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Abstract  
In the paper, the study of the carbon footprint (CF) assessment in the frozen vegetable 

production processes is shown in order to receive low-carbon products. Three methods of 

clusterization have been chosen for the production assessment. The results of clusterization are 

evaluated by five classification methods: k-Nearest Neighbors, Multilayer Perceptron, C4.5, 

Random Forrest and Support Vector Machines with a radial basis kernel function. In the chosen 

model with five clusters, the best clusterization methods are k-means followed by Canopy.  
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1. Introduction 

Greenhouse gas emissions from human 

activities have been a major contributor to global 

warming since the mid-twentieth century. 

Agriculture and land-use change contributed to 

17% of global anthropogenic greenhouse gas 

emissions in 2010 [1]. By 2050 the population 

will be 9 billion people [2] to ensure supplying of 

food, agricultural production should be increased 

by 60%. Climate change can affect food 

availability; for example, an increase in 

temperature, a change in the structure of rainfall 

or extreme weather events may result in a 

reduction in agricultural productivity [3, 4]. 

Therefore, its main challenge has become to 

mitigate the threats that climate change poses to 

food security. 

 In response to the emerging threats of climate 

change, numerous programs, both global and 

regional, have been developed, the purpose of 

which is to slow down the growth rate of GHG 

concentration [5]. Achieving climate policy goals 

requires continuous monitoring of emissions and 

verification of the effectiveness of solutions for 

the development of a low-emission economy. 

                                                      
ISIT 2021: II International Scientific and Practical Conference 
«Intellectual Systems and Information Technologies», September 

13–19, 2021, Odesa, Ukraine 

EMAIL: piotr.milczarski@uni.lodz.pl (A. 1);  
ORCID: 0000-0002-0095-6796 (A. 1); 

 
©️  2021 Copyright for this paper by its authors. Use permitted under Creative 

Commons License Attribution 4.0 International (CC BY 4.0).  

 CEUR Workshop Proceedings (CEUR-WS.org)  

 

The adoption of an action plan for the 

reduction of gaseous emissions by EU countries 

in 2014 requires the reduction of GHG emissions 

by 30% by 2030, compared to the level in 2005 

[6]. The methods of calculating the carbon 

footprint are most often based on well-known 

standards. Among them, the most used are:  

 ISO14040: 2006 [7] – Environmental 

management-life cycle assessment: principles 

and framework,  

 ISO14064-1: 2018 [8] – Greenhouse 

gases - Part 1: Specification with guidance at 

the organization level for quantification and 

reporting of greenhouse gas emissions and 

removals,  

 ISO/TS 14067:2018 [9] – Greenhouse 

gases - Carbon footprint of products - 

Requirements and guidelines for 

quantification,  

 PAS2050 [10] – Specification for the 

assessment of the life cycle greenhouse gas 

emissions of goods and services. 

Once the carbon footprint has been calculated, 

its detailed data helps to identify weaknesses, i.e. 

high-emission areas, that can be eliminated or 

improved. Thus, the carbon footprint is an 

indicator of sustainable development  



2. Carbon footprint assessment using 
Life Cycle Assessment (LCA) 
method 

Carbon footprint calculation is used as a tool 

for assessing greenhouse gas emissions, helping 

to manage and reduce them. The carbon footprint 

is typically calculated using carbon emission 

factors and activity data that can be assessed 

through a Life Cycle Assessment (LCA). The 

carbon footprint analysis according to the LCA 

methodology is carried out by identifying 

potential environmental threats, usually 

throughout the entire life cycle of a product, i.e. 

from the extraction and processing of raw 

materials, their transport, through main 

production, distribution and use, to waste 

management [11]. However, in agricultural 

production, the emissions directly related to 

energy consumption are not dominant [12]. A 

large part of GHG emissions on farms is gas 

losses from farmland and livestock. While 

calculating the carbon footprint with the use of 

agricultural emission models according to the 

IPCC reports, all emission sources are taken into 

account, both those related to energy carriers and 

processes taking place in the agricultural 

environment.  

LCA is a widely used approach to assess the 

actual environmental impact of a product from its 

production and use [11] [12] [13]. The standards 

for assessing the product carbon footprint in LCA 

are mainly PAS 2050 [10] and ISO / TS 14067 [9]. 

