
Generating personalized data narrations from EDA notebooks
Alexandre Chanson, Faten El Outa, Nicolas

Labroche, Patrick Marcel, Verónika Peralta,

Willeme Verdeaux

University of Tours

Blois, France

firstName.lastName@univ-tours.fr

Lucile Jacquemart

University of Tours

Blois, France

Lucile.Jacquemart@etu.univ-tours.fr

ABSTRACT
In this short paper, we present our preliminary results for gener-

ating personalized data narrations by extracting messages from a

collection of Exploratory Data Analysis (EDA) notebooks over a

given dataset. The approach consists of extracting features from

notebooks to learn what interesting messages they expose. Based

on those interesting messages, we formalize the problem of pro-

ducing a user-tailored data narration, i.e., a coherent sequence of

messages matching a given user profile. We developed a proof of

concept and experimented with Kaggle.com notebooks.

1 INTRODUCTION
Exploratory Data Analysis (EDA) is the notoriously tedious task

of interactively analyzing datasets to gain insights [10]. EDA note-

books are shared curated, illustrative EDA sessions prepared by

data scientists [6, 17]. EDA notebooks are essentially sequences

of programmatic operations and their commented results, shared

on code sharing platforms such as Kaggle
1
. Supporting EDA can

be done by pre-analyzing datasets for computing insights [20] or

by automatically generating EDA notebooks using deep learning

[6].

Data narration is the activity of producing narratives sup-

ported by facts extracted from data exploration and analysis,

using interactive visualizations [1]. In an effort to clarify the

concepts of data narratives, we recently defined a data narrative

as a structured composition of messages that (a) convey findings
over the data, and, (b) are typically delivered via visual means
in order to facilitate their reception by an intended audience, and
we proposed a conceptual model describing and structuring the

key concepts around data narratives [15]. While several works

informally describe the process of data narration crafting [3, 11],

automated data narration only starts to gain attention [8, 19].

Our present work contributes to the field of automated data

narration, and aims at connecting EDA notebooks to data narra-

tions. More precisely, our objective is to construct data narrations

from EDA notebooks. This requires to (i) identify messages that

convey findings in the data, (ii) ensure they are relevant for a

given user profile, (iii) arrange them in a coherent composition,

and (iv) present them visually.

Problem (i) is addressed by formally defining a message as a

component of an EDA notebook, extracting them and learning a

model of message interestingness. Problem (ii) is addressed by

representing messages and user profiles in a vector space, using

a classical TF-IDF representation, and using Cosine similarity

to select messages closest to the user profile. Problem (iii) is

formalized as an instance of the Traveling Analyst Problem (TAP)

1
https://www.kaggle.com

© Copyright 2022 for this paper by its author(s). Use permitted under Creative

Commons License Attribution 4.0 International (CC BY 4.0)

Figure 1: Overview of the approach

[2]. Finally, Visual presentation (iv) is ensured by reusing existing

visualizations extracted from notebooks.

The general pipeline of our approach is shown in Figure 1.

There are three offline computation modules that deal, re-

spectively, with message extraction, computation of message

interestingness, and computation of the cognitive distance be-

tween messages. These computations are useful for ensuring that

messages in the data narrative are interesting and are structured

in a cognitively-coherent way. Then, online, for a given user need,

the message selection module preselects messages that match

the user’s profile. The user also specifies a budget, representing

the maximum number of messages to be included in the data nar-

rative. The TAP module takes as input the preselected messages,

their interestingness and distance scores, and the budget, and pro-

duces an ordered list of messages (taken among the preselected

ones) that maximize the overall interestingness and minimize

their cognitive distance, while satisfying the given budget. Finally,

the narration module generates the data narrative.

Our contributions include:

• a formal framework,

• learning the interestingness of messages,

• an algorithm to generate a user-tailored data narrative

from a set of notebooks,

• a proof of concept with Kaggle notebooks, producing var-

ious data narratives for a given dataset.

The paper is organized as follows. The next section reviews

related works. Section 3 provides the formal background and

describes the features we consider to learn messages’ interesting-

ness. Section 4 formalizes the problem and presents our solution.

Section 5 discusses the implementation and tests. Finally, Section

6 concludes and draw perspectives.

2 RELATEDWORK
In this section we review related work pertaining to the genera-

tion of data narratives or the automation of part of the process.

https://www.kaggle.com


2.1 Automating data narration
Firstly, several works propose solutions for automating data nar-

ration starting from a user query [8], a spreadsheet [19], or a

topic [18].

