
On Multi-Valued Indexing in AsterixDB
Glenn Galvizo
ggalvizo@uci.edu

Department of Computer Science
Irvine, California, USA

Michael J. Carey
mjcarey@uci.edu

Department of Computer Science
Irvine, California, USA

ABSTRACT
Secondary indexes in relational database systems are traditionally
built under the assumption that one data record maps to one
indexed value. Nowadays, particularly in NoSQL systems, single
data records can hold collections of values that users want to
access efficiently in an ad-hoc manner. Multi-valued indexes aim
to give users the best of both worlds: (i) to keep a more natural
data model of records with collections of values, and (ii) to reap
the benefits of a secondary index.

In this paper, we detail the steps taken to realize multi-valued
indexes in AsterixDB, a Big Data management system with a
structured query language operating over a collection of docu-
ments. This includes (a) creating the specification language for
such indexes, (b) illustrating data flows for bulk-loading and
maintaining an index, and (c) discussing query plans to take
advantage of multi-valued indexes for use in predicates with
existential and universal quantification. We conclude with ex-
periments that compare AsterixDB multi-valued indexes against
similar indexes in MongoDB and Couchbase Query.
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1 INTRODUCTION
Multi-valued fields, such as arrays and multisets, are a staple in
many (if not all) NoSQL systems. Secondary indexes are tradition-
ally for single-valued fields, where a record in a database maps to
one entry in an index (e.g. a leaf node in a B+ tree index). Here,
we will refer to a secondary index on a single-valued field for a
collection of records as a single-field single-valued index, while
a secondary index over multiple single-valued fields will be re-
ferred to as a composite single-valued index. A multi-valued index
is a secondary index on a multi-valued field. A multi-valued index
is distinct from a single-valued index, as the number of values
associated with the multi-valued field is not known a priori.

Given a collection of records to index, this work focuses on
supporting secondary indexes for multi-valued fields in Aster-
ixDB. AsterixDB is a NoSQL-style Big Data management system
with a declarative query language (SQL++), a rule-based query
optimizer, a parallel dataflow execution engine, and partitioned
LSM-based storage and indexing. The main contributions of this
paper are as follows:

(1) An approach that separates the implementation of multi-
valued indexes from the low-level storage layer of a data-
base, yielding a clean architecture with the additional ben-
efit of being able to accommodate index structures other
than B+ trees.

(2) A multi-valued index specification language that is neither
ambiguous with respect to structure nor verbose.
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(3) Foundations for bulk loading andmaintainingmulti-valued
indexes in a manner that is transactionally compliant but
still efficient.

(4) Details on query evaluation for two types of queries in-
volving arrays andmultisets: existential quantification and
universal quantification. This includes join queries that
probe items in another dataset’s multi-valued field.

(5) Two sets of experiments that evaluate the efficacy of such
indexes for applicable queries and how our implementa-
tion fares against those in two other document databases:
MongoDB and Couchbase Query.

The rest of this paper is structured as follows: Section 2 details
related work around multi-valued indexing. Section 3 reviews As-
terixDB, the big data management system used for this research.
Section 4 describes the syntax for specifying multi-valued index
creation statements. Section 5 discusses various data flows to
realize multi-valued indexing. Section 6 and Section 7 evaluate
the performance of such indexes. Section 8 concludes the paper
and details potential future work with respect to multi-valued
indexing.

2 RELATEDWORK
The advent of nesting in data models for databases beyond the
flat relational era has brought with it a set of challenges with
respect to associative access. Related work can be grouped into
two general areas: (i) indexing in object-oriented databases, and
(ii) multi-valued indexing in modern document databases (doc-
ument stores, key-value stores with document extensions, and
relational stores with document extensions).

2.1 Indexing in Object-Oriented Databases
We start our discussion with the object model, with work in
this area dating back approximately 30 years. Here, objects and
their member objects are each first class citizens. In terms of
indexing, object-oriented databases must address the problem of
what exactly one should index when objects can reside in objects.