In the case of the CFOOD project, that is 

presented in the paper, the focus is on the 

optimization of the frozen food production 

process, so we consider a segment of the product 

life cycle from the moment of raw material 

delivery to the shipment of the finished frozen 

food to the recipient 

According to the adopted LCA methodology, 

the carbon footprint of a product consists of 

carbon footprints generated at the following 

stages of its production. Hence the total CF for a 

given product or its unit value can be expressed 

by the following formula [14][15][16]:  
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where: i is each of the stages of the product life 

cycle, i = a, m, t, u, and r, relate to the extraction 

of raw materials, production, transport, use as well 

as the recycling and disposal stage, respectively. 

3. Carbon footprint assessment in 
CFOOD project 

In the case of the CFOOD project, we focus on 

the optimization of the frozen food production 

process, so we consider a segment of the product 

life cycle from the moment of raw material 

delivery to the shipment of the finished frozen 

food to the recipient. The production process can 

be divided into several smaller stages: 

 S1 – initial cooling of the raw materials 

before the processing; 

 S2 – the raw material preparation for the 

production; 

 S3 – raw material pre-processing on the 

production line; 

 S4 – product freezing in the cold tunnel; 

 S5 – product preparation to a coldstore. 

Each of the process stages is connected to 

electric meter units. Each production stage has 

also a preparation phase that is measured 

separately, e.g. S1 has a preparation phase that is 

denoted pS1, etc.  

In the research section, we have tested several 

clusterization methods and choose three: Canopy, 

k-Means (KM) and Expectation-Maximization 

(EM) [17][18]. We have tested several options 

with the cluster numbers and chosen five clusters 

for each method that should represent according 

to our experience some real-time situations that 

occur during the production and their accounting 

systems: 

- Optimal production – the product has the 

temperature from -25oC till -18oC at the end 

of the line; 

- Close to optimal – during the high season 

through-output should be higher, hence the 

energy consumption should be lower, the 

product temperature is allowed to be from the 

range -6oC and -18oC.  

- Wrong accounting of some parameters e.g. 

operators mistakes resulting in too high or too 

low results e.g. the through-output. 

- Malfunction of the energy meters. It is a 

different situation from the above one and 

might result in random results.  

The clusterization model with five clusters 

should have at least 60 processes. After a year of 

the process measurement, till June 2021, we have 

collected 152 results only for the frozen onion 

production and 75 for the spinach. The other 

vegetables have less than 50 cases. Nonetheless, 



the other production e.g. broccoli and cauliflower 

should also be optimized. That is why in the 

current work, the results of clusterization of 35 

broccoli processes and 42 cauliflower ones are 

presented in the current paper. 

In the previous work [15][16] to assess the 

onion and spinach production processes we have 

prepared the set of verified data and to assess the 

trustworthiness of the production data we have 

compared the results of processes classification 

using 5 classifiers: k-Nearest Neighbors, 

Multilayer Perceptron [17], C4.5, Random Forrest 

and Support Vector Machines with a radial basis 

kernel function [17]. In the current paper, the 

focus is on unsupervised methods i.e. 

clusterization [17] into the broccoli and 

cauliflower processes. 

 

Table 1 
K-means clusterization of broccoli production, 
the units for stages i-th stage pS1, S1 etc. are in 
kWh/ton, for pt in ton/h, for et in kWh/h  

 Broccoli Clusters K-Means 

Attribute 0 1 2 3 4 

pS1 0.08 0.32 0.04 4.19 0.09 
S1 1.34 1.35 1.51 4.25 2.08 
S2 0.16 0.03 0.23 0.09 0.08 

pS3 0.06 0.05 0.03 0.11 0.06 
S3 0.91 1.14 0.70 0.21 1.38 

pS4 7.68 2.29 0.12 6.54 0.25 
S4 49.10 55.69 3.07 13.19 6.40 

pS5 0.01 0.18 0.00 0.18 0.01 
S5 0.18 1.51 0.03 0.24 0.17 
pt 1.56 1.46 1.80 2.11 2.12 
et 98.67 91.01 9.91 57.77 20.32 

instances 4 4 3 22 2 

 

In Tables 1-3 and 4-6 there are clusterization 

results of the broccoli and cauliflower production 

processes. The units for stages i-th stage pS1, S1 

etc. are in kWh/ton, for pt in ton/h, for et in 

kWh/h. The results are achieved using the chosen 

clusterization methods with five clusters:  

- Canopy: max-candidates = 100; periodic-

pruning = 10000 ; min-density = 2.0; T2 

radius = 0.804  and T1 radius = 1.005  

- k-Means (KM) with Euclidean distance, max-

candidates = 100, periodic-pruning = 10000, 

min-density = 2.0, T1 = -1.25 and T2 = -1.0. 

