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Abstract. Emergence of the Coronavirus 2019 Disease has highlighted further 
the need for timely support for clinicians as they manage severely ill patients. 
We combine Semantic Web technologies with Deep Learning for Natural Lan-
guage Processing with the aim of converting human-readable best evi-
dence/practice for COVID-19 into that which is computer-interpretable. We 
present the results of experiments with 1212 clinical ideas (medical terms and 
expressions) from two UK national healthcare services specialty guides for 
COVID-19 and three versions of two BMJ Best Practice documents for 
COVID-19. The paper seeks to recognise and categorise clinical ideas, perform-
ing a Named Entity Recognition (NER) task, with an ontology providing extra 
terms as context and describing the intended meaning of categories understand-
able by clinicians. The paper investigates: 1) the performance of classical NER 
using MetaMap versus NER with fine-tuned BERT models; 2) the integration 
of both NER approaches using a lightweight ontology developed in close col-
laboration with senior doctors; and 3) the easy interpretation by junior doctors 
of the main classes from the ontology once populated with NER results. We re-
port the NER performance and the observed agreement for human audits.  
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1 Introduction 

The World Health Organization declared the Coronavirus Disease 2019 (COVID-19) 
outbreak a pandemic on 11 March 2020 [1]. The COVID-19 pandemic is a prime 
example of a need for evidence-based recommendations for clinical care that need to 



 

be reviewed and updated frequently and rapidly. There are datasets for COVID-19 
such as CORD-19 [2] and LitCovid [3] that are updated regularly, including thou-
sands of articles from PubMed/MEDLINE [4]. However, not all the publications in-
cluded in those datasets have the same clinical value as resources for Evidence-Based 
Medicine (EBM) [5] that integrates clinical experience with the best scientifically 
sound research available [5]. 

The body of scientific evidence for healthcare is not limited to information in 
PubMed/MEDLINE articles, but also includes clinical point-of-care summaries and 
clinical practice guidelines from healthcare services.  BMJ Best Practice [6] and Up-
ToDate [7] are examples of clinical evidence summaries that aim to bring the latest 
evidence from health research into healthcare practice.  

Biomedical facts and clinical recommendations are made of natural language 
statements, typically complex sentences that are human-readable and intended for 
expert-to-expert communication. Named Entity Recognition (NER) is one well-
known natural language processing (NLP) task that seeks to recognise specific words 
or phrases (‘entities’) from natural language statements and categorise them [8]. In 
this study, we adhere to a functional perspective on ontologies [9], and explore how 
ontologies can be used for categorisation in support of NER task. We consider ontol-
ogies as artifacts that can [9]: a) provide background knowledge about a domain; b) 
contain a list of terms associated with the ontology’s classes and relations; and c) 
supply formal machine-readable definitions and axioms represented in many forms.  

This paper addresses three critical questions regarding prior knowledge for 
COVID-19, i.e. best evidence/practice provided by UK clinical practice guidelines 
and BMJ Best Practice documents for COVID-19. Firstly, what is the performance of 
classical NER using MetaMap [10] versus the state-of-the-art NER with transformer-
based language models from Deep Learning for NLP [11], such as BERT (Bidirec-
tional Encoder Representations from Transformers) [12]? Secondly, to what extent 
does a lightweight ontology facilitate the integration of results from both NER ap-
proaches? Thirdly, to what extent can the main classes from the lightweight ontology, 
once populated with NER results, be easily interpreted by junior doctors?.  

The novelty of this paper is three-fold: 1) presenting the Evidence-Based Recom-
mendation Ontology (EBRO), a light-weight ontology co-created with close collabo-
ration with senior doctors (medical consultants from UK and Spain) that aims to con-
tain main classes easily interpretable by junior doctors; 2) proposing a different prob-
lem formulation for NER as a fine-tuning specific task with transformer-based lan-
guage models, considering NER as a sequence-level task instead of a token-level task 
[12]; and 3) exploring NER performance for BMJ Best Practice text excerpts for 
COVID-19 using biomedical-specific transformer models and general-domain trans-
former models (e.g. BERT) fine-tuned for NER with titles and available abstracts 
from PubMed/MEDLINE articles about COVID-19. 