Suppose we want to index vehicles by the names of their vehi-
cle manufacturers. More specifically, we want to index the Name
attribute inside the Manufacturer object reference of a Vehicle
object. Bertino and Kim studied three approaches to nested in-
dexes in object databases [4]: (i) nested indexes (which map the
Name attribute to the Vehicle objects), (ii) path indexes (which
map the same Name attribute to both Manufacturer and Vehicle
objects), and (iii) multi-indexes (which firstmap the Name attribute
to the Manufacturer objects, then map the Manufacturer objects
to the Vehicle objects). Under a relational lens, multi-indexes
(item (iii)) can be viewed as pair-wise join indexes, which have
also been studied by Valduriez [26]. Bertino and Foscoli address
the problem of incorporating the notion of inheritance (e.g. Moped,
a child class of Vehicle) with indexing nested objects [3]. Kemper
and Moerkotte detail an approach based on indexing objects that
are nested in sets and lists [16]. As an example, suppose we now
want to index all Name fields associated with all Division objects



within the Divisions list of a Manufacturer object. This is multi-
valued indexing with an object-oriented twist, and support for
such indexes can be found in many of the object databases of this
era [11, 17, 20, 21]. Goczyla proposed an extension to set indexing
in object databases that not only handles set membership, but
the more general cases of superset, subset, and set equality [14].

2.2 Multi-Valued Indexing in Document
Databases

Next we address the document model, where documents them-
selves are self-describing (lending the model to weaker type
assumptions). Consider the XML document model, where an el-
ement is composed of many sub-elements and there exists no
way to determine if a sub-element will be single-valued or multi-
valued. The XML extension for DB2 addresses the single-valued
vs. multi-valued problem with respect to indexing by treating
every element as a potential multi-valued attribute [23]. The
JSON document model, in contrast to the XML document model,
does allow one to specify if a field is multi-valued or not (making
the single-valued vs. multi-valued problem a non-issue). Modern
JSON document stores such as Couchbase [10], MongoDB [22],
and Oracle’s NoSQL database [24] have support for multi-valued
indexing, but all had somewhat different design goals than the
multi-valued indexing approach studied here. The array indexes
of the Couchbase Index Service were designed with the intent to
fully cover certain queries (i.e., to use only the index to satisfy a
query), while AsterixDB’s multi-valued indexes are designed to
handle a larger set of queries at the cost of no longer being cov-
ering. The Couchbase Index Service does also offer non-covering
multi-valued “Flex Indexes” [12], made with the intent to handle
a larger set of queries that can be answered using an inverted
index. In contrast, multi-valued indexes in AsterixDB were de-
signed to support the kinds of queries that can be answered using
a B+ tree. Finally, MongoDB’s and Oracle’s index specification
syntax leave undesirable ambiguities for the user (in terms of
structure and needless repetition, as we will discuss later).

The document model is not exclusive to document databases;
the model has also found adoption in several key-value stores
and modern relational systems. ArangoDB and CockroachDB
offer array indexes, but only to satisfy membership queries (i.e.
no range predicates) on non-nested arrays [7, 19]. Relational
databases with document extensions like MySQL [9] and Post-
greSQL [25] also support a limited form of multi-valued indexing,
but again only support membership queries. The multi-valued
indexes in AsterixDB, on the other hand, are designed to support
a much larger set of queries, such as joins with a value inside a
multi-valued field, existential quantification, and universal quan-
tification.