- Expectation–Maximization (EM) with max-

candidates = 100, “minimum improvement in 

log likelihood” = 1E-5, “minimum 

improvement in cross-validated log 

likelihood” = 1E-6, and “minimum allowable 

standard deviation” = 1E-6.  

 

Table 2 
Canopy clusterization of broccoli production 

 Broccoli Cluster Canopy 

Attribute 0 1 2 3 4 

pS1 0.09 0.39 0.08 0.13 0.13 
S1 2.85 1.53 0.13 6.92 0.71 
S2 0.11 0.03 0.10 0.11 0.05 

pS3 0.02 0.06 0.05 0.00 0.07 
S3 0.44 1.25 0.63 0.14 0.63 

pS4 1.59 1.75 5.22 0.14 5.36 
S4 16.85 58.77 45.3 10.65 43.53 

pS5 0.01 0.24 0.00 0.00 0.22 
S5 0.21 1.74 0.00 0.21 0.42 
pt 2.00 1.35 1.55 1.90 1.92 
et 42.19 85.69 82.9 33.65 100.1 

instances 16 3 3 8 5 

 
Table 3 
EM clusterization of broccoli production 

 Broccoli Cluster EM 

Attribute 0 1 2 3 4 

pS1 0.09 0.33 0.02 89.74 0.25 
S1 3.17 13.28 1.16 6.92 1.46 
S2 0.08 0.11 0.23 0.14 0.06 

pS3 0.01 0.02 0.04 2.16 0.06 
S3 0.27 0.55 0.77 0.14 1.01 

pS4 0.30 1.86 4.55 129.4 3.27 
S4 8.60 38.08 20.92 11.29 52.48 

pS5 0.01 0.05 0.00 3.61 0.14 
S5 0.18 0.68 0.02 0.27 1.02 
pt 2.13 2.07 1.71 1.96 1.55 
et 26.84 104.9 44.61 465.0 95.07 

instances 19 2 5 1 8 

 
Figures 1 and 2 show the energy consumption 

during the production on the energy meters of the 

chosen stages S1, S2, S3 and S4 for the chosen 

broccoli process with ID 373 and the cauliflower 

process with ID 365. 

 



 

Figure 1: Example of energy consumption for the broccoli production, process ID 373; the colors of 
the stages: S1 – brown, S2 – green, S3- light blue, S4 - dark blue.  
 

 
Figure 2: Example of energy consumption for the cauliflower production, process ID 365; the colors of 
the stages: S1 – brown, S2 – green, S3- light blue, S4 - dark blue.  
 
Table 4 
K-means clusterization of cauliflower production  

 Cauliflower Clusters K-Means 

Attribute 0 1 2 3 4 

pS1 0.52 0.18 5.46 6.97 519.2 
S1 24.27 2.48 7.08 1.00 2.28 
S2 1.13 0.10 0.14 0.06 0.05 

pS3 0.17 0.06 0.16 3.20 157.7 
S3 8.41 0.97 1.71 0.55 1.21 

pS4 0.43 5.22 3.67 22.58 678.1 
S4 28.30 57.14 17.50 3.14 5.55 

pS5 0.02 0.22 0.14 0.84 48.59 
S5 0.69 1.31 0.33 0.06 0.24 
pt 1.86 1.37 2.07 1.64 2.22 
et 127.0 92.66 79.17 81.15 3332 

instances 3 5 17 15 2 

 