The precursor work of Gkesoulis et al. [8] introduced Cine-

Cubes, a system that allows the automatic generation of a data

story over an OLAP database, with a simple user query as starting

point. Each data story has three acts. The first providing contex-

tualization for the characters as well as the incident that sets the

story on the move, the second where the protagonists and the

rest of the roles build up their actions and reactions and the third

where the resolution of the film is taking place. The first one

refers to the execution of the original query provided by the user.

The second act exploits the selection conditions of the original

query and automatically generates comparative drill-up queries

to provide contextualization and finally, the third act drills down

in the grouping levels of the original result to see the breakdown

of its (aggregate) measures and understand its internal structure

to provide further analysis of the results. Their tests revealed the

ability of Cinecubes to generate a fast report of better quality.

However, its fixed structure in three acts can only produce simple

data stories with limited insights and visualizations.

Shi et al. [19] proposed Calliope, a system that automatically

generates visual data stories from an input spreadsheet. The sys-

tem incorporates a new logic-oriented Monte Carlo tree search

algorithm that explores the data space given by the input spread-

sheet to progressively generate story pieces (i.e., data facts) and

organize them in a logical sequence. The importance of data facts

is measured based on information theory. Each data fact is visu-

alized in a chart and captioned by an automatically generated

description. A user study highlighted that the logical order is

consistent to humans, the generated data story express useful

data insights, and the visualization modes are satisfactory. Nev-

ertheless, Calliope cannot understand data semantics to better

generate the story contents and logic. Also, the generated cap-

tions are too rigid and contain grammar errors, and the visual

encoding generated are notably simple.

Shi et al. [18] proposed AutoClips, an automatic approach to

generate data videos from a given topic. It is based on 4 phases: (i)

collecting a series of data facts around a certain topic, (ii) construct-
ing a storyline as an assembly of these data facts into a sequence,

(iii) choosing data visualizations for the data facts and deciding

how to animate them by drawing a storyboard, and finally, (iv) re-
alizing the storyboard via a design software in which the narrator

edits and combines the animated visualizations until a coherent

data video is accomplished. Their evaluation revealed that Au-

toClips can generate comprehensible and engaging data videos

which have comparable quality with human-made videos. How-

ever, the system only supports tabular data and favors datasets

with diverse column types.

Wang et al. [22] conducted a qualitative analysis on 245 info-

graphics studying the design space in terms of structures, sheet

layouts, fact types, and visualization styles. Based on those, the

authors propose a system for the auto-generation of fact sheet

generation. It consists of three phases: (i) fact extraction, (ii) fact

composition, and (iii) presentation synthesis. Their validation

of the system highlighted the efficiency of data exploration and

the ease of understanding of the visualizations. As limitations,

we point out that data semantics is not considered during ex-

ploration, and that visualizations are taken from a small-sized

predefined library.

2.2 Automatic data exploration
Some works [6, 12] propose solutions for automating data explo-

ration, the first step of data narration.

McAuley et al. [12] propose ExploroBOT, a novel system de-

veloped to support rapid exploration using a combination of

automatic chart generation and intuitive navigation supported

by a novel visual guidance framework. The criteria to quantify

the interestingness of chart are: (i) data correlation: highly cor-

related data in scatter plots and trend charts, hints towards an

interesting relationship between the two variables. (ii) Peaks:

Spikes and large differences in a numerical attributes instantly at-

tract attention. (iii) Outliers: A chart with more outliers is deemed

more interesting.

El et al. [6] proposed ATENA, a system that takes an input

dataset and auto-generates a compelling exploratory session,

presented in an EDA notebook. They shaped EDA into a con-

trol problem, and devised a novel Deep Reinforcement Learning

architecture to effectively optimize the notebook generation.

Personnaz et al. [16] introduce DORA the explorer, which

provides guidance to data explorer relying on Deep Reinforce-

ment Learning that combines intrinsic (curiosity) and extrinsic

(familiarity) rewards.

Finally, Deutch et al. [5] deal with the generation of expla-

nations for highlighting exploration results. They proposed Ex-

plainED, a system for automatically explaining views in EDA

notebooks. The explanations are presented in Natural Language

and describe the particular elements of the view that are the most

interesting (the ones having the highest Shapley values).