3 ASTERIXDB BACKGROUND
In this section we give an overview of AsterixDB and single-
valued B+ tree indexes in AsterixDB.

3.1 System Overview
AsterixDB is a big data management system (BDMS) designed
to be a highly scalable platform for information storage, search,
and analytics [2]. To scale outward it follows a shared-nothing
architecture, where each node independently accesses storage
and memory. All nodes are managed by a central cluster con-
troller that both serves as an entry point for user requests and
coordinates work amongst the individual AsterixDB nodes. After

a request arrives at the cluster controller, the request is translated
into a logical plan and subsequently given to a rule-based opti-
mizer to produce an optimized logical plan [5]. This optimized
logical plan is then translated into a job that can run across all
nodes in the cluster [6]. Datasets in AsterixDB are partitioned
across the cluster on their primary key into primary B+ tree in-
dexes, where the data records reside, with all secondary indexes
being local to each node. Natively, all datasets and indexes in
AsterixDB use LSM (log-structured merge) trees to efficiently
ingest new data [1].

3.2 Single-Valued B+ Tree Indexing
AsterixDB provides a choice of several secondary index types to
accelerate queries: BTREE (the default), RTREE, KEYWORD, NGRAM, and
FULLTEXT. Suppose that we have a dataset Users and we want
to create a composite secondary B+ tree index on two string
fields: the name field and the zip_code field inside of an object
field address. We would then issue the statement in Listing 1 to
AsterixDB:

1 CREATE INDEX userNameZipIdx ON Users (
2 name : string ,
3 address.zip_code : string
4 );

Listing 1: Syntax for creating a single-valued composite
secondary B+ tree index in AsterixDB.

The index creation statement in Listing 1 is composed of three
parts: (1) the name of the index, (2) the dataset to build the index
on, and (3) an ordered list of paths to fields of the dataset to index.
A path is a dot-separated list of fields, where a dot denotes that
the field after the dot can be found inside the object field before
the dot. All paths are followed by their endpoint data type, in
this case ‘: string’, though this part is excluded if the fields are
defined in the Users type definition. The name field is not nested
inside any object, so we simply use name in our index creation
statement. zip_code however is nested inside the address field,
so we use the path address.zip_code. The use of the dot to
express nested fields here generalizes to all types of single-valued
(i.e. no arrays or multisets) object nesting structures. Once an
AsterixDB user issues the index creation statement in Listing 1,
users can expect queries that quantify over the name field or the
name and zip_code fields from the Users dataset to utilize the
index in their evaluation.

4 INDEX SPECIFICATION
We itemize the requirements for a user-friendly multi-valued
index specification below:

(1) Distinguish between single-valued and multi-valued fields.
Similar to single-valued indexes, users must be able to
describe the type and structure of the fields they want to
be indexed.

(2) Allow fields within the same array / multiset field to be in-
dexed, but not fields that span across differentmulti-valued
fields. Consequently, we should abstain from specifying a
multi-valued field more than once to improve legibility.

(3) Constrain the specification language. We are not inter-
ested in creating multi-valued indexes that act as the sole
data source for a few queries (i.e. covering indexes), so



UNNEST FieldPath SELECT FieldPath

,

TypeName :

: TypeName

Figure 1: Syntax for a multi-valued element in a CREATE
INDEX statement. Due to space constraints, this diagram has
been split into two (joined by the three dashes) and the
FieldPath production refers to either a singular field or a
dot separated list of fields (denoting nested fields).

we should not complicate the syntax by allowing general
expressions to be indexed.

(4) Have an easy-to-read index specification. Ideally, users
should be able “debug” their index specification by issuing
a query that closely follows their index specification itself.

Our solution is to introduce two keywords into the CREATE
INDEX statement, borrowed from the AsterixDB query language:
UNNEST and SELECT. Users can then specify amulti-valued element
in lieu of a field or field path inside the existing CREATE INDEX
grammar. A multi-valued element starts with a series of UNNEST
terms, which describe the nesting structure ofmulti-valued field(s).
If the desired field to index is located within an array or multiset
of objects, then ‘SELECT’ followed by the desired field / field path
is specified. Lastly, if the type of the field is not specified with
the dataset DDL, then a user concludes with the type name. The
syntax for a multi-valued element is given in Figure 1.

