
A Performance Study of One-dimensional Learned Cardinality
Estimation

Yuchen Ji
Osaka University
Osaka, Japan

ji.yuchen@ist.osaka-u.ac.jp

Daichi Amagata
Osaka University, JST Presto

Osaka, Japan
amagata.daichi@ist.osaka-u.ac.jp

Yuya Sasaki
Osaka University, JST Presto

Osaka, Japan
sasaki@ist.osaka-u.ac.jp

Takahiro Hara
Osaka University
Osaka, Japan

hara@ist.osaka-u.ac.jp

ABSTRACT
The latest proximity query processing methods benefit from
learned models (indexes) and have shown better performances
than non-learned indexing approaches. This paper focuses on
one-dimensional data, because querying one-dimensional data is
one of the most important operations in database management
systems. Specifically, we address the one-dimensional cardinal-
ity estimation problem and consider the questions: Are learned
methods suitable for one-dimensional cardinality estimation? If so,
how good are they? To answer these questions, we first design a
prototype of a learned method for one-dimensional cardinality
estimation. Second, we empirically evaluate the learned method
together with existing methods. Then, we analyze the strong and
weak points of these methods and find suitable cases for learned
methods.

1 INTRODUCTION
Cardinality estimation is a fundamental problem in query opti-
mization. It aims at estimating the number of records required by
a query. Most query optimization techniques are cost based [1],
and cardinality estimation can help estimate the cost. Recently,
learned cardinality estimation methods [15, 16] have shown re-
markable improvement compared with traditional methods such
as histogram-based methods. These learned methods mainly use
deep learning models to map given query predicates to the es-
timated cardinality of query results, because they can handle
complex non-linear relationships better than traditional methods
[6]. However, existing learned cardinality estimation methods fo-
cus on multi-dimensional data [6, 11, 15, 16, 19]. They ignore the
most fundamental case, namely one dimension. One-dimensional
data and queries play an essential role in database management
systems (DBMSs). They support basic operations such as man-
agements of user ids and queries according to timestamps. Car-
dinality estimation on one dimension can help estimate execu-
tion costs and better plan these operations [2]. Investigations on
one-dimensional cases can also help develop methods for multi-
dimensional cases. For example, traditional histogram-based and
sampling-based methods are both extended from one dimension
to multiple dimensions.

In the field of machine learning for databases, indexes receive
benefits from machine learning [10]. The learned index is first
proposed for point and range queries on one-dimensional data
[9]. Learned indexes show much better performances compared

© Copyright 2022 for this paper by its author(s). Use permitted under Creative
Commons License Attribution 4.0 International (CC BY 4.0).

with traditional indexes, such as B-trees [8]. This observation
suggests that the use of a learned model improves cardinality
estimation for one-dimensional range queries. To investigate this
research question, we make the following contributions.

Designing a learned cardinality estimation model.We de-
sign a simple prototype of a learned model for one-dimensional
cardinality estimation in Section 3, to compare the learned model
with existing techniques.

Empirical evaluations. We conduct experiments by using four
real datasets in Section 4, (i) to see the performances of the
learned and non-learned cardinality estimation methods and
(ii) to confirm whether learned approaches are really promising
for one-dimensional cardinality estimation. Theses two evalua-
tions are the main objective of this paper. We analyze their strong
and weak points. To summarize, there is no clear winner, but the
learned method is promising, i.e., its estimation time is the fastest
and its error is small enough. Our insights would support imple-
mentations/selections of one-dimensional cardinality estimation
methods for practical DBMSs.

2 PRELIMINARY
2.1 Problem statement
Consider a dataset 𝐷 consisting of sorted one-dimensional data
with unique integer keys. A range query predicate 𝑄 is specified
as a central key 𝐾 and a range 𝑅. The query result is the set
of records whose keys fall into [𝐾 − 𝑅, 𝐾 + 𝑅]. Here, the goal
of cardinality estimation is to estimate the number of records
from 𝐷 satisfying the query predicate. The estimated cardinality
is denoted by �𝑐𝑎𝑟𝑑 (𝑄) and the real cardinality is denoted by
𝑐𝑎𝑟𝑑 (𝑄). (Another equivalent concept of cardinality is 𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦,
and it represents the percentage of records satisfying the query
predicate [20].)