To the best of our knowledge, our work is the first aiming

at automating the production of personalized data narrative by

leveraging existing EDA notebooks. One prominent aspect of our

approach is to qualify the interestingness of messages contained

in existing notebooks. This is important as messages are the

cornerstone of data narrartives [15] and since the quality of

notebooks is known to be very diverse [21].

3 FORMAL BACKGROUND
This section introduces the representation of EDA notebooks

and messages and presents the set of properties used for learning

interestingness.

3.1 Preliminary definitions
EDA notebooks are essentially sequences of programmatic oper-

ations and their commented results. They are linearly structured

as a sequence of cells, of two types: text and code. Text cells

contain explanatory text, typically including titles, definitions,

explanations and comments. Code cells contain a sequence of

commands and their output, typically including numeric results

and graphics.

We consider that a code cell together with a text cell delivers

a commented result on a logical part of the notebook. We will

call it message in what follows. We represent a message as a pair

of code and text cells, together with a set of numerical properties

describing their contents (e.g. the number of words in the text

cell, or the complexity of the code). The whole set of properties

is described in next subsection.

Definition 3.1 (Message). Let T be an infinite set of text cells

and C an infinite set of code cells. A message is a tuple 𝑚 =

⟨𝑐, 𝑡, 𝑝𝑚
1
, . . . , 𝑝𝑚𝑜 ⟩ where 𝑐 ∈ C is a code cell, 𝑡 ∈ T is a text cell

and 𝑝𝑚
𝑖
, 1 ≤ 𝑖 ≤ 𝑜 , are properties of 𝑐 or 𝑡 .



Dimension Name #

Notebook Number of likes 0

popularity Number of views 1

Number of forks 2

Author’s expertise 3

Notebook Number of cells 4

structure Number of lines of code 5

Number of lines text 6

Code cell Number of characters 7

Halstead score 8

Cyclomatic complexity 9

Generates a visualization 10

Text cell Number of characters 11

Number of words 12

Flesch reading ease index 13

Gunning-Fog index 14

Automated Readability Index 15

Coleman-Liau index 16

Message in Position in notebook 17

notebook

Table 1: Features considered

Finally, we represent a notebook as a sequence of messages

and a set of notebook properties (e.g. number of user’s likes).

Definition 3.2 (Notebook). LetM be an infinite set of messages.

A notebook is a tuple 𝑛 = ⟨𝑚1, . . . , 𝑚𝑣, 𝑝
𝑛
1
, . . . , 𝑝𝑛𝑤⟩ where𝑚𝑖 ∈

M, 1 ≤ 𝑖 ≤ 𝑣 , are messages, and 𝑝𝑛
𝑗
, 1 ≤ 𝑗 ≤ 𝑤 , are properties of

𝑛.

3.2 Properties
The properties of cells, messages and notebooks correspond to

features extracted from notebooks, detailed in Table 1.

We consider the following feature dimensions:

• notebook popularity: these features indicate the global

popularity of the notebooks among Kaggle users. They are

the main drivers to compute messages’ interestingness as

they express the opinion of the community of users.

• notebook structure: these feature describe the size of the

notebook in terms of cells and lines of code and comments.

• code cell: these features characterize code cells in terms

of their complexity and the presence of a visualization. In

addition to the number of lines of code, two classical soft-

ware engineering metrics are used: cyclomatic complexity

[13], Halstead metric [9].

• text cell: these features characterize the content of text

cells especially in terms of readability, i.e., indexes related

to the level of studies a person needs to understand the

text at the first reading computed considering the number

of words, number of sentences, number of syllables or

number of characters as components.

• message characteristics: this feature indicates where the

message is located in the notebook. Often the first mes-

sages of a notebook are simple data profiling while mes-

sages at the end tend to be more elaborated.

In the following we restrict to notebooks and messages over a

given dataset. Implementation details about message and prop-

erties extraction are given in Section 5.

4 EXTRACTING NARRATIONS FROM
NOTEBOOKS

In this section, we describe how we process notebook messages

to extract narrations.

4.1 Problem definition
Let 𝑀𝐷

be the set of messages over a dataset 𝐷 . We are inter-

ested in producing a sequence of 𝜖𝑡 messages from𝑀𝐷
such that

their total interestingness is maximal, and the overall cognitive

distance between them is minimal.