We demonstrate several examples in Listing 3 for the datasets
described in Listing 2, some of which will also serve to guide dis-
cussion in the following section. The first statement in Listing 3
indexes the categories associated with a store, where a category
value is a string within a multi-valued field. The second statement
creates an index on the item IDs within the orderlines of an order.
This statement demonstrates the use of ‘SELECT’ to specify fields
of an object inside of a multi-valued field. The third statement
creates an index on string values inside a multi-valued field of
an object that itself is located within a multi-valued field. Here,
we exhibit the use of multiple UNNEST terms to identify deeper
multi-valued nested structures.

The two statements in Listing 4 specify composite indexes
that involve a multi-valued element. The first statement creates
a composite multi-valued index on two fields within an array
of objects. The first statement shows how our index specifica-
tion syntax avoids repeating the nesting structure (in this case,
the phones array) for multiple values inside the same array. The
second statement creates an index on the user name and phone
numbers associated with a given user, where a given phone num-
ber is represented by a string field within an object within a
multi-valued field. Note that userNameNumberIdx is a composite
multi-valued index where a single-valued field and amulti-valued
field coexist in the same index. Its statement also illustrates the
benefits of not altering the rest of the CREATE INDEX grammar:
the specification for composite indexes containing both single-
valued fields and multi-valued fields is nearly identical to the
specification for composite single-valued indexes.

1 // Sample document for Stores.
2 {
3 " store_id ": " A35D3 ",
4 "name": "Cat 's Kitchen "
5 " categories ": [
6 " Produce ",
7 "Pet Food"
8 ]
9 }
10
11 // Sample document for Users.
12 {
13 " user_id ": "34 SF4",
14 "name": "Mary",
15 " address ": {
16 " street ": "3133 Park Place ",
17 " zip_code ": " 14622 "
18 },
19 " phones ": [
20 { "kind": " mobile ",
21 " number ": "808 −123 −4456" },
22 { "kind": " office ",
23 " number ": "555 −234 −1235" }
24 ]
25 }
26
27 // Sample document for Orders.
28 {
29 " order_id ": " A35DA ",
30 " user_id ": "3SSS2",
31 " store_id ": " 33378 ",
32 " orderline ": [
33 { " item_id ": 12221 ,
34 "tags": [ "341 DD", "2225F" ] },
35 { " item_id ": 15321 ,
36 " delivery_d ": "2021 −01 −20" }
37 ]
38 }

Listing 2: Sample documents of the datasets Stores, Users,
and Orders indexed in in Listing 3 and Listing 4.

1 CREATE INDEX storesCatIdx ON Stores (
2 UNNEST categories : string
3 );
4
5 CREATE INDEX ordersItemIDIdx ON Orders (
6 UNNEST orderline
7 SELECT item_id : bigint
8 );
9
10 CREATE INDEX ordersTagIdx ON Orders (
11 UNNEST orderline
12 UNNEST tags : string
13 );

Listing 3: Example specification for three multi-valued
indexes.

1 CREATE INDEX userNumberKindIdx ON Users (
2 UNNEST phones
3 SELECT number : string ,
4 kind : string
5 );
6
7 CREATE INDEX userNameNumberIdx ON Users (
8 name : string ,
9 UNNEST phones
10 SELECT number : string
11 );

Listing 4: Example specification for two composite multi-
valued indexes.



5 INDEX IMPLEMENTATION
The implementation of multi-valued indexes can be broken into
four main sections: (i) what an index entry is, (ii) how we bulk
load an index, (iii) how we maintain an index, and (iv) how we
utilize indexes in queries.

5.1 Defining an Index Entry
We will describe the index entries for a multi-valued index of
type BTREE, but it is important to stress that this work is general
enough to also be applied to RTREE indexes in the future. A leaf
node in a B+ tree must minimally contain two items: (i) the field
value(s) that the tree is sorted on (i.e. the values of the sort key),
and (ii) the associated payload (i.e. the data record(s) or way(s)
to get to the data record(s)). For AsterixDB, item (ii) is a singular
unique field: the primary key associated with the record being
indexed. A total order on B+ trees in the presence of potentially
duplicate index field values is maintained by adding the record’s
primary key as a suffix to the sort key itself. Suppose that a single-
valued index on the name field of the Stores dataset were built.
Given the two documents in Listing 5, the two resulting index
keys for this single-valued index would be <"Raspberry Store",
"A34AD"> and <"Raspberry Store", "1939D">.