The approach presented follows Semantic Deep Learning [13] combining Semantic 
Web technologies and Deep Learning for NLP. The paper belongs to explainable 
artificial intelligence [14]. The fine-tuning of transformer-based language models fits 
in the new field of explainable active learning (XAL) [15], differing from traditional 
active learning (AL) in providing the model’s prediction together with an explanation. 



 

2 Experiments with prior knowledge for COVID-19 

We start by presenting the informal and formal meanings for the main classes within 
the EBRO. Next, we illustrate how the outcome of both MetaMap and transformer-
based language models fine-tuned for NER can be incorporated into the EBRO. We 
introduced six principles developed to assess the outcome from MetaMap. We pro-
vide details of XAL setup for fine-tuning transformer-based language models for 
NER. Finally, we recapitulate the experimental design and the measures for evaluat-
ing the performance of the experiments, including human audits. 
 
2.1 The Evidence-Based Recommendation Ontology (EBRO) 

This study presents the EBRO, an ontology represented in the W3C Web Ontology 
Language (OWL) [16]. We take a pragmatic approach to the ontology building and 
prioritise re-use over other considerations. The EBRO reuses axioms from several 
ontologies, such as: the Ontology Lexicon (Ontolex) [17]; the Semantic science Inte-
grated Ontology (SIO) [18]; the Basic Formal Ontology (BFO) [19] and the Infor-
mation Artifact Ontology (IAO) [20]. The EBRO can be downloaded from [21]. 

Table 1 illustrates informal descriptions of the main EBRO classes according to 
senior doctors along with the more formal descriptions in the Manchester OWL syn-
tax [22] with classes from BFO and IAO. The EBRO reuses some of the Unified 
Medical Language System (UMLS) Semantic Types [23] like ‘T121|Pharmacologic 
Substance’. The EBRO reuses the classes ‘Condition’ and ‘Population’ from the 
PICO ontology [24]. 

Table 1. Illustrating informal descriptions for EBRO classes 

EBRO class Informal description Manchester OWL syntax 
Patient's 
healthcare  
problem 

A healthcare problem implies the presence of 
clinical findings including symptoms, nor-
mal/abnormal clinical states, and diagnoses.  

SubClassOf:  
'obo:realizable entity' 

Process of care 
“The processes through which patient care is 
delivered” [25]. 

SubClassOf: obo:process 

Patient’s  
treatment 

“Action taken by a health professional, in the 
context of contact with a treatment recipient, 
to alter the functioning of an individual with a 
disability or at risk of a disability” [26]. 

SubClassOf: 'Process of 
care' 

Patient’s test "All types of tests are eligible” [27]. 
SubClassOf: 'Process of 
care' 

Chemicals & 
Drugs 

Some UMLS Semantic Types like ‘Pharma-
cologic Substance’ are included as subtypes. 

SubClassOf:  
'obo:material entity' 

Evidence-
based infor-
mation source 

Examples are: PubMed articles; clinical evi-
dence summaries (e.g. BMJ Best Practice); 
and clinical practice guidelines. 

SubClassOf: obo:document 
and ('obo:has evidence' 
some obo:evidence) 

 



 

2.2 EBRO and NER: MetaMap versus BERT models 

Figure 1 sketches how EBRO incorporates the NER results of both: (1) classic NER 
with MetaMap; and (2) NER with fine-tuned transformer-based language models.    

