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Abstract. Dynamic composition of web services is a promising approachand
at the same time a challenging research area for the dissemination of service-
oriented applications. It is widely recognised that service semantics is a key ele-
ment for the dynamic composition of Web services, since it allows the unambigu-
ous descriptions of a service’s capabilities and parameters. This paper introduces
a framework for performing dynamic service composition by exploiting the se-
mantic matchmaking between service parameters (i.e., outputs and inputs) to en-
able their interconnection and interaction. The basic assumption of the framework
is that matchmaking enables finding semantic compatibilities among indepen-
dently defined service descriptions. We also developed a composition algorithm
that follows a semantic graph-based approach, in which a graph represents ser-
vice compositions and the nodes of this graph represent semantic connections
between services. Moreover, functional and non-functional properties of services
are considered, to enable the computation of relevant and most suitable service
compositions for some service request. The suggested end-to-end functional level
service composition framework is illustrated with a realistic application scenario
from the IST SPICE project.

1 Introduction

An important benefit of the Service-Oriented Architecture (SOA) is that it enables dy-
namic service binding, which allows service users to discover, select and invoke ser-
vices at runtime. Web services technologies [1] provide a suitable technical foundation
for developing and deploying loosely coupled and reusable software components, which
can be invoked through their service ports.Web servicesare distributed and program-
matically accessible over standard Internet protocols, and interoperate independently of
the programming languages, operating systems and hardwareplatforms used to imple-
ment them. Therefore, Web services technologies offer the feature richness, flexibility
and scalability needed by enterprises to profit from the SOA benefits.

Automated service discovery, selection and composition are expected to enrich the
experience of service end-users through value-added services, and to allow automated
processes to interact with minimal human intervention [2].However, some work still



has to be done to appropriately support dynamic and automated service discovery, se-
lection and composition with the current Web services technologies. The automation of
these tasks requires some knowledge about the services, such as: (i) description of the
service capabilities, for example, in terms of the semantics of IOPEs (Input, Output,
Preconditions and Effects); (ii) process model, which provides a description of the ser-
vice activities, interaction protocol and exchanged messages; (iii) grounding specifica-
tion of the service, which describes the coding used to map information onto messages
and the protocols used to exchange these messages. These requirements are expected
to be covered by defining semantic models of web services, using techniques from the
Semantic Web services[3]. A Semantic web service is a web service described in a lan-
guage with well-defined semantics. This feature of the Semantic web services enables
different kinds of inference and reasoning based on the service semantic descriptions,
in order to facilitate dynamic service discovery, selection and composition.

In order to tackle the challenge of service composition, most of the work done
until now has focused on two main composition approaches, namely by considering
functional [4–8] and process [9–12] service aspects. The approach based on functional
aspects aims at finding a sequence of atomic components described in terms of their
IOPEs that matches a given query. This sequence can be executed from the start condi-
tions provided by the query, so that the query goal is satisfied at the end of the sequence.
The approach based on process aspects considers services asstateful processes with a
choreography represented in terms of sequential, conditional, and iterative steps im-
posed by the service. These two composition approaches are complementary and form
an interesting trade-off to develop solutions for service composition [13].

In this paper we focus on a framework for service compositionbased on functional
aspects, in which services are chained according to their functional description (IOPEs).
The suggested framework uses the Causal Link Matrix (CLM) formalism [14] in order
to facilitate the computation of the final service composition as a semantic graph. The
nodes of this semantic graph represent semantic connections between component ser-
vices. By computing a CLM we increase the amount of relevant service compositions
that can be obtained. The set of possible solutions are pruned, at composition time,
in order to rank the service compositions according to an optimization criteria. These
criteria can be defined based on the semantic similarity of component services and/or
the non-functional properties of the compositions calculated by aggregating the non-
functional properties of the component services.

The rest of the paper is organized as follows: Section 2 motivates our framework
with application scenarios and an example; Section 3 introduces the SPICE Automatic
Composition Engine (ACE) architecture in which our framework is used; Section 4
presents our framework for dynamic service composition; Section 5 comments on re-
lated work, and; Section 6 gives some final remarks.