Error metrics. We evaluate Mean Absolute Percentage Error
(MAPE) and Q-error to see estimation errors. These errors are
widely used for cardinality estimation problems [15, 16, 18] and
are respectively defined as:

MAPE =

����� �𝑐𝑎𝑟𝑑 (𝑄) − 𝑐𝑎𝑟𝑑 (𝑄)𝑐𝑎𝑟𝑑 (𝑄)

�����
and

Q-error =
max

(�𝑐𝑎𝑟𝑑 (𝑄), 𝑐𝑎𝑟𝑑 (𝑄))
min

(�𝑐𝑎𝑟𝑑 (𝑄), 𝑐𝑎𝑟𝑑 (𝑄)) .



2.2 Existing methods
Sampling. This is the most straightforward approach to esti-
mating the cardinality of a given range query. The estimated
cardinality is obtained by scaling the cardinality on the samples.
The performance of sampling is directly related to the number
of samples (more samples yields a better accuracy but incurs a
higher computational cost).

Histogram. Histogram-based approaches build a histogram on a
given dataset and sum up the counts of buckets intersected with
a given query predicate as estimated cardinality [4]. Histograms
have a long history of being used to solve these estimation tasks
[7, 17]. For one-dimensional cases, there are two classical his-
tograms: equal-width and equal-depth. A histogram is essentially
a group of linear models, where each bucket is a linear model
with a slope of the number of records divided by the width. This
one-level histogram usually uses a higher computation cost than
existing hierarchical learned models [9], because it needs hun-
dreds of add operations to sum up the counts of buckets.

Direct calculation. The cardinality of range queries on one
dimensional data can be easily estimated by two point queries
because the records in one-dimensional datasets are generally
sorted according to keys.

More concretely, we can obtain the exact cardinality after
computing the orders of records with 𝐾 − 𝑅 and 𝐾 + 𝑅 as keys in
the dataset for the query 𝑄 :

𝑐𝑎𝑟𝑑 (𝑄) = 𝑂𝑟𝑑𝑒𝑟 (𝐾 + 𝑅) −𝑂𝑟𝑑𝑒𝑟 (𝐾 − 𝑅) + 𝑁,
where𝑂𝑟𝑑𝑒𝑟 (𝑋 ) indicates the order of the first record whose key
is greater than or equal to 𝑋 in the sorted dataset. 𝑁 equals 1
if there exists a record whose key equals 𝐾 + 𝑅 in the dataset.
Otherwise 𝑁 equals 0. Hence, the computation cost is equivalent
to the costs of the two point queries. The computational efficiency
can be improved by using indexes.

3 LEARNED MODEL DESIGN
We derive our idea from a learned index structure, Recursive
Model Index (RMI) [13]. RMI is the first and state-of-the-art
learned index for the search problem on one-dimensional data. It
stacks learned models to approximate the cumulative distribution
function (CDF) and then computes the position of a given key in
a sorted array according to the CDF. Here the term "CDF" means
the function mapping keys to their corresponding positions in
an array.

As shown in Figure 1, the approximated CDF, F, which maps
keys to the corresponding positions, can also be used for cardi-
nality estimation. The mapping done by indexes has an intrinsic
relationship with the mapping from range queries to estimated
cardinality. We can approximate the relationship between cardi-
nality and the range started from 𝐾 by 𝐹 ′:

𝐹 ′(𝑅) = (𝐹 (𝐾 + 𝑅) − 𝐹 (𝐾 − 𝑅))/2.
RMI usually adopts linear models to approximate 𝐹 and shows
good performance. Therefore, we also employ linear models to
approximate 𝐹 ′.

Based on the above observations, we design a prototypic car-
dinality estimation by refining the original RMI1. As shown in
Figure 2, this model has a two-level hierarchy. For an input query,
the first level directs to a specific model in the second level, and
models in the second level then predict the cardinality. We use a
1Although we follow the structure of RMI, our model is trained for estimating the
cardinality of a given query.

Figure 1: The learned index approximates the CDF to get
the orders of the keys. The approximated CDF, F, can be
used to estimate the cardinality of range queries. Suppose
a range query is represented by a central key K and range
R, the cardinality of the range query can be estimated by
the orders of keys (𝐾 − 𝑅) and (𝐾 + 𝑅). The relationship
between cardinality and the range started from the central
key K can be approximated by F’.