This problem is defined formally in [2] as follows:

Definition 4.1 (Traveling Analyst Problem (TAP)). Let𝑄 be a set

of 𝑁 queries, each associated with a positive time cost 𝑐𝑜𝑠𝑡 (𝑞𝑖 )
and a positive interestingness score 𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡 (𝑞𝑖 ). Each pair of

queries is associated with a metric 𝑑𝑖𝑠𝑡 (𝑞𝑖 , 𝑞 𝑗 ) representing the
cognitive distance of browsing from one query result to the next.

Given a time budget 𝜖𝑡 , the optimization problem consists in find-

ing a sequence ⟨𝑞1, . . . , 𝑞𝑀 ⟩ of queries,𝑞𝑖 ∈ 𝑄 , without repetition,

with𝑀 ≤ 𝑁 , such that:

(1) max

∑𝑀
𝑖=1 𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡 (𝑞𝑖 )

(2)

∑𝑀
𝑖=1 𝑐𝑜𝑠𝑡 (𝑞𝑖 ) ≤ 𝜖𝑡

(3) min

∑𝑀−1
𝑖=1 𝑑𝑖𝑠𝑡 (𝑞𝑖 , 𝑞𝑖+1).

Lemma 4.2 (Complexity of TAP [2]). TAP is strongly NP-hard.

It can easily be seen that our problem is an instance of TAP,

where queries are notebook messages and all their costs are the

same. We next define the interestingness and distance functions.

4.2 Characterizing interestingness
To characterize the interestingness ofmessages, instead of propos-

ing our own definition, we choose to learn a model of it, using

the features of in Table 1. Our strategy is to compute a score for

messages based on dimensions: Notebook popularity, Notebook

structure and Message in notebook. And then, to learn this score

using the features specific to messages, i.e., those in Dimensions

Code cell and Text Cell.

We choose to focus on regression models as they give good

results on similar problems [14]. We use auto-machine learning

[7] to learn the model, since we aim to achieve good accuracy

performances by testing a large spectrum of models and hyper-

parameters.

4.3 Ensuring relevance
Note that interestingness of messages is learned independently of

any user requirement. In order to build a coherent data narrative

in accordance with user interests, we introduce the notion of

user profile and we propose to pre-filter the set of messages that

are relevant to such a profile.

We model a user profile as a set of keywords representing

user’s interests. The relevance of a message for a user profile is

computed based on the similarity of the text contained in the

profile and in the text cell of the message. We use an off-the-shelf

cosine similarity between the TF-IDF vectors of the user profile

and the message. We use as document corpus the overall set of

users’ profilesU and text cells of all messages inM.

Formally, let𝑚 ∈ M be a message, and𝑢 ∈ U be a user profile,

with 𝑡 being the text cell of𝑚. Let 𝑉1 and 𝑉2 be respectively the

TF-IDF vectors of 𝑢 and 𝑡 . The similarity between 𝑢 and 𝑚 is

computed as:

𝑠𝑖𝑚(𝑢,𝑚) = 𝑐𝑜𝑠𝑖𝑛𝑒 (𝑉1,𝑉2) (1)



4.4 Characterizing distance
The distance between two messages is also computed based on

the similarity of the text contained in the text cells. We use the

same TF-IDF vectors for messages, computed for characterizing

relevance.

Formally, let 𝑚1, 𝑚2 ∈ M be two messages, with 𝑡1 and 𝑡2
being respectively their text cells. Let 𝑉1 and 𝑉2 be respectively

the TF-IDF vectors of 𝑡1 and 𝑡2. The distance between the two

messages is computed as:

𝑑𝑖𝑠𝑡 (𝑚1,𝑚2) = 1 − 𝑐𝑜𝑠𝑖𝑛𝑒 (𝑉1,𝑉2) (2)

4.5 Main algorithms
This subsection presents two algorithms that implement the ap-

proach. Algorithm 1 describes the extraction of messages, and the

computation of their interestingness and distance. This algorithm

can be executed offline. Algorithm 2 describes the generation of

a data narrative for a specific user profile. It pre-selects relevant

messages, calls the TAP for selecting and structuring messages

and finally writes the narrative.