Table 5 
Canopy clusterization of cauliflower production 

 Cauliflower Cluster Canopy 

Attribute 0 1 2 3 4 

pS1 5.23 0.50 519.2 0.70 0.10 
S1 4.52 24.42 2.28 14.62 7.16 
S2 0.11 1.60 0.05 0.35 0.08 

pS3 1.35 0.09 157.7 0.01 0.01 
S3 1.34 8.24 1.21 0.77 2.72 

pS4 11.26 0.36 678.1 0.11 0.18 
S4 17.43 26.35 5.55 4.30 11.93 

pS5 0.42 0.01 48.59 0.00 0.01 
S5 0.37 0.55 0.24 0.13 0.58 
pt 1.80 1.87 2.22 1.67 1.81 
et 83.16 123.6 3332 36.75 44.63 

instances 27 2 2 3 8 

 



4. Evaluation of the clusterization 

In the discussion presented in Tables 1-6 and, 

the optimal clusters have been highlighted. All 

values for the stages and their preprocessing phase 

are in kWh/ton, the production through output (pt) 

in [ton/h]. K-means and EM seem to provide the 

best assessment of the processes because it’s the 

best cluster that has the lowest energy 

consumption from the three optimal clusters for 

each clusterization.  

Table 6 
EM clusterization of cauliflower production 

 Cauloflower Cluster EM 

Attribute 0 1 2 3 4 

pS1 3.44 0.50 0.17 34.90 519.2 
S1 4.13 23.95 2.13 0.06 2.28 
S2 0.10 0.94 0.10 0.00 0.05 

pS3 0.11 0.13 0.08 16.03 157.7 
S3 1.31 6.59 0.96 0.00 1.21 

pS4 2.13 0.34 5.53 113.2 678.1 
S4 11.01 22.59 54.4 0.28 5.55 

pS5 0.09 0.01 0.19 4.24 48.59 
S5 0.23 0.58 1.11 0.01 0.24 
pt 1.89 1.94 1.47 1.55 2.22 
et 48.6 112.4 94.3 363.0 3332 

instances 27 4 6 3 2 

 

To assess and to choose the clusterization 

method we have used five machine learning 

methods as in our previous work [11][12]. All the 

clusterization results were assessed by the 

classification methods with the same parameters. 

In Tab. 5 there are classification results of the 

production processes using the following 

classifiers:  

- 3NN (kNN) 3-Nearest Neighbors;  

- Multilayer Perceptron (MLP) with a hidden 

layer with 16 nodes for both productions with a 

learning rate equal to 0.79 and momentum 

equal to 0.39 [13];  

- binary tree C4.5 with a confidence factor equal 

to 0.25, with a minimum number of instances 

per leaf equal 2;  

- Random Forrest (RF) with the bag size percent 

equal to 100, with maximum depth unlimited, 

number of execution slots equal to 1 and 100 

iterations;  

- Support Vector Machine (SVM) with a radial 

basis function (RBF) given by the Eq. (2): 

K(x,y) = exp(-0.05*(x-y)2) (2) 
 

Table 7 
Evaluation of the broccoli clusterization by the 
chosen classifiers 

Classifier 
Broccoli evaluation results [%] 

Canopy KM EM 

3NN 85.7 97.1 97.1 
C4.5 94.3 100 97.1 
MLP 97.1 94.3 97.1 
RF 100 100 100 

SVM 100 100 100 

 
Table 8 
Evaluation of the cauliflower clusterization by the 
chosen classifiers 

Classifier 

Cauliflower evaluation results 
[%] 

Canopy KM EM 

3NN 90.5 90.5 85.7 
C4.5 95.2 97.6 97.6 
MLP 92.9 81.0 92.9 
RF 100 100 100 

SVM 100 100 100 

5. Conclusions 

In the paper, three clusterization methods have 

been shown that allow us to assess the processes 

and their impact on energy consumption and 

hence, the carbon footprint. We have shown that 

all the clustering methods point out the processes 

that are proper from the manufacturing point of 

view. In the paper, the results for the broccoli and 

cauliflower production taking into account 35 and 

42 corresponding processes respectively have 

been shown. Currently, we collect new processes 

for the other vegetable products. The will be 

analyzed using the clustering methods shown 

above 

The k-means classifier is fast and simple, it has 

significant disadvantages because it is sensitive to 

emissions that distort the average value. Although 

it gives EM the best results in the assessment of 

the whole production it is planned to use k-SVD 

and fuzzy k- means methods in future work. 
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