Figure 2: The prototype learnedmodel for one-dimensional
cardinality estimation has a two-level hierarchical struc-
ture. The first level directs to models in the second level
according to a given query. The second level is responsible
for cardinality estimation.

two-layer neural network in the first level. In the second level,
we organize many multi-scale linear models into an array. Each
multi-scale linear model is responsible for a subset of the original
dataset.

For the first level, another choice is a linear model with less
computation cost than a neural network. However, choosing a
linear model will result in a more skewed distribution of subsets
for the second level [12], thus negatively affecting performance
and training. The neural network is hence a better choice. It is
hard for a simple linear model in the second level to cover range
queries with totally different scales of selectivity. Therefore, we
train some models with different scales for each subset in the
second level2.

During the estimation procedure, the first level takes the cen-
tral key 𝐾 of the given query as input and directs it to the corre-
sponding model in the second level. The selected second-layer
model estimates the cardinality according to the query range.

From the recent success of learned indexes, we expect that
this learned model works well, i.e., it will provide high efficiency
and accuracy. We report its practical performance in the next
section.

4 EVALUATION
Datasets. We used four real-world datasets with different dis-
tributions from the SOSD benchmark [13]. These datasets have
recently been used for evaluating learned index works [5, 14].
Each of them contains 200 million 64-bit key/value records:
2The selectivity is application dependent. Hence, applications can train this model
by specifying the range of selectivity.



Figure 3: CDFs of evaluation datasets. Zoomed regions
show plots of 200 consecutive keys.

Table 1: Overview of evaluated methods

Method Description
LC Learned model designed in Section 3
SA2 Sampling 1 ∗ 10−2 records of original dataset
SA3 Sampling 1 ∗ 10−3 records of original dataset
SA4 Sampling 1 ∗ 10−4 records of original dataset
HM An equal-depth histogram having 1 ∗ 105 buckets
DC Direct calculation using RMI as the index

• amzn: book popularity data from Amazon.
• face: Facebook user IDs sampled randomly.
• osm: cell IDs from Open Street Map.
• wiki: timestamps from Wikipedia.

Figure 3 plots CDFs of the four datasets. Zoomed regions show
small segments of datasets. The face dataset contains tens of
outliers with much larger keys than the others.

Environment. All experiments were conducted on a server
with an Intel Xeon Gold 6254 @3.10GHz CPU and 768GB RAM,
running Ubuntu 18.04 LTS. The evaluated methods were imple-
mented in Python.

Model setting. We evaluated themethods listed in Table 1. In the
case of the sampling methods, we estimated the cardinality based
on calculated cardinality of sampled datasets by binary search.
An equal-depth histogram has the same number of records in
each bucket. For the direct calculation method, we built an RMI
index on the original dataset. Comparedwith classical B-Trees [3],
RMI shows better computational and space costs [13]. Recall that
direct calculation returns the exact cardinality, so we measured
the computation time and model size for direct calculation. For
the learned method, we used a two-layer neural network with 16
neurons in the hidden layer for the first level. We set the number
of models in the second level to 1 ∗ 105 to leverage the storage
cost and accuracy. Table 2 shows the model sizes of all methods.
We controlled the sizes (space consumptions) of LC, HM, SA3,
and DC so that they were (almost) the same.

Training of LC. For the first level, we assume that a given
dataset is equally divided into subsets for models of the second
level. We composed keys and corresponding ids of models into
pairs as the training data. After the training of the first level was

Table 2: Model sizes of evaluated methods (MB)

Method LC HM SA2 SA3 SA4 DC
Model size 1.6 0.8 16 1.6 0.16 1.6

done, we partitioned the original dataset according to the output
of the first level. For the second level, we trained the group of
models sequentially. We prepared training data of multiple scales
for each model. For each scale, we generated 1000 query pred-
icates (𝐾, 𝑅) and calculated the true cardinality as the training
data.