Algorithm 1Message extraction and computations

Require: a set of notebooks 𝑁𝐷
, a set of user profiles𝑈

Ensure: a set of messages 𝑀𝐷
, an interestingness vector

𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡 , a distance matrix 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒

1: Let𝑀𝐷
= extractMessages (𝑁𝐷

)

2: Let 𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡 () = learnInterestingness (𝑀𝐷 , 𝑁𝐷
)

3: index (𝑀𝐷 ∪𝑈 )

4: Let 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 () = computeDistance (𝑀𝐷 ∪𝑈 )

5: return𝑀𝐷
, 𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡 (), 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 ()

Algorithm 2 User tailored narrative from notebook messages

Require: a set of messages𝑀𝐷
, a set of notebooks 𝑁𝐷

, a user

profile 𝑢, a similarity threshold 𝜖𝑠 , a number of expected

messages 𝜖𝑡
Ensure: a data narrative for the user

1: Let𝑀 = ∅
2: for𝑚 ∈ 𝑀𝐷 do
3: if 𝑠𝑖𝑚(𝑚,𝑢) > 𝜖𝑠 then
4: 𝑀 = 𝑀 ∪ {𝑚}
5: end if
6: end for
7: Let 𝑇 = TAP (𝑀, 𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡, 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒, 𝜖𝑡 )

8: return narrate (𝑇, 𝑁𝐷
)

The extractMessages function extracts messages from a set

of notebooks. Its implementation is described in Section 5. The

learnInterestingness function computes message interestingness

as described in Subsection 4.2. The index function indexes the

corpus of messages and profiles, computing TF-IDF vectors, as

described in Subsection 4.3. Such vectors are used for computing

the distance among messages (computeDistance function) and
similarity between a message and a profile (the sim function,

which is 1 − 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 ()). The TAP function implements the opti-

mization problem described in Subsection 4.1. Finally, the narrate
function generates the narration by writing messages in the or-

der indicated by the TAP, reusing the original visualizations of

messages.

5 IMPLEMENTATION AND TESTS
Our prototype is implemented in Python, using libraries Radon

for code metrics and py-readability-metrics for readability met-

rics. We used Kaggle API to access the datasets and notebooks.

To match a code cell with the visualization it produces, we used

the HTML page of the notebook because the Kaggle API does

not provide the visualization. We used Beautiful Soup to parse

the HTML and mapped the visualization with the code cell using

a join on the code text. We used sklearn for the TFIDF vectoriza-

tion. Solving the TAP problem (see Section 4.1) exactly is done

with a mathematical model on CPLEX 20.10 and is implemented

in C++
2
. For large sets of messages (more than 500 messages)

finding exact solutions is intractable. We use a fast and memory-

efficient heuristics inspired by the classic “sort by item efficiency”

heuristics for solving the Knapsack problem [4]. The code of the

approach is available on Github
3
.

We tested our code on 377 Kaggle notebooks from the first 18

datasets of Kaggle.com having more than 20 notebooks, sorted

by votes. We extracted messages from these notebooks by con-

sidering only the code cells immediately followed by a text cell

(a markdown cell in Kaggle terminology). This resulted in 10166

messages. The correlation matrix of the features of Table 1 is

displayed in Figure 2, computed with Pearson’s correlation co-

efficient. The order of features in the figure is the same as the

order in the table. Globally it can be seen that the features are

correlated when they are in the same feature dimension. In more

details:

• in dimension notebook popularity, it can be seen that,

unsurprisingly, likes, views and forks are quite correlated,

while expertise is correlated to none of the others ;

• number of lines of codes and number of lines of text are

only weakly correlated ;

• while code metrics are heavily correlated, they are not

correlated to the length of the code neither and the gener-

ation of a visualization is correlated to none of the other

features in this dimension ;

• interestingly, the position of messages is quite correlated

to the total number of cells in the notebook and to the total

number of lines of text lines, while it is less correlated to

the number of lines of code. This reflects the correlations

found in the notebook structure dimension and the fact

that the more messages, the more cells in the notebook.

On the other hand, the position of the message is not

correlated to its own cells’ code length or text length.

To learn interestingness, we use Auto-sklearn
4
with the prin-

ciple presented in the previous section. Auto-sklearn produces

an ensemble model that is not a single model but several models

collaborating to achieve the best possible regression. The best

ensemble model we obtained, in terms of 𝑅2 is indicated in Table

2. Its 𝑅2 score is 0.85 in the training phase and 0.59 in the testing

phase. The target score we use was constructed by multiplying

all the features in dimensions notebook popularity, notebook

structure and message in notebook.