2 Motivation

Dynamic composition of services aims at composing servicesthat satisfy a given ser-
vice request from an end-user or service developer. Services are composed of existing
atomic services, which are orchestrated in the service composition.



Once dynamic service composition mechanisms are available, the service creation
task performed by end-users and service developers is expected to be simplified. In this
paper we specially focus on the service developer scenario that we are developing on
the IST SPICE [15] project. In this scenario a service developer aims at creating a new
service with some specific functional and non-functional properties. To achieve this, a
formalism should be used to describe these properties in a service request, specifying
these properties unambiguously to allow automatic reasoning based on the service re-
quest. After the service request is specified, the frameworkfor dynamic service compo-
sition is capable of discovering, matching and composing a set of services that together
fulfil the request. The resulting compositions are returnedto the service developer, who
should select the composition that best fits his needs. The service developer may adapt
the selected composition further to fulfil more specific requirements. This process pro-
vides a service developer with a tool for automatically finding and composing a set of
services that meet his needs, relieving him from the burden of manually dealing with
the whole service creation cycle.

2.1 Example

We consider an example in which a service developer wants to develop a new service
that receives a piece of text, translates it to English, and sends the translated text by
SMS to a given destination number. In case no support is available for the service com-
position, the service developer is forced to create the service by scratch by connecting
the available atomic services in the service composition implementation manually. In
case an orchestration language such as WS-BPEL [16] is available, the service devel-
oper can specify the service composition in terms of an orchestration of the atomic
services. In our example this corresponds to an orchestration of the translation services
and SMS messaging services. The objective of our framework is to go one step further
and automatically generate service compositions that copewith the service developer
service request and also meet the non-functional properties (e.g., cost, response time,
etc.) specified in the service request.

2.2 Service Request

Service developers specify service requests in terms of annotations that define the re-
quested service inputs, outputs, goals, preconditions, effects and ontologies. These an-
notations are references to elements defined on ontologies described in OWL [17]. An
example of annotated service request is:

<Input>
<"LanguageOnt#Language" name="srcLang">
<"LanguageOnt#English" name="trgtLang">
<"LanguageOnt#Text" name="txtToTrans">
<"TelecomOnt#PhoneNum" name="destNumber">

</Input>
<Output>

<"TelecomOnt#AckSMS" name="AcknowledgmentSMS">
</Output>
<Preconditions/><Effects/>
<Goal>

<"GoalOnt#translate">



<"GoalOnt#sendSMS">
</Goal>
<Non-functional>

<"NFPOnt#Cost" value=6>
</Non-functional>
<Ontologies>

<"GoalOnt" "TelecomOnt" "NFPOnt" "LanguageOnt">
</Ontologies>

These annotations indicate that the service developer requests a service that trans-
lates a piece of text to English and sends the translated textby SMS to a given destina-
tion number. This is the running example used to illustrate our framework for dynamic
service composition in this paper.

3 Automatic Service Composition Engine

The aim of SPICE is to provide a platform to support the development and deployment
of innovative and value-added services during their whole life cycle. The creation and
development of services is achieved in a service creation environment, which allows
the manual creation of services for end-users and service developers. The service cre-
ation environment also contains an Automatic Composition Engine (ACE), which au-
tomatically constructs a service that fits a service requestissued by end-users or service
developers.

The SPICE ACE contains four basic components:Semantic Analyser, Composition
Factory, Property AggregatorandMatcher. Figure 1 depicts the ACE architecture.

Fig. 1. SPICE ACE Architecture

Figure 1 shows the two basic ACE usage scenarios: (i) an end-user issues a service
request in natural language (at runtime) and gets the most suitable service composition,



or (ii) a service developer issues a service request in some well-defined formalism (at
design-time) and gets a set of relevant service compositions.

The end-user is shielded from the complexity of the composition process by being
allowed to request services in natural language. These requests are processed by the
Semantic Analyser, which constructs a formal service request according to the ACE’s
service request formalism. The resulting formal request follows the same structure used
by the service developer for defining service requests.