The keys and ids were both scaled to a maximum of 100 during
the training and evaluation. To train the neural network of the
first level, we used Adam as the optimizer. We set the learning
rate to 1 ∗ 10−4. It took two epochs to finish the training. The loss
remained large when the network was trained on osm, because
a two-layer neural network cannot approximate the skewed dis-
tribution well. We divided the datasets into subsets for models in
the second level according to the predicted results of the trained
neural network. Therefore, the high loss of the neural network
did not matter. We fitted the linear models of the second level to
the training data by using non-linear least squares. In the case of
the face dataset, there were tens of outliers that made it hard for
training. We removed the outliers when we scaled the keys for
model training.

Workloads. For query predicates (𝐾, 𝑅), first, we selected scales
of selectivity3 for query range𝑅 from {10−5, 10−4, 10−3}. Thenwe
randomly generated 1000 pairs of (𝐾, 𝑅) for each scale of selectiv-
ity. The keys generated are limited within the range of existing
keys in the datasets. The generated 𝑅 was floated around the
selected selectivity with possible magnitudes within (10−1, 101).
Evaluation results. Table 3 shows the estimation errors on
all datasets and queries with a selectivity of around 10−4. The
50th/95th/99th values show the corresponding percentile errors.
Table 4 shows estimation errors on the wiki dataset with selec-
tivities of around 10−5, 10−4, and 10−3.

The MAPE errors and Q-errors do not show significant dif-
ferences. Most MAPE errors are much smaller than 1, with ze-
ros after their decimal points. According to the definitions, the
similarity of MAPE errors and Q-errors is easy to understand.
However, for SA4, whose selectivity of sampling hardly matches
the queries’ selectivity, its Q-errors are extremely large.

Exp-1 (LC vs. SA). Sampling methods can easily find a trade-
off between accuracy and storage cost. According to the errors
shown in Tables 3 and 4, we study the following: (i) Generally,
LC in the current setting has a competitive accuracy over SA3.
(ii) The 50th errors of LC are usually slightly larger than those of
SA3, whereas LC has smaller 95th and 99th errors. This means
that the distribution of LC’s errors is more even than that of SA3.
(iii) Sampling methods have larger errors for smaller selectivity.
In contrast, the variation of LC’s errors for different scales of
selectivity is more stable.

The MAPE errors of the three sampling methods are linear to
their sampling scales. This stable multiple of errors for sampling
methods of continuous scales makes sampling methods suitable
for a performance baseline. Sampling methods with different
scales can be treated as a trade-off between accuracy and storage
cost. It is always easy for sampling methods to reduce errors.

3We omit the term “1∗”.



Table 3: Estimation errors for cardinality estimation using queries with a selectivity of around 10−4.

Dataset amzn face

Metric MAPE Q-error MAPE Q-error
50th 95th 99th 50th 95th 99th 50th 95th 99th 50th 95th 99th

LC 5.5*10−3 1.2*10−1 3.3*10−1 1.0055 1.13 1.34 3.2*10−2 9.0*10−2 3.6*10−2 1.032 1.097 1.14
HM 6.3*10−3 1.0*10−1 2.0*10−1 1.0063 1.11 1.22 1.4*10−2 4.4*10−2 6.2*10−2 1.014 1.045 1.064
SA2 7.8*10−3 4.5*10−2 8.2*10−2 1.0078 1.045 1.082 8.9*10−3 1.3*10−2 1.6*10−2 1.0089 1.014 1.016
SA3 8.2*10−2 3.8*10−1 1.0 1.087 1.46 3.1*102 9.0*102 1.4*10−1 1.6*10−1 1.098 1.16 1.19
SA4 1.0 2.6 6.1 1.4*103 5.4*103 5.4*103 1.0 1.5 1.6 1.9*104 2.5*104 2.7*104

Dataset osm wiki

Metric MAPE Q-error MAPE Q-error
50th 95th 99th 50th 95th 99th 50th 95th 99th 50th 95th 99th

LC 1.1*10−1 3.4*10−1 8.9*10−1 1.11 1.37 1.96 6.5*10−3 3.0*10−2 1.2*10−1 1.0065 1.031 1.12
HM 1.2*10−3 5.6*10−2 3.2*10−1 1.0012 1.058 1.41 1.0*10−3 1.0*10−2 7.0*10−2 1.0010 1.010 1.072
SA2 1.1*10−3 2.8*10−2 1.3*10−1 1.0011 1.029 1.14 1.2*10−3 6.8*10−3 2.4*10−2 1.0013 1.0068 1.024
SA3 1.1*10−2 2.8*10−1 1.0 1.011 1.33 6.54 1.2*10−2 7.1*10−2 2.6*10−1 1.012 1.072 1.32
SA4 1.1*10−1 2.4 1.3*101 1.12 10.88 2.3*104 1.2*10−1 1.0 1.34 1.12 4.5*102 5.9*103

Table 4: Estimation error comparison at different scales of range query using the wiki dataset.