 
Fig. 1. Overview of how to incorporate NER results into the EBRO 
 
NER with MetaMap. To express a clinical idea, a medical term - more generally, a 
medical expression - may be needed. A clinical idea may match fully or partially a 
concept from existing clinical/biomedical terminologies. In UMLS Metathesaurus 
[10], each concept has a Concept Unique Identifier (CUI) and one or more UMLS 
Semantic Types. In UMLS, a Metathesaurus concept is mapped to zero, one, or more 
than one concept from the clinical terminology SNOMED CT (Systematized Nomen-
clature of Medicine - Clinical Terms) [28]. MetaMap can map a clinical idea to 
UMLS Metathesaurus concepts and SNOMED CT concepts. Occasionally, profes-
sional terminologists may suggest a bio-health informatics (BHI) concept that merges 
multiple similar UMLS CUIs into one concept or is a concept non-existent in UMLS. 
 
Six principles to assess NER with MetaMap. This study selects the focus concept(s) 
among the CUIs provided by MetaMap, but in some cases the mapping has been per-
formed manually. The selection of the focus concept(s) is guided by six principles: 

1. The focus concept is interpreted in this study as the CUI that captures the 
key and more specific biomedical/clinical meaning (i.e. governing term). 

2. When selecting the focus concept, avoid general biomedical/clinical terms in 
favour of more specific terms. 

3. When selecting the focus concept, favour CUIs that have a wider coverage in 
vocabulary sources as well as a wider meaning, and if pertinent, are already 
included in SNOMED CT. If the CUI covers “literally” the clinical idea, this 
should be selected, even if it is Not in SNOMED CT. If the CUI covers the 
clinical idea and is mapped to SNOMED CT, this should be selected. 



 

4. A focus concept can have one or more refinements (i.e. dependent terms). 
5. Negation is interpreted in this study as a refinement. 
6. Multiple focus concepts should be considered only if there is more than one 

governing term, and if possible, belonging to the same UMLS Semantic 
Type. When using multiple focus concepts the meaning is their combined 
meaning, i.e. with logical “OR” for connecting the multiple focus concepts.  

 
NER as fine-tuning transformer-based language models. In this work, we use the 
BERT base model as a baseline [12]. For the experiments, we consider the general-
domain pre-trained language models BERT and RoBERTa [29]. We also consider 
five biomedical-specific pre-trained language models: BioBERT [30], SciBERT [31], 
ClinicalBERT [32], BlueBERT [33], and PubMedBERT [11]. Table 2 has infor-
mation about the corpus from which transformer-based models were pre-trained. Sci-
BERT was pre-trained using PubMed Central [34] and computer science (CS) litera-
ture. The model names (last column) are from the python library transformers by 
Hugging Face [35], which is used to fine-tune the transformer-based models. 

The fine-tuning of BERT for a NLP downstream task is a problem formulation 
with two alternatives: token classification or sequence classification [11,12]. The 
problem formulation for NER is token classification [11,12]. A novelty of our work is 
to consider NER as sequence classification like question answering, and thus, the 
AutoModelForSequenceClassification implemented in Hugging Face [35] is utilised.  

Table 2. BERT models: information about the pre-trained transformer-based models. 

Pre-trained model Corpus Hugging Face transformers [35]: model name 
BERT Wiki + Books bert-base-cased 
RoBERTa Web crawl roberta-base 
BioBERT PubMed dmis-lab/biobert-base-cased-v1.1 
SciBERT PubMed Central + CS allenai/scibert_scivocab_cased 
ClinicalBERT MIMIC emilyalsentzer/Bio_ClinicalBERT 

BlueBERT PubMed + MIMIC 
bionlp/bluebert_pubmed_uncased_L-24_H-
1024_A-16 

PubMedBERT PubMed 
microsoft/BiomedNLP-PubMedBERT-base-
uncased-abstract 

 
NER fine-tuning with XAL setup. Figure 2 outlines the AL cycle. We used 
word2phrase from word2vec [36] to obtain n-grams for each PubMed dataset (fourth 
column in Table 3). Each PubMed article has a unique identifier (PMID). The exper-
imental setup for XAL considers 10 iterations, leveraging on word2vec models [36] 
created with the skip-gram algorithm using titles and available abstracts from Pub-
Med/MEDLINE articles. For each iteration, the model Mi from Table 3 with i=[1,10] 
provided some instances for training the transformer-based language models.  