When a formal service request is defined, the Composition Factory queries the ser-
vice repository for a service that matches the service request. If a match exists on the
repository, the matching service is returned. In case no match is found, the Compo-
sition Factory creates a composite service that matches therequest. In principle, the
Composition Factory may generate multiple alternative compositions that match a ser-
vice request.

Services and service requests are characterized by their functional and non-func-
tional properties. Functional properties are the services’ goals, inputs, outputs, precon-
ditions and effects. These properties are used to perform the service discovery, match-
ing and composition. Examples of non-functional properties are cost, security, perfor-
mance, reliability, etc. Non-functional properties are used to limit the space of com-
positions that fulfil the service request, and to rank the generated set of compositions.
Service and service request descriptions also contain the domain ontologies used to
define the functional and non-functional properties in an unambiguous form.

The Composition Factory uses the Property Aggregator to compute the non-func-
tional properties of service compositions each time a new service is added to a service
composition. The non-functional properties of the resulting service composition are cal-
culated by aggregating the non-functional properties of the atomic component services.

The set of generated service compositions is then passed to the Matcher compo-
nent, which matches each service composition with the service request, using the aggre-
gated non-functional properties and the measures of semantic similarity. In the scenario
where the end-user requests a service, the best matching is returned to the end-user. This
matching is obtained by taking the user’s profile and contextinformation into consid-
eration, which are managed by the SPICE platform. In the scenario where the service
developer issues a service request, the full set of generated compositions is returned,
possibly ranked taking into account the resulting aggregated non-functional properties
and/or the measures of semantic similarity.

4 Dynamic Web Service Composition

The Composition Factory component is responsible for the creation of service composi-
tions based on a formal service request, and is the focus of this section. After receiving
the developer’s service request, the Composition Factory queries the service repository
in order to retrieve an unordered set of services required tocompute the service com-
position. Semantic connections between web services are stored on a CLM+, which is
then used to compute the semantic graph-based composition that represents the possible
service compositions matching the service request. Figure2 gives an overview of the
steps performed by our dynamic service composition framework.



Fig. 2. Service Composition Framework

4.1 Causal Links

When using functional composition approaches, semantic connections between differ-
ent component web services are the main issue to be handled inorder to create new
value-added web services. These connections are mainly useful to semantically link
output to input parameters of web services, creating in thisway simple sequential com-
positions of web services. A composition is defined as an ordered set of web services
in which the web services of this set are semantically linkedto each other.

Input and Output parameter types of semantic web services are concepts defined
in an ontologyT . These parameter types can be represented by using some standard
language, such as, e.g., OWL-S [18] (at profile level), WSML [19] (at capability level),
or SA-WSDL [20]. Retrieving the semantic connection between two Web servicessx

andsy is similar to discovering the semantic similarity between an output parameter
Out sy of sy and an input parameterIn sx of sx (or vice-versa). Consequently, our
goal is to find a matchmaking [21] function between two knowledge representations
encoded using the same ontologyT . Causal links3 [14] between web services not only
value these semantic matchmaking functions, but also measure the quality of semantic
links between web services. In other words, a causal link (see figure 3) describes a se-
mantic relation between an output parameterOut sy ∈ T of a servicesy and an input
parameterIn sx ∈ T of a servicesx. Therebysx andsy are semantically and partially
linked according to a matchmaking functionSimT (Out sy, In sx). The matchmaking
functionSimT determines the matchmaking type [23, 24] between these two parame-
ters, and can have the following values:

– Exact (≡) if the output parameterOut sy of sy and the input parameterIn sx of
sx are equivalent concepts; formally,T |= Out sy ≡ In sx.

– PlugIn (⊑) if Out sy is sub-concept ofIn sx; formally,T |= Out sy ⊑ In sx.
– Subsume (⊒) if Out sy is super-concept ofIn sx; formally, T |= In sx ⊑

Out sy.
– Intersection (⊓) if the intersection ofOut sy andIn sx is satisfiable; formally,
T 6|= Out sy ⊓ In sx ⊑ ⊥.

3 In AI planning area, causal links are sometimes calledprotection intervals[22].



– Disjoint (⊥) if Out sy andIn sx are incompatible; formally,T |= Out sy

⊓ In sx ⊑ ⊥.