Leveraging the layered architecture of AsterixDB, an index
entry in a multi-valued B+ tree index is really no different than
an index entry in an single-valued B+ tree index. Multi-valued
indexes are thus able to work above the low-level storage layer
in AsterixDB. For a multi-valued field of an index, the sort key
is drawn from the values inside the multi-valued field (not the
enclosing field value itself). Using the index on the categories
string array of the Stores dataset as an example, we differenti-
ate between the individual items of the categories array (e.g.
"Produce", "Snacks", etc. . . ) and the enclosing multi-valued field
itself, categories.

The approach of creating keys from values inside of a multi-
valued index introduces a new issue: how do we handle duplicate
values in a multi-valued field? A given primary key appears at
most once in an single-valued index. This is no longer true with
multi-valued indexes, as a primary key value can now be associ-
ated with multiple index entries. We demonstrate this with the
resulting sort key + primary key pairs of the storesCatIdx index
for the documents in Listing 5: <"Produce", "A34AD">, <"Snacks",
"A34AD">, and two instances of <"Hardware", "1939D">. This non-
uniqueness leads to several issues, the most notable being con-
currency (discussed in Subsection 5.3). Given that multi-valued
covering indexes are not in the scope of this research, the ques-
tion arises: “Is it even necessary to store duplicate values for a
single record’s multi-valued field?” (e.g. the two instances of the
<"Hardware", "1939D"> above). Existential quantification queries
and universal quantification queries can be answered without
the inclusion of these duplicate keys, so the decision was made
to simply not store more than one distinct value per record’s
multi-valued field in the first place.

1 { " store_id ": " A34AD ",
2 "name": " Raspberry Store ",
3 " categories ": [" Produce ", " Snacks "] }
4 { " store_id ": "1939D",
5 "name": " Raspberry Store ",
6 " categories ": [" Hardware ", " Hardware "] }

Listing 5: Two sample documents from the Stores dataset.

Figure 2: Two data flows for bulk-loading an index. The
left one is the data flow for bulk-loading a single-valued
index, while the right one is the data flow for bulk-loading
a multi-valued index.

5.2 Bulk Loading an Index
In AsterixDB, there are two cases where bulk-loading is per-
formed on an index: (i) when first building the index (i.e. exe-
cuting the CREATE INDEX statement), and (ii) when executing an
explicit LOAD command. We will only detail the former in this
section, but the principles to realize multi-valued bulk-loading
are the same for both (for details on the latter, see [13]). Two
data flows for the creation of a secondary index are illustrated
in Figure 2. The goal of a bulk-loading data flow in this context is
to feed a sorted sequence of records to the LOAD operator, which
will create the initial B+ tree. To establish a baseline, the left flow
describes the data flow to bulk-load a traditional single-valued
index on the field name inside the Stores dataset. We start at the
bottom node SCAN, which will scan the primary index on Stores
to extract the leading key value of our index, name, and the pri-
mary key of the Stores dataset, store_id. Next, we perform a
sort using the key fields we just extracted. Finally, we feed the
sorted <name, store_id> tuples to the LOAD operator.

On the right side of Figure 2 we show the data flow to bulk-load
a multi-valued index on the string values inside a categories
array of the Stores dataset. There are two differences: (1) the
inclusion of the UNNEST operator to extract the values inside the
multi-valued field (these values are bound to the variable f in the
figure), and (2) the inclusion of the DISTINCT operator to remove
any duplicate B+ tree keys. More generally, any data flow to bulk-
load a multi-valued index must extract two sets of values: the sort
key values via a sequence of UNNEST operators, and the primary
key values of the dataset associated with the index. Duplicate B+
tree key values are then removed (performed after the ORDER so
as to execute a single-pass duplicate elimination) before being
handed off to the LOAD operator. No changes are required to the
LOAD operator itself.

