, streaming lecture biweekly, a group 

lesson biweekly, a subgroup lesson biweekly. 

For the example given above, with the 

teacher's wishes, after putting at least one study 

pair in the schedule of this teacher's lessons on any 

two days of the study week, all study pairs of all 

other days of the week move from the desired 

category to the acceptable category. That is, the 

tuples of relations 𝑍𝑅1, 𝑍𝐺1, 𝑍𝑆1, 𝑍𝑅0, 𝑍𝐺0, 

𝑍𝑆0, corresponding to the lessons of this teacher 

on the remaining days of the study week, must be 

transferred to the relations 𝑌𝑅1, 𝑌𝐺1, 𝑌𝑆1, 𝑌𝑅0, 

𝑌𝐺0, 𝑌𝑆0. 

When placing each lesson in the schedule, the 

program first of all considers a subset of the 

desired states of the lesson schedule, that is, it 

selects from the relation 𝑍𝑅1, 𝑍𝐺1, 𝑍𝑆1, 𝑍𝑅0, 

𝑍𝐺0 or 𝑍𝑆0 (depending on the type of lesson), 

tuples corresponding to the given lesson. 



For each variant of placing a lesson in the 

schedule, the optimality of the position of this 

lesson in the space of the week's study pairs is 

calculated – a certain measure of the quality of 

this state of the schedule for the teacher and for 

the group (all groups in the case of a streaming 

lecture). This measure of quality can take into 

account many factors: the number of study pairs 

per day; number of study days per week; the 

appearance of a "window" in the schedule of a 

group or teacher; closing the "window" in the 

schedule of the group or teacher; the need for a 

group or teacher to move from one educational 

building to another to conduct a lesson; number of 

lectures during the study day; the number of 

laboratory lessons during the study day, and more. 

Particular factors affecting the quality of setting a 

lesson in the schedule are summed up in different 

weights using fuzzy logic methods [10]. 

The optimality of the location of this lesson in 

the space of study pairs related to the SASLS is 

also considered. If the quality measure for some 

option from this subset exceeds all quality 

measures of lessons from SDSLS, then this option 

is chosen. 

 For the example described above, with the 

teacher's wishes and requirements for their class 

schedule specified as a range of values, some 

states of the lessons schedule may go into a subset 

of inadmissible states. For this example, after 

assigning classes to a teacher on any 3 days of the 

study week, all schedule states with teacher's 

study pairs on the remaining days of the study 

week become inadmissible. 

These scheduling states should not be 

considered in further sequential scheduling of 

classes. However, it is not necessary to remove the 

corresponding tuples from the relations 𝑌𝑅1, 

𝑌𝐺1, 𝑌𝑆1, 𝑌𝑅0, 𝑌𝐺0, 𝑌𝑆0, since it may be 

necessary to change the lessons schedule to 

optimize it or if a deadlock occurs when 

scheduling. Therefore, all the corresponding 

tuples are transferred to the relations 𝑋𝑅1, 𝑋𝐺1, 

𝑋𝑆1, 𝑋𝑅0, 𝑋𝐺0 or 𝑋𝑆0 – in the subspace of 

inadmissible states of the lesson schedule 

(SISLS). The relations 𝑋𝑅1, 𝑋𝐺1, 𝑋𝑆1, 𝑋𝑅0, 

𝑋𝐺0, are not used in the planned scheduling of 

classes. 

2.2. Schedule classes  

Classes are placed in the schedule in turn, 

which is formed so that at each step the lesson 

with the least freedom of setting in the schedule is 

selected, or the teacher's lesson with the most 

dense work schedule is selected. The freedom to 

schedule classes and the density of the teacher's 

schedule are not constants calculated before the 

start of scheduling. These values are variables that 

are recalculated after each scheduled session. 