Service Service

Causal Link cl

Service
Input Parameter

Output Parameter

(SimT (Out sy, In sx))
sy

In sy1

In syn

In syi

Out syn

Out sy1

sx Out sx

In sx1

In sxn

Out sy

In sx

Causal Link cl

Fig. 3.Causal Link.

Since a causal link is related to a logical dependency among input and output param-
eters of different web services, [14] defines a causal link asa triple〈sy , SimT (Out sy,

In sx), sx〉. sx and sy refer to two web services in a set of available web services
SWs. The conceptOut sy is an output parameter of the servicesy whereas the con-
ceptIn sx is an input parameter of the servicesx. The matchmaking functionSimT

returns the matching type depending on the matching degree between the concepts
Out sy, In sx ∈ T . A causal link〈sy, SimT (Out sy, In sx), sx〉 implies that (a)
sy precedessx, since an output ofsy is consumed by an input ofsx, and (b) no web
service call is planned betweensx andsy.

Definition 1 (Valid Causal link)
A causal link〈sy , SimT (Out sy, In sx), sx〉 is valid iff SimT (Out sy, In sx) is not
a Disjoint matchmaking.

The matchmaking type returned by the causal link is useful tovalue the possi-
ble semantic connection between two web services and also tocompare links. Con-
sidering two web servicessy andsz with their respective output parametersOut sy

andOut sz. Considering a servicesx so that bothOut sy andOut sz semantically
match withIn sx, SimT is able to quantify the two connections(Out sy, In sx) and
(Out sz , In sx) and also to order them with respect to the matchmaking.

Although the matchmakingsExact, PlugIn, andDisjoint can be used without
any change to value causal links in a web service composition, causal links valued as
Intersection or Subsume (also known as non-robust causal links) need some refinements
to be fully efficient for causal links composition. Further details on web service com-
position with non-robust causal links are given in [25].

Since a composition of web services consists of a partial order of web services in
which these services are semantically chained by causal links, web service composition
can be considered as a composition of causal links. Therefore in this paper we simply
reuse and extend the CLM model to store the causal links that are relevant for service
composition.



4.2 Service Discovery

We perform service discovery based on the service request goals in order to discover
candidate services for the composition. To discover these services we assume that all
the services in the service repository have a semantic goal description and references to
ontologies, which can be used to search and discover the relevant services. Our frame-
work does not support service discovery; we simply assume the availability of function-
ality to perform goal-based discovery in the service execution environment. In SPICE,
ontology-based discovery is expected to be supported by a discovery facility.

In our running example, two main goals have been defined for the service request:
GoalOnt#translate andGoalOnt#sendSMS. Using these semantic annotations,
the repository is queried for existing services that cope with these goals, or services
that have goals semantically close to these goals. We assumethat a set of services
SWs is returned, and no single service fully matches the servicerequest. Table 1 shows
a possible list of discovered servicesSWs, with respective inputs, outputs and non-
functional properties semantic types and values.

Table 1.Discovered Services

ServiceInput Output NF properties
S1 LanguageOnt#LanguageLanguageOnt#EnglishText NFPOnt#Cost 1

LanguageOnt#English
LanguageOnt#Text

S2 LanguageOnt#French LanguageOnt#EnglishText NFPOnt#Cost 4
LanguageOnt#English
LanguageOnt#Text

S3 TelecomOnt#PhoneNumTelecomOnt#AckSMS NFPOnt#Cost 1
LanguageOnt#Text

S4 TelecomOnt#PhoneNumTelecomOnt#AckSMS NFPOnt#Cost 3
LanguageOnt#Text

S5 TelecomOnt#AckSMS TelecomOnt#SuccessProcessNFPOnt#Cost 1

Table 1 shows that serviceS1 is responsible for translating any text in any language
to English, whereasS2 translates text from French to English. These web services refer
to three simpleFL0 ontologies, namelyLanguageOnt, TelecomOnt andNFPOnt.
The properties of these parameters are:EnglishText ⊏ Text, French ⊏ Language

andCost ⊏ NFProperty.