Metric MAPE
50th 95th 99th

Selectivity 10−3 10−4 10−5 10−3 10−4 10−5 10−3 10−4 10−5

LC 2.7*10−2 6.5*10−3 1.2*10−2 5.4*10−2 3.0*10−2 8.7*10−2 6.1*10−2 1.2*10−1 3.0*10−1

HM 1.1*10−4 1.0*10−3 1.0*10−3 1.1*10−3 1.0*10−2 7.1*10−2 8.4*10−3 7.0*10−2 2.1*10−1

SA2 1.3*10−4 1.2*10−3 1.2*10−2 6.6*10−4 6.8*10−3 6.7*10−2 2.6*10−3 2.4*10−2 2.7*10−1

SA3 1.3*10−3 1.2*10−2 1.2*10−1 6.5*10−3 7.1*10−2 1.0 2.7*10−2 2.6*10−1 1.4
SA4 1.3*10−2 1.2*10−1 1.0 6.6*10−2 1.0 3.6 2.2*10−1 1.3 6.1

Metric Q-error
50th 95th 99th

Selectivity 10−3 10−4 10−5 10−3 10−4 10−5 10−3 10−4 10−5
LC 1.03 1.0065 1.012 1.054 1.031 1.09 1.06 1.12 1.35
HM 1.00011 1.0010 1.0098 1.0011 1.010 1.075 1.0085 1.072 1.24
SA2 1.00013 1.0013 1.012 1.00066 1.0068 1.068 1.0026 1.024 1.32
SA3 1.0013 1.012 1.13 1.0065 1.072 33 1.027 1.32 5.7*102

SA4 1.013 1.12 1.9*103 1.068 4.5*102 3.8*103 1.25 5.9*103 4.4*103

Exp-2 (LC vs. HM). Tables 3 and 4 show that HM generally
returns smaller errors than LC. Similar to SA, HM shows degraded
performance with smaller selectivity of queries. HM has a more
significant advantage over LC for queries with a selectivity of
10−3.

Exp-3 (Performances on osm). LC has the worst accuracy on
osm among all datasets, whereas the other methods do not show
decreased performances on osm. This is mainly attributed to the
distribution of osm. Figure 3 shows that osm is the most skewed.
The small segment shown in the zoomed region of osm shows
that the distribution lacks local structures, making it difficult for
LC to learn the CDF. Similar situations are met in indexing works
[13]. HM and the sampling methods are not bothered a lot by
the distribution of osm, because they do not need to learn the
distribution.

Exp-4 (Performances on amzn, face, and wiki). The CDFs
of amzn and wiki show very smooth distributions. The zoomed
small segments of amzn and wiki also look similar. Considering
zoomed segments of face, face also lacks local structures, simi-
larly to osm. As a result, LC has more significant errors on face
compared with its errors on amzn and wiki.

Exp-5 (Estimation time). Table 5 shows the average estimation
times on different datasets with a selectivity of 10−4. LC is much
faster than the other methods. DC takes less time than HM and
SA4 on amzn, face, and wiki. When RMI is used as the index, the
time cost of a point query consists of the inference time (evaluated
by RMI) and the search time (for searching around the predicted
order). As DC uses two point queries to estimate cardinality, it is
reasonable that DC needs longer time than LC. We see that LC,
HM, and SA have stable times on different datasets. DC needs
more time on osm than the other datasets. The point queries on
osm incur a long search time [13]. HM scans the border values
of buckets, and this scanning contributes to a major part of the
time costs. The sampling methods with large samples involve
many record accesses, thereby SA2 and SA3 are very slow.

5 DISCUSSION
The main advantage of the prototype learned method LC is its
computational efficiency. This comes from its structure, which is
based on simple learned models. At the same time, the estimation
errors of LC seem a bit larger than those of the other evaluated
methods. In this section we summarize and discuss our findings.