The current freedom to schedule a lesson is 

determined by two values 𝐾1 and 𝐾2. 𝐾1 – the 

number of study pairs of the week for which a 

lesson can be scheduled. 𝐾2 – the number of 

places in two-dimensional space (study pair) - 

(classroom) to which a lesson can be assigned. 

The current density of the teacher's schedule is 

calculated using two values 𝐾3 and 𝐾4. 𝐾3 – the 

number of free teaching pairs of the teacher, to 

which at least one of his unallocated classes can 

be assigned. 𝐾4 – the number of still unallocated 

lessons of the teacher. The calculations use the 

relative density of the work schedule of the 

teacher 𝐶1 and the relative freedom of distribution 

of the lessons of the teacher 𝐾5 (33)– (34): 

𝐶1 = 𝐾4 ∕ 𝐾3 (33) 
𝐾5 = 𝐾3 − 𝐾4 (34) 

The  𝐾1 and 𝐾2 values are calculated for each 

lesson not scheduled. The 𝐾3 and 𝐾4 values are 

calculated for each teacher who has unscheduled 

lessons. 

Since all possible options for setting classes in 

the schedule are tuples of relations 𝑍𝑅1, 𝑍𝐺1, 

𝑍𝑆1, 𝑍𝑅0, 𝑍𝐺0, 𝑍𝑆0 and 𝑌𝑅1, 𝑌𝐺1, 𝑌𝑆1, 𝑌𝑅0, 

𝑌𝐺0, 𝑌𝑆0, the calculation of values is reduced to 

calculating the number of tuples in the specified 

relations with grouping either by class IDs or by 

teacher IDs. 

From the variables 𝐾1, 𝐾2, 𝐾5, 𝐶1 a single 

value is not formed, according to which the 

remaining list of activities is sorted. A five-level 

sorting of the list of lessons is carried out: 

1. Ascending 𝑁1, where 𝑁1 = 𝐾1, 

 if  𝐾1 < 𝐾01, otherwise 𝑁1 = 𝐾01; 
2. Ascending 𝑁2, where 𝑁2 = 𝐾2, 

if  𝐾2 < 𝐾02, otherwise 𝑁2 = 𝐾02; 

3. Ascending 𝑁5, where 𝑁5 = 𝐾5, 

if  𝐾5 < 𝐾05, otherwise 𝑁5 = 𝐾05; 
4. Descending 𝐶𝐶, where 𝐶𝐶 = 𝐶1,  

if 𝐶𝐶 > 𝐶01, otherwise 𝐶𝐶 = 𝐶01; 

5. Descending 𝑁𝑔𝑟, where 𝑁𝑔𝑟 is the 

number of groups in the stream for which the 

lesson is held; for lessons in groups and 

subgroups 𝑁𝑔𝑟 = 1. 
𝐾01, 𝐾02, 𝐾05, 𝐶01 are empirical 

coefficients, the values of which need to be 

determined in further practical calculations. 



When any lesson is added to the schedule, it 

goes into the category of realized states of the 

lesson schedule, and the corresponding tuple from 

the relation 𝑍𝑅1, 𝑍𝐺1, 𝑍𝑆1, 𝑍𝑅0, 𝑍𝐺0 or 𝑍𝑆0 is 

transferred, respectively, to the relation 𝑅𝑅1, 

𝑅𝐺1, 𝑅𝑆1, 𝑅𝑅0, 𝑅𝐺0 or 𝑅𝑆0 – to the subspace of 

the realized states of the lesson schedule (SRSLS). 

All other states of the same lesson – all tuples 

from the same section of the subspaces of desired, 

admissible and inadmissible states of lesson 

schedules (SDSLS, SASLS, SISLS) with an 

identical lesson key (𝑖𝑑𝑠𝑟, 𝑖𝑑𝑠 or (𝑖𝑑𝑠, 𝑠𝑢𝑏)) are 

transferred to the subspace of unrealized lesson 

schedule states (SUSLS), that is into one of the 

relations 𝑈𝑅1, 𝑈𝐺1, 𝑈𝑆1, 𝑈𝑅0, 𝑈𝐺0 or 𝑈𝑆0 

(depending on the type of lesson). If it is necessary 

to change the schedule, each tuple from SRSLS 

can be exchanged with a simple set of operations 

for any tuple with the same primary key of the 

lesson from the corresponding section of SUSLS. 