4.3 CLM and Non-functional Parameters

We extend the definition of CLM [14] below by considering not only causal links but
also non-functional parameters of services. In this way, a CLM extended with non-
functional parameters, denoted as CLM+ (definition 2), can be used in the automated
web service composition process by classifying web services in an appropriate way,
according to the causal link and the services’ non-functional parameters. All causal
links are pre-computed in the CLM+ to facilitate web service composition. The more
valid causal links can be found, the better the solution to the functional composition
problem.



Table 2.Labels of the rowsri and columnscj of the6× 6 matrixM.

i/j index 1 2 3 4 5 6
ri.label/ci.label LanguageFrench English Text PhoneNumAckSMS

Definition 2 (CLM+)
An extended CLM (CLM+), Mp,p, is defined as ap × p matrix of elementsmi,j ,

which are a set of triplets (sy, score, qsy
) ∈ SWs × {Exact, P lugIn, Subsume,

Intersection} × ℜn with

(sy, score, qsy
) = (sy, SimT (Out sy, cj), qsy

)

Columnscj,j∈{1,...,p} and rowsri,i∈{1,...,p} are both labelled byInput(SWs) ⊆ T i.e.,
the inputs parameters of servicesSWs; ri ∈ T ∩ In(sy) is the label of theith row such
thatIn(sy) is the set of input parameters ofsy; andcj ∈ T ∩ (Input(SWs)) is the label
of thejth column,Out sy ∈ Out(sy).

A CLM+ is a matrix with entries inP(SWs × {Exact, P lugIn, Subsume,

Intersection}×ℜn). Each entry of the matrix refers to a set of triples(sy, score, qsy
),

such that the score represents the semantic similarity between an output parameter
Out sy ∈ Out(sy) of a web servicesy and an input parameter of another web ser-
vice in SWs. Therefore a CLM+ pre-computes the semantic similarities between all
output and input parameters of a closed set of web services, i.e., a set of relevant web
services for composition. According to definition 2, a CLM+ contains all enabled, le-
gal and valid links since causal links with aDisjoint score are omitted in the CLM+.
The value of causal linksSimT (Out sy, cj) between two parameters in a CLM+ is
an element of the set{Exact, P lugIn, Subsume, Intersection}. The latter set aims
at value the semantic connection between an output parameter Out sy ∈ T of sy and
cj ∈ Input(SWs) with Exact being the best andIntersection being the worst.

Moreover, a CLM+ aims at storing non-functional properties of web services as
a vector inℜn. Therefore, any servicesy referred to in the matrix contains not only
semantic connections with some other services ofSWs, but also its own non-functional
propertiesqsy

∈ ℜn.

Example 1 (Illustration of the CLM+ indexes and labels.)
Let {Si}i,i∈{1,...,6} be the set of web servicesSWs (table 1). The number of rows and
columns of the CLM+ is equal to 6 according to definition 2. Thus rows, columns of
the CLM+ M are indexed by{1, ..., 6} and labelled by the concepts Language, French,
English, Text, PhoneNum and AckSMS, respectively (table 2). M refers to a CLM+

with entries inP(SWs × {Exact, P lugIn, Subsume, Intersection}× ℜ). The non-
functional properties ofSi,1≤i≤6 refer to a simple cost value inℜ.

The CLM+ construction depends on the number of output and input parameters of
web services inSWs. Suppose#(Output(SWs)) and#(Input(SWs)) be respectively
the number of output parameters of services inSWs and the number of input param-
eters of services inSWs. The algorithmic complexity for the causal link matrix con-
struction isθ(#(Input(SWs)) × #(Output(SWs))) or θ((Max{#(Input(SWs)),



#(Output(SWs))}
2) so square in the worst case [26]. In other words, the CLMs+

construction consists of finding a semantic similarityscore between the output param-
eters of all web servicessy ∈ SWs and the input parameters of another web service
in SWs. In casescore is not null, the triple(sy, score, qsy

) is added in the CLM+ ac-
cording to definition 2. For further details [26] defines the whole process of the CLM+

construction.