We created 20 user profiles by retrieving the owners of the

datasets of Kaggle.comwith the most votes and then retrieving all

the datasets owned by these users. The words in the description

of those datasets are used to form the profiles. For the 20 users,

profiles ranged between 5 and 20 words, with an average of 14.5

2
https://github.com/AlexChanson/Cplex-TAP

3
https://github.com/Blobfish-LIFAT/NotebookCrowdsourcing

4
https://automl.github.io/auto-sklearn/master/index.html

https://github.com/AlexChanson/Cplex-TAP
https://github.com/Blobfish-LIFAT/NotebookCrowdsourcing
https://automl.github.io/auto-sklearn/master/index.html


Figure 2: Correlation of all the features in Table 1

rank ensemble weight type

1 0.76 gaussian process

2 0.02 gradient boosting

3 0.04 gradient boosting

4 0.08 k nearest neighbors

5 0.10 gradient boosting

Table 2: Model of interestingness

(stdev is 4.97). The description of those datasets, together with the

text of all text cells identified when extracting messages, formed

the vocabulary fromwhich TF-IDF vectors for users andmessages

were computed. For each user, we filtered the set of messages

using their profile, using the cosine similarity between both TF-

IDF vectors, using a threshold of 0. The number of messages

relevant for each profile ranges between 191 (minimum) and

2551 (maximum), with an average of 798.

We generated one narration for each profile, asking for 𝜖𝑡=10

messages in it. On average, the generated narrations have 8.3

messages (minimum 2, maximum 10, stdev 1.75). To measure

the degree of personalization of the narration, we use the Szym-

kiewicz–Simpson overlap coefficient
5
between the profile and

the text of the messages. On average it is 0.15 (minimum 0.07,

maximum 0.44, stdev 0.12). These low scores are expected since

a threshold of 0 was used to select messages for each profile.

To measure the coherence and diversity of the messages in the

generated narrations, we measured (i) the number of different

notebooks where the messages come from and (ii) the Szym-

kiewicz–Simpson overlap coefficient between the different mes-

sage texts in the narration. Regarding (i), on average the messages

come from 4.2 notebooks (minimum 1, maximum 9, stdev 0.3). As

to (ii), the overlap is 0.68 on average (minimum 0.59, maximum

0.77, stdev 0.04). The generated narrations, under the form of

Jupyter notebooks, are available on Github
6
.

5
The overlap coefficient is defined as the size of the intersection divided by the

smaller of the size of the two sets. It is a form of Jaccard coefficient adapted to sets

with different cardinality.

6
https://github.com/Blobfish-LIFAT/NotebookCrowdsourcing/tree/master/

output/notebooks

6 CONCLUSION
This short paper introduces a novel approach for generating per-

sonalized data narratives from EDA notebooks. The approach

consists of extracting messages from existing notebooks, learn-

ing their interestingness, filtering this set of messages for some

user profile and generating a coherent sequence of messages

adapted to this profile. We detailed the implementation of our

proof of concept, and presented a preliminary experiment with

Kaggle.com notebooks.

We are currently working at improving our approach by pro-

viding more robust message detection, better accounting for the

visualizations related to the message, generating narratives that

are more coherent, less redundant and more personalized. We

will evaluate the approach with user tests, comparing it with com-

petitor approaches to generate notebooks [6, 16] and assessing

its scalability.

REFERENCES
[1] Sheelagh Carpendale, Nicholas Diakopoulos, Nathalie Henry Riche, and

Christophe Hurter. Data-driven storytelling (dagstuhl seminar 16061).

Dagstuhl Reports, 2016.
[2] Alexandre Chanson, Ben Crulis, Nicolas Labroche, Patrick Marcel, Verónika

Peralta, Stefano Rizzi, and Panos Vassiliadis. The traveling analyst problem:

Definition and preliminary study. In DOLAP@EDBT/ICDT, 2020.
[3] S. Chen, J. Li, G. Andrienko, N. Andrienko, Y. Wang, P. H. Nguyen, and

C. Turkay. Supporting story synthesis: Bridging the gap between visual

analytics and storytelling. TVCG, 2018.
[4] George B. Dantzig. Discrete-variable extremum problems. Operations Research,

5(2):266–288, 1957.