Table 5: Estimation time comparison for different methods
on different datasets (microseconds)

Dataset LC HM SA2 SA3 SA4 DC
amzn 15.9 139.2 44821,5 1176.6 129.8 77.6
wiki 15.9 145.0 42313.6 1162.3 129.9 91.8
face 16.9 148.4 44743.2 1230.1 138.5 93.0
osm 17.6 153.4 47847.8 1271.0 143.1 196.6

Best performance. LC has the best computational efficiency.
Its error is a bit larger than those of the other models but is abso-
lutely small. DC provides the true value of cardinality, showing
the best accuracy. At the same time, its estimation time normally
outperforms those of the sampling methods and HM. Conse-
quently, LC and DC are the options, but for estimation purpose,
we consider that LC is better suited, as it yields high efficiency
and small error.

Differences among LC, HM, and DC. As mentioned in Section
2.1, HM is a group of linear models. LC, HM, and DC with RMI
all make use of models. The model differences lead to differences
in their performances. DC calculates cardinality by finding the
orders of two border keys of the query range. It involves twice
the computation cost of RMI. Compared with DC, LC infers the
difference of the orders of two border keys instead of inferring
the orders. Hence, LC reduces the computation cost to one pass
of the learned models. Models of HM take charge of counting
their buckets. When the query range covers multiple buckets,
which is a typical case, HM accumulates counts of all covered
buckets. Only on the border buckets intersected by the query
range, inferences by models need to be executed. The errors in
HM come from estimations of the border buckets.

Further optimization. If we treat LC as a baseline, better
methods for one-dimensional cardinality estimation should have
smaller estimation errors and competitive computational effi-
ciency. A possible way is to add some extra models to LC to get
more accurate estimations. However, complex models are not
suitable because they incur high time costs. Therefore, the issue is
how to make LC more accurate while retaining simple structures.
If we seek to optimize models compared with DC, then we need
to cut down its computation time. With RMI as an index, DC
consumes about 20 multiplication operations (varying among the
different models used in RMI) and tens of add operations. Less
computation than DC means that only several multiplication
operations are allowed. This is a new research challenge.

Training cost. For learned methods, we need to consider the
training costs when bringing them to applications. The training
cost of LC consists of two parts. (i) For model training, LC shares
similar costs with the original RMI model, which DC uses. In
our evaluation, to train the prototype learned model on a dataset
consisting of 200 million records, it took about a half hour for a
simple neural network and 10minutes for 1∗105 linear models. (ii)
For the preparation of training data, LC has twoways, passive and
active. The query results produced by DBMSs can be utilized for
training. However, this passive way cannot guarantee sufficient
amounts of data to train the models. Besides, active collection of
training data for learned models can be expensive [6]. LC needs
a longer time than DC to collect training data, because DC does
not need to obtain true cardinality. However, both training data
collection and model training are done once, so the offline cost of
LC would not be a drawback in practice.

Summary. To summarize our discussion, LC and DC are options
of one-dimensional cardinality estimation if their training costs
are not bottlenecks for applications. They have accuracy-time
trade-off. We provided the directions of further optimizations for
LC and DC.

6 CONCLUSION
In this study, we addressed an unanswered question: Are learned
methods suitable for one-dimensional cardinality estimation? We
designed a prototype learned structure for one-dimensional car-
dinality estimation. We empirically evaluated the performances
of the learned method and existing methods to investigate their
advantages and disadvantages. The evaluation results answer the
question: A learned method based on the current state-of-the-art
model is useful for quick and accurate cardinality estimation.
In future work, we will seek to optimize the prototypic learned
method to achieve better accuracy by using other structures. We
also plan to design a strategy to collect training data, e.g., to
judge whether collected training data satisfy the needs.

ACKNOWLEDGMENTS
This research is partially supported by JST PRESTO Grant Num-
ber JPMJPR1931 and JST CREST Grant Number JPMJCR21F2.

REFERENCES
[1] Nicolas Bruno and Surajit Chaudhuri. 2002. Exploiting statistics on query

expressions for optimization. In SIGMOD. 263–274.
[2] Surajit Chaudhuri. 1998. An overview of query optimization in relational

systems. In Proceedings of the seventeenth ACM SIGACT-SIGMOD-SIGART
symposium on Principles of database systems. 34–43.