Example 2 (CLM+ illustration)
The entrym4,4 (i.e.,mText,Text) of the matrix is equal to{(S1,⊑, 1), (S2,⊑, 4)}. In
SWs there is a serviceS1 with an input parametersText and an output parameter
EnglishText, which is semantically similar toText. 〈S1, SimT (EnglishText,

T ext), S3〉 is a valid causal link. TheEnglishText andText concepts match with the
Plug-in match(⊑ in the matrix) according to the definition ofSimT . In this way all
causal links are referred in the CLM+ M as follows (≡ refers to theExact match):

M =







∅ ∅ ∅ {(S1,⊑,1)} ∅ ∅
∅ ∅ ∅ {(S2,⊑,4)} ∅ ∅
∅ ∅ ∅ {(S1,⊑,1),(S2,⊑,4)} ∅ ∅
∅ ∅ ∅ {(S1,⊑,1),(S2,⊑,4)} ∅ {(S3,≡,1),(S4,≡,3)}
∅ ∅ ∅ ∅ ∅ {(S3,≡,1),(S4,≡,3)}
∅ ∅ ∅ ∅ ∅ ∅







The key contribution of CLM+ is a formal and semantic model to represent and
manage a relevant set of services together with their non-functional properties. Web
services ofSWs are discovered first, to facilitate the composition process. Therefore
the set of web servicesSWs is closed in order to limit the dimension of CLM+. Such
a model enables performance analysis of the proposed compositions by considering
causal links and non-functional properties of services. CLM+ aims at pre-chaining web
services according to their semantic similarity based on their Output/Input specifica-
tion. CLM+ describes all possible matchings between all the web services inSWs as
semantic connections. Moreover, the CLM+ model is an interesting trade-off to support
development activities such as services composition verification (valid causal link) or
repair, by insertion and deletion of web services in the compositions.

Once web services inSWs are semantically chained according to the causal link
criteria, the composition algorithm proceeds by generating the compositions graph.

4.4 Web Service Composition Process

The actual web services composition is performed using a graph-based approach, start-
ing from the service request outputs, and possible effects,and composing backwards in
the direction of the service request inputs and possible preconditions. The composition
algorithm is executed after performing service discovery and CLM+ construction. The
CLM+ contains the services that match the service request goals,and have valid causal
links. The algorithm aims at finding a set of services with exact interface matchings
(Exact), but other semantic matchings (PlugIn, Subsume, Intersection), are also
considered in the graph composition algorithm. This is a realistic approach, since per-
fect matches may not always be possible. The non-functionalproperties are taken into
account to optimise the search for service compositions. Ifa graph composition branch



Fig. 4. Web Service Composition Algorithm

does not comply with the requested non-functional properties, the composition on this
branch is aborted. Figure 4 depicts the graph-based servicecomposition algorithm.

The algorithm definesN as the set of nodes to be resolved. Each element ofN rep-
resents a node with inputs that do not fully match the inputs of the service request. The
algorithm initializesN with the services that provide outputsOut(s0) from the original
service request. After that, the algorithm evaluates whether the retrieved set of nodes re-
quire the same inputsIn(s0) as the service request. If services that match both semantic
descriptionsOut(s0) andIn(s0) are found, andN is empty, and the services satisfy
the non-functional properties of service request, the graph composition algorithm stops.
In case the query returns another serviceSz that does not matchIn(s0), but delivers
Out(s0) and matches the requested non-functional properties,Sz is added toN . The
algorithm then processes each nodeni of N , by searching in the CLM+ for services
that match the unresolvedni inputs (and possibly preconditions). For each matching
service found, the composition graph is checked, inspecting whether the composition’s
aggregated non-functional properties match the requestednon-functional properties, if
it complies the service being resolved is removed from N. If there is no match, the
composition graph branch that is being resolved is pruned, meaning that the elements
being resolved are removed fromN , and the composition branch is removed from the
graph composition. Another heuristic that can be used to avoid unrealistic compositions
is to limit the graph depth, restricting in this way the maximum number of services in a
service composition.