M1 to M6 are created with titles and available abstracts (raw text) from PMIDs that 
appear among the bibliographic references of the BMJ Best Practice for COVID-19 



 

[37] released around the date shown in Table 3 (first column). M7 to M10 are created 
with titles and available abstracts from files downloaded from PubMed from Decem-
ber 2019 until the date displayed in Table 3 and having terms such as 'COVID-19', 
'SARS-CoV-2', and 'coronaviruses' in the title, abstract, and original subject headings. 
The last column in Table 3 has the number of PMIDs from CORD-19 [2] dataset of 
31 May 2021. Comparing the last two columns of Table 3, few PMIs included in the 
BMJ Best Practice for COVID-19 [37] are not included in CORD-19. 

 
Fig. 2. Overview of NER fine-tuning for BERT models with XAL setup 

Table 3. Information about the word2vec models created and used for XAL 

Date word2vec model 
word2vec 
algorithm 

PubMed dataset 
(number of 

PMIDs) 

Number of 
PMIDs in 
CORD-19 

10-August-2020 M1 skip-gram 706 703 
10-July-2020 M2, M3, M4 skip-gram 671 668 
10-June-2020 M5 skip-gram 594 593 
11-May-2020 M6 skip-gram 435 434 

10-August-2020 M7 skip-gram 41,472 40,876 
10-July-2020 M8 skip-gram 32,245 31,809 
10-June-2020 M9 skip-gram 22,513 22,216 
11-May-2020 M10 skip-gram 11,771 11,670 

 
The fine-tuning can be construed as reading comprehension [38] with a training da-
taset having 3-tuples (label, question, passage). The label is the prediction True/False 
also interpretable as a yes/no answer for question answering task. The question con-



 

sists of an n-gram representing a general medical term — providing the explicit mean-
ing and conveying a lexical sense (see Figure 1) — together with an input/output n-
gram (appearing as ‘candidate n-gram’ in Figure 1) from vector arithmetic formulas 
[39] applied to word2vec model Mi. The passage is a sentence obtained by retracing 
the input/output n-gram into the PubMed dataset, which was re-organised by date and 
source. The sentence acts as a local explanation, justifying only the reason for the 
prediction on a specific input instance [40].  

The vector arithmetic formulas [39] (see Figure 2) act as the active learning sam-
pling strategy, i.e. the scoring functions to select the ‘candidate n-gram’ for the que-
ries to fine-tune pre-trained transformer-based language models. The total number of 
unique n-grams from models M1 to M10 is 98,901 and the vector arithmetic formulas 
selected 2060 instances for training: 1575 are False and 485 are True. 
 
2.3 Experimental design and evaluation metrics 

Figure 3 distills the essence of the experiments conducted and the human audits per-
formed involving two professional terminologists and one junior doctor.  

NER experiments with prior knowledge for COVID-19. For NER with MetaMap 
we used 1212 clinical ideas (see ‘clinical idea’ in Figure 1) appearing in textual ex-
cerpts from two UK national healthcare service specialty guides for COVID-19 [41] 
and two BMJ Best Practice documents for COVID-19 [37,42]. We considered a 3-
month chronology: documents released around 10th of May, June, and July 2020. For 
NER with fine-tuned transformer-based models we used 259 clinical ideas appearing 
in 345 textual excerpts (interpreted here as passage) that are new in the June 2020 
version when compared with May 2020 version of the two BMJ Best Practice docu-
ments for COVID-19 [37,42]. 

NER performance metrics using the human gold standard labels. A professional 
terminologist and a senior doctor, both with many years of experience as clinical cod-
ers, provide the human gold standard labels [38]. We report precision, recall, and F-
measure [38] for NER using the human gold standard labels.  