[5] Daniel Deutch, Amir Gilad, Tova Milo, and Amit Somech. Explained: Expla-

nations for EDA notebooks. Proc. VLDB Endow., 13(12):2917–2920, 2020.
[6] Ori Bar El, Tova Milo, and Amit Somech. Automatically generating data

exploration sessions using deep reinforcement learning. In SIGMOD, 2020.
[7] Matthias Feurer, Aaron Klein, Katharina Eggensperger, Jost Tobias Springen-

berg, Manuel Blum, and Frank Hutter. Efficient and robust automated machine

learning. In Advances in Neural Information Processing Systems, Canada, 2015.
[8] Dimitrios Gkesoulis, Panos Vassiliadis, and Petros Manousis. Cinecubes:

Aiding data workers gain insights from OLAP queries. Inf. Syst., 53:60–86,
2015.

[9] Maurice H. Halstead. Elements of Software Science (Operating and Programming
Systems Series). Elsevier Science Inc., USA, 1977.

[10] Stratos Idreos, Olga Papaemmanouil, and Surajit Chaudhuri. Overview of

data exploration techniques. In SIGMOD, 2015.
[11] Robert Kosara and JockMackinlay. Storytelling: The next step for visualization.

IEEE Computer, 46, 2013.
[12] John McAuley, Rohan Goel, and Tamara Matthews. Explorobot: Rapid explo-

ration with chart automation. In VISIGRAPP, 2019.
[13] Thomas J. McCabe. A complexity measure. IEEE Trans. Software Eng., 2(4):308–

320, 1976.

[14] Martina Megasari, Pandu Wicaksono, Chiao Yun Li, Clément Chaussade,

Shibo Cheng, Nicolas Labroche, Patrick Marcel, and Verónika Peralta. Can

models learned from a dataset reflect acquisition of procedural knowledge? an

experiment with automatic measurement of online review quality. In Il-Yeol

Song, Alberto Abelló, and Robert Wrembel, editors, Proceedings of DOLAP,
volume 2062 of CEUR Workshop Proceedings. CEUR-WS.org, 2018.

[15] Faten El Outa, Matteo Francia, Patrick Marcel, Verónika Peralta, and Panos

Vassiliadis. Towards a conceptual model for data narratives. In ER, 2020.
[16] Aurélien Personnaz, Sihem Amer-Yahia, Laure Berti-Équille, Maximilian Fabri-

cius, and Srividya Subramanian. DORA THE EXPLORER: exploring very large

data with interactive deep reinforcement learning. In CIKM, 2021.

[17] Adam Rule, Aurélien Tabard, and James D. Hollan. Exploration and explana-

tion in computational notebooks. In CHI, 2018.
[18] D. Shi, F. Sun, X. Xu, Xingyu Lan, David Gotz, and Nan Cao. Autoclips: An

automatic approach to video generation from data facts. Comput. Graph.
Forum, 40(3):495–505, 2021.

[19] Danqing Shi, Xinyue Xu, Fuling Sun, Yang Shi, and Nan Cao. Calliope: Au-

tomatic visual data story generation from a spreadsheet. IEEE Trans. Vis.
Comput. Graph., 27(2):453–463, 2021.

[20] Bo Tang, Shi Han, Man Lung Yiu, Rui Ding, and Dongmei Zhang. Extracting

top-k insights from multi-dimensional data. In SIGMOD, 2017.
[21] Jiawei Wang, Li Li, and Andreas Zeller. Better code, better sharing: on the

need of analyzing jupyter notebooks. In ICSE-NIER, 2020.
[22] Yun Wang, Zhida Sun, Haidong Zhang, Weiwei Cui, Ke Xu, Xiaojuan Ma, and

Dongmei Zhang. Datashot: Automatic generation of fact sheets from tabular

data. IEEE Trans. Vis. Comput. Graph., 2020.

https://github.com/Blobfish-LIFAT/NotebookCrowdsourcing/tree/master/output/notebooks
https://github.com/Blobfish-LIFAT/NotebookCrowdsourcing/tree/master/output/notebooks

	Abstract
	1 Introduction
	2 Related work
	2.1 Automating data narration
	2.2 Automatic data exploration

	3 Formal background
	3.1 Preliminary definitions
	3.2 Properties

	4 Extracting narrations from notebooks
	4.1 Problem definition
	4.2 Characterizing interestingness
	4.3 Ensuring relevance
	4.4 Characterizing distance
	4.5 Main algorithms

	5 Implementation and tests
	6 Conclusion
	References