It is also necessary to remove from the SDSLS, 

SASLS, SISLS those states of the lesson schedule 

that cannot be realized after the current lesson is 

added to the timetable according to the principle: 

any teacher cannot conduct more than one lesson 

at the same time; in any group (stream, subgroup) 

more than one lesson cannot be conducted at the 

same time; no classroom can have more than one 

lesson at a time. All tuples that violate this 

principle are transferred to the subspace of 

unrealizable states of the lesson schedule 

(SVSLS) – in the relations 𝑉𝑅1, 𝑉𝐺1, 𝑉𝑆1, 𝑉𝑅0, 

𝑉𝐺0, 𝑉𝑆0. In this case, the search for unrealizable 

states of the lesson schedule is carried out in all 

sections of the SDSLS, SASLS, SISLS subspaces. 

If the schedule is changed to replace a tuple 

from some SRSLS section with a tuple from the 

corresponding SVSLS section, a much more 

complex set of operations must be performed than 

when replacing this tuple with a tuple from the 

corresponding SUSLS section. 

3. Conclusions 

A mathematical model of the space of all 

possible states of the lesson schedule in HEIs has 

been developed. The model is developed in terms 

of relational algebra. The solution to the problem 

of automated scheduling of classes is found by 

means of a relational DBMS. 

The initial solution to the problem is found 

using an iterative process, which at each step 

chooses the lesson with the least freedom to 

schedule or the teacher's lesson with the most tight 

schedule. Freedom of scheduling classes and the 

density of teachers' schedules are variables that 

are calculated at each iteration for a subset of 

classes not yet scheduled. The list of unscheduled 

lessons is ordered at each step using empirical 

coefficients, the values of which will need to be 

determined during a series of practical 

calculations. The selected lesson is scheduled in 

the optimal place in a three-dimensional state (day 

of the school week) - (number of the study pair) - 

classroom. Optimality is determined by a set of 

criteria using fuzzy logic methods. An empirical 

weighting factor is assigned to each criterion. For 

each possible position of the lesson in the 

schedule, the criteria are summarized. The value 

of empirical weighting factors also needs to be 

determined in a series of practical calculations.  

The efficiency of the algorithm based on the 

proposed model is determined by the developed 

database schema, which excludes transactions of 

high complexity. 

Several factors contribute to reducing the 

complexity of transactions: 

1. All join operations between database 

relations are performed prior to starting the 

scheduling process. 

2. Different types of lessons refer to 

different relations, which allows replacing a 

data selection from one relationship with a 

complex structure and high cardinality with 

several simple selections (connected by the 

UNION operation) from relations of a simpler 

structure and lower cardinality; this eliminates 

NULL-valued attributes and complex 

predicates in the WHERE clause of the 

SELECT statement. 

3. Storing all possible options for the 

schedule of classes in the form of physical 

database tables, and not in the form of their 

virtual representation – nested queries of 

various types – increases the volume of the 

database, but significantly reduces the number 

of operations required for setting each class in 

the schedule. 

Storing all possible classroom scheduling 

options in physical database tables also makes it 

easy to compute characteristics that increase the 

likelihood of an optimal class schedule, such as 

the number of unallocated lessons that might 

"close the window" in a group’s or teacher’s 

schedule. 

Storing unrealized options for placing a lesson 

in the schedule, as well as unrealizable options 

(options that are superimposed on already 

distributed activities) in the form of separate 



subspaces of the common space of all possible 

states of the lesson schedule allows you to adjust 

the schedule and optimize it if necessary. 
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