Applying the graph composition algorithm to the running example, in the first step,
services that provide as output anAckSMS, defined on theTelecomOnt ontology, are
selected. Two services{S3, S4} are found in the CLM+ matrix. None of these services
fully match the service request inputs, but they provide anExact match to one of the re-
quested inputs (PhoneNum), so in these branches this requested input is set as solved
for the graph composition. Given that not all the inputs havebeen solved, and provid-



ing that the considered non-functional propertyNFPOnt#Cost is satisfied, services
{S3, S4} are stored inN as services that provide the requested output, with anExact

semantic match, but do not completely match the requested input. In the second step,
S3 is resolved by discovering services in the CLM+ that provide an output semanti-
cally related to the input ofS3, namelyText. Services{S1, S2} have been discovered
to provide the text message toS3. These services resolve the requested inputsIn(s0),
although only as a partial semantic match (Plugin), and they meet the requested non-
functional property, so that the search is closed on these branches. Having reached the
In(s0) on these branches,N is inspected to check whether it is empty or not.N still
containsS4 to be resolved. In the third step,S4 is resolved, also by using services
{S1, S2}, and the composition process is finished for this branch. In this step, the ag-
gregated non-functional propertyCost of theS2 → S4 does not meet non-functional
property requirement of the service request, so this graph branch is removed from the
composition graph. After this step,N is checked, and since it is empty the algorithm
stops. Table 3 represents the steps discussed above, the compositions found by the graph
composition algorithm, and their respective aggregated non-functional properties.

Table 3.Service Compositions

StepN CompositionsNF properties
1 {S3, S4} S3 1

S4 3
2 {S4} S1 7→ S3 2

S2 7→ S3 5
S4 3

3 {-} S1 7→ S3 2
S2 7→ S3 5
S1 7→ S4 4

Table 3 shows that the service developer obtains three alternative compositions. Fur-
ther computations could be done to reduce these possibilities and determine the “best”
composition as a function of the measured semantic similarity and the non-functional
properties. However, we believe that the service developershould receive all found com-
positions that match his request, and choose the one(s) thatbest fit his needs himself.
Nevertheless, we suggest in the sequel an algorithm to rank the generated compositions,
using the compositions semantic similarity and non-functional properties values.

4.5 Ranking of Composition Results

Our web service composition algorithm aims at retrieving compositions with valid
causal links and also ensuring that the non-functional properties of the service request
are satisfied by the generated compositions. However, our algorithm may return more
than one composition, since some services can satisfy the same goals with different
non-functional properties, or can satisfysemantically closegoals with the same non-
functional properties. In order to help service developersin their choice of service com-
position, we propose to rank composition results, for example, by first considering the
semantic value of their causal links and after that, using the end-to-end non-functional



properties of the composite services, in case the compositions have identical causal link
values. To this end we assign a score for each kind of semanticconnection. A causal
link with an Exact matching is valued to1, a causal link with aPlugIn matching is
valued to3

4 , a causal link with aSubsume matching is valued to12 and a causal link
with a Intersection matching is valued to14 . Such a valuation is consistent since an
Exact matching between an output parameter and an input parameteris more preferred
than a causal link with aPlugIn, SubSume or Intersection matching.

Algorithm 1 : Ranking of Composition Results.

Input : An unordered set of composition results{Sc1 , . . . , Scn}.1

Result: An ordered set of composition results (based first on causallinks and second on2

non functional properties of services).
begin3

foreach Sci
do4

semanticquality Sci
← Average of causal links inSci

;5

NF quality Sci
← Function of NF properties inSci

;6

end7

({Sc1 , . . . , Scn},≤)← Ordering{Sc1 , . . . , Scn} first by means of their8

semanticquality and then by means of their NFquality;
return ({Sc1 , . . . , Scn},≤);9

end10

Non-functional properties of compositions are required incase two potential com-
positions of web servicesSci

andScj
have the same semantic quality. We overcome

this issue by valuing each composition resultSci
by means of a function (line 6 of algo-

rithm 1) of the non-functional properties involved inSci
. The latter function depends on

the non-functional properties of the atomic services of thecomposition. For instance,
a sum is required to value the final cost of a composite servicewhereas the minimum
is required to compute the throughput of a composite service. Since web services may
have multiple non-functional properties, it is necessary to weight these properties, e.g.,
by means of user preferences. For example, an end-user may give more importance to
the cost of a composite service whereas an another end-user may prefer the composite
web service with the best throughput. In the service developer scenario such a ranking
method could help the developer especially in case a large amount of valid composition
results are returned.