[3] Douglas Comer. 1979. Ubiquitous B-tree. ACM Computing Surveys (CSUR) 11,
2 (1979), 121–137.

[4] Graham Cormode, Minos Garofalakis, Peter J. Haas, and Chris Jermaine. 2012.
Synopses for Massive Data: Samples, Histograms, Wavelets, Sketches. Found.
Trends Databases 4, 1–3 (2012), 1–294.

[5] Andrew Crotty. 2021. Hist-Tree: Those Who Ignore It Are Doomed to Learn..
In CIDR.

[6] Shohedul Hasan, Saravanan Thirumuruganathan, Jees Augustine, Nick Koudas,
and Gautam Das. 2020. Deep Learning Models for Selectivity Estimation of
Multi-Attribute Queries. In SIGMOD. 1035–1050.

[7] Yannis Ioannidis. 2003. The History of Histograms (Abridged) (VLDB). 19–30.
[8] Andreas Kipf, Ryan Marcus, Alexander van Renen, Mihail Stoian, Alfons

Kemper, Tim Kraska, and Thomas Neumann. 2020. RadixSpline: A Single-Pass
Learned Index. In Proceedings of the Third International Workshop on Exploiting
Artificial Intelligence Techniques for Data Management (aiDM). Article 5.

[9] Tim Kraska, Alex Beutel, Ed H Chi, Jeffrey Dean, and Neoklis Polyzotis. 2018.
The case for learned index structures. In SIGMOD. 489–504.

[10] Guoliang Li, Xuanhe Zhou, and Lei Cao. 2021. AI Meets Database: AI4DB and
DB4AI. In SIGMOD. 2859–2866.

[11] Qiyu Liu, Yanyan Shen, and Lei Chen. 2021. LHist: Towards Learning Multi-
dimensional Histogram for Massive Spatial Data. In ICDE. 1188–1199.

[12] Marcel Maltry and Jens Dittrich. 2021. A Critical Analysis of Recursive Model
Indexes. arXiv preprint arXiv:2106.16166 (2021).

[13] Ryan Marcus, Andreas Kipf, Alexander van Renen, Mihail Stoian, Sanchit
Misra, Alfons Kemper, Thomas Neumann, and Tim Kraska. 2020. Benchmark-
ing Learned Indexes. PVLDB 14, 1 (2020), 1–13.

[14] Mihail Stoian, Andreas Kipf, Ryan Marcus, and Tim Kraska. 2021. PLEX:
Towards Practical Learned Indexing. In International Workshop on Applied AI
for Database Systems and Applications (AIDB).

[15] Ji Sun, Guoliang Li, and Nan Tang. 2021. Learned Cardinality Estimation for
Similarity Queries. In SIGMOD. 1745–1757.

[16] YaoshuWang, Chuan Xiao, Jianbin Qin, Rui Mao, Makoto Onizuka, Wei Wang,
Rui Zhang, and Yoshiharu Ishikawa. 2021. Consistent and flexible selectivity
estimation for high-dimensional data. In SIGMOD. 2319–2327.

[17] Edward J Wegman. 1969. Nonparametric probability density estimation. Tech-
nical Report. North Carolina State University. Dept. of Statistics.

[18] Peizhi Wu and Gao Cong. 2021. A Unified Deep Model of Learning from Both
Data and Queries for Cardinality Estimation. In SIGMOD. 2009–2022.

[19] Zongheng Yang, Eric Liang, Amog Kamsetty, Chenggang Wu, Yan Duan, Xi
Chen, Pieter Abbeel, Joseph M. Hellerstein, Sanjay Krishnan, and Ion Stoica.
2019. Deep Unsupervised Cardinality Estimation. PVLDB 13, 3 (2019), 279–292.

[20] Xiaohui Yu and Ada Fu. 2001. Piecewise Linear Histograms for Selectivity Es-
timation. In International Symposium on Information Systems and Engineering
(ISE). 319–326.


	Abstract
	1 Introduction
	2 Preliminary
	2.1 Problem statement
	2.2 Existing methods

	3 LEARNED MODEL DESIGN
	4 EVALUATION
	5 DISCUSSION
	6 Conclusion
	Acknowledgments
	References