For NER with MetaMap, considering the six principles introduced in the previous 
subsection, there are two possibilities when mapping the meaning of a clinical idea to 
UMLS CUI(s): a) full match in meaning, e.g. synonym, expressed as a “a clinical 
idea is-a focus concept, which ‘refers to (full match)’ CUI”; b) partial match in mean-
ing, i.e. something is not captured by the CUI(s), expressed as “a clinical idea has at 
least one focus concept, which ‘evokes (partial match)’ CUI”. If there are multiple 
focus concepts, each single CUI is a partial match in meaning, i.e. “evokes”. 

For NER with fine-tuned transformer-based language models, a clinical idea may 
appear in one or more textual excerpts from BMJ Best Practice. Each textual excerpt 
is considered a passage. Every lexical sense from Figure 1 is systematically consid-
ered, i.e. composing questions with the clinical idea and the n-gram representing a 
general medical term. Transformers map sequences of input vectors {x1, ..., xn} to 
sequences of output vectors {y1, ..., yn} of the same length [38]. The NER result is 



 

interpreted by looking at the output label included in the output vector. The output 
label indicates if the clinical idea belongs (True/False) to the lexical sense. 

 
Fig. 3. Overview of the human audits in the experiments conducted for NER 
 
Human audit: measuring agreement with the human gold standard labels. We 
carried out three human audits with domain experts as indicated in Figure 3. We re-
port the observed agreement and kappa coefficient [43]. The human audit with clini-
cians judge the classification of the clinical ideas as: (1) children or descendants of 
EBRO main classes using the HermiT reasoner [44]; and (2) lexical senses (see Fig-
ure 1) relatable to the output labels included in the output vectors from BERT models.  

3 Results: NER performance and human audit 

Table 4 shows the performance for NER with BERT models for 259 clinical ideas. 

Table 4. Performance for NER with excerpts and clinical ideas from BMJ Best Practice docu-
ments using BERT models fine-tuned for NER with COVID-19 articles from PubMed 

Fine-tuned model F1-measure % Precision % Recall % 
BERT 78.05 67.69 92.15 

RoBERTa 25.27 14.64 92.16 
BioBERT 90.08 83.49 97.81 
SciBERT 92.87 88.70 97.45 

ClinicalBERT 82.14 73.12 93.70 
BlueBERT 72.82 58.84 95.52 

PubMedBERT 88.82 81.46 97.64 
 



 

For the 1212 clinical ideas, NER with MetaMap using the six principles introduced 
earlier obtained F1-measure=90.96% with Precision=84.25% and Recall=98.83% for 
UMLS version 2016AA. For UMLS version 2020AA, F1-measure=91.93% with 
Precision=85.49% and Recall=99.42%. 

Terminologist A had an observed agreement of 98.10% for 888 clinical ideas. 
Terminologist B had an observed agreement of 97.49% for 314 clinical ideas. Kappa 
K=0.887 for terminologists A and B is interpreted as “almost perfect agreement” [43]. 

For 972 children or descendants of EBRO main classes, a UK junior doctor had an 
observed agreement of 95.27%. For the 259 clinical ideas classified according to lexi-
cal senses, the same UK junior doctor had an observed agreement of 87.64%. 

4 Concluding remarks 

Whether physicians are ready to use evidence from big data remains unclear. Howev-
er, this study suggests a high level of agreement by junior doctors for categories pro-
posed by senior doctors. From an ontological point of view, the EBRO has many 
weaknesses, like including ambiguous lexical senses exploitable by BERT models. 
Indeed, the observed agreement is lower for the clinical senses after being populated 
for COVID-19 than the observed agreement for the EBRO main classes after being 
populated for COVID-19. 

The six principles introduced to assess NER with MetaMap seem to foster a high 
agreement with professional terminologists and a performance quite close to NER 
with BERT models, where SciBERT obtained the highest F1-measure=92.87%.  
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