5 Related Work

Recently the authors of [27] have addressed in detail the problem of interleaving web
service discovery and composition, but have considered only simple workflows where
web services have one input and one output parameter. In thiscase the web service
composition plan is restricted to a sequence of limited web services corresponding to a
linear workflow of web services. The suggested solution retrieves a sequence of causal
links between web services, hence a linear and total order ofservices. Aiming of gen-
erating a composite service plan out of existing services, in [28] a composition path
is proposed that consists of a sequence of operators that compute data, and connectors



that provide data transport between the operators. The search for possible operators to
construct a sequence is based on the shortest path algorithmon the graph of the opera-
tors space. However, only two kinds of services (operator and connector) with one input
and one output parameter are considered, which means that only the simplest case of
service composition is covered. Contrary to [27] and [28], the model proposed in this
paper may also consider services with more than one input andoutput parameter.

In [29], a composition of services is considered as a directed graph, where nodes are
linked by the matching compatibility (Exact, Subsume, PlugIn, Disjoint) between
input and output parameters. Based on this graph, the shortest sequence of web services
from the initial requirements to the goal can be determined.This sequence corresponds
to an ordered set of web services, so that this set matches allexpected output parameters
given the inputs provided by a user. [14] perform semantic web service composition by
pre-computing the causal link matrix. Their composition strategy based on AI planning
performs a regression-based approach and returns a set of correct, complete and consis-
tent plans in which services are actions semantically linked by causal links. However,
these two approaches [29, 14] compute the best composition according to the seman-
tic similarity of output and input parameters of web services, without considering any
non-functional properties of these services. A formalism and modelling tool called in-
terface automata has been introduced in [30] to represent web services and perform
compositions. Atomic services are stored as a graph where each node represents input
and output parameters and edges represent web services. Each web service contains a
description of its inputs, outputs, and dependencies of other web services. Web service
descriptions and the graph are used to discover compositionresults that satisfy a service
request. In case several alternative compositions are found, no optimization mechanism
for selection is provided, so that in case several composition results match a request the
most suitable compositions still have to be selected.

In [31] a composer is introduced to perform web services composition. The com-
poser supports the end user to select web services for each activity in the composition
and to create flow specifications to link them. Upon selectinga web service, the web
services that can produce an output that could be fed as the input of the selected service
are listed, after filtering based on profile descriptions. The user can manually select the
service that he wants to fit in at a particular activity. Afterselecting all the services,
the system generates a composite process in DAML-S. The composition is executed by
calling each service separately, and passing the results between services according to
the flow specifications. However, the composition is still semi-automatic because the
user must select a web service in a restricted list. Our formal model presented in this
paper aims at automating the process of web service selection according to the causal
link criterion and the non-functional properties of services.

6 Final Remarks

Although web services technology is still in its infancy, some proposals are being made
to enable dynamic composition of web services. Nevertheless, to the best of our knowl-
edge, few of these proposals address both functional and non-functional properties of
web services to optimize the composition process. In this paper we outlined the main



challenges faced in semantic web services, i.e., dynamic composition and optimization
based on non-functional properties. To this end we described a framework for the func-
tional composition of web services. Starting from a servicedeveloper service request,
we successively apply web service discovery, causal link matrix computation, web ser-
vice composition and optimization based on non-functionalproperties of services. By
computing a causal link matrix, we ensure that the obtained compositions have valid
semantic connections between component web services. Finally, the set of valid service
compositions is selected by considering the non-functional properties of web services
involved in the composition. If a composition does not matchthe non-functional prop-
erties of the service request, it is neglected. Our composition approach is quite general
and can be easily applied to web services described using OWL-S (service profile),
WSMO (capability model) or SA-WSDL specification.

In future work, we intend to investigate how an approach based on process aspects
can be combined with the approach reported in this paper. This work should allow more
composition problems to be solved, increase the number of valid composition results
and improve the correctness of the composition process.
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