5.3 Maintaining an Index
Three types of dataset maintenance operations are offered by
AsterixDB: (a) INSERT, (b) DELETE, and (c) UPSERT (to insert if the
document does not exist, and to update it otherwise).

Before diving into the data flow, we must first address concur-
rency. The previous operation, bulk-loading, is always performed
as a single isolated transaction. In contrast, queries and the afore-
mentioned maintenance operations have no such security. To
set the scene, transactions in AsterixDB are (i) of record-level



granularity, (ii) local to each cluster node, and (iii) act across a
dataset’s primary and secondary indexes. Record-level locks are
acquired to handle write operations (e.g. maintenance operations)
on the primary index and they are held until the transaction itself
commits [18]. If the lock to some primary index entry is granted
to a transaction, no other operations from other transactions
can be performed on that primary index entry until the former
transaction commits. In contrast to primary indexes, locks are
not acquired when accessing secondary indexes. No locking here
means that a read operation on a secondary index can potentially
read uncommitted data. To prevent inconsistencies between a
data structure that requires locks (a primary index) and a data
structure that does not (a secondary index), the index entries
retrieved from the secondary index are first validated by fetching
their corresponding records from the primary index before the
entry itself is used by the rest of the transaction.

We will now describe the data flows to realize an INSERT state-
ment, keeping these concurrency constraints in mind. Similar to
bulk-loading, the principles explored here also extend to the oper-
ations not discussed (i.e. DELETE and UPSERT, for details see [13]).
The goal of a maintenance operation on a dataset is two-fold:
to update the primary index of the dataset and to update all
secondary indexes associated with the dataset.

Two data flows for performing an INSERT statement are illus-
trated in Figure 3. The left describes the data flow for performing
an INSERT statement on the Orders dataset with one traditional
single-valued secondary index on user_id. We again start at the
bottom node, where we will translate the documents given to
us by the user into data records (assigned the variable ‘R’ in our
figure). Next, we extract the primary key order_id associated
with the dataset and insert the tuple <R.order_id, R> into the
primary index of Orders. Primary index maintenance operations
are always performed before any secondary index maintenance
operations to prevent inconsistencies that could stem from other
transactions on the secondary indexes themselves. After perform-
ing the primary index insertion, we extract the leading key field
user_id from the record and insert the secondary index entry.
Once we are done with this insert, we hand the primary key
value to the COMMIT operator, that then releases the lock associ-
ated with that specific record. In contrast to the data flows for
bulk-loading, notice that there are no blocking operators here.
Once the primary index INSERT operator is finished with a single
record (more accurately, a frame of records), it can hand the pro-
cessed tuple(s) off to the following operator which will carry out
its computation and perform the same hand off to its child oper-
ator. This compute + hand off process is repeated until the tuples
all reach the COMMIT. This pipelined style of execution adheres to
AsterixDB’s record-level transaction semantics while releasing
locks as early as possible without loss of isolation.

On the right of Figure 3, we detail a similar scenario: we are
performing an INSERT statement on the Orders dataset with one
multi-valued secondary index on the item_id field inside ob-
jects of the orderline array of the Orders dataset. Similar to
the single-valued case, we perform the insertion on the primary
index before performing any secondary index insertions and
conclude our data flow with the same COMMIT operator. The dif-
ference between the two data flows lies is the inclusion of a
subplan attached to the secondary index INSERT operator itself
(see [13] for an explanation of why a subplan-based data flow is
advantageous here). A subplan is an isolated DAG of operators
that is used by the containing operator to perform some com-
putation on a value and then utilize the DAG’s output for the

Figure 3: Two separate data flows for performing an INSERT
statement on a dataset. The left describes the data flow for
executing an INSERT on a dataset with one single-valued
index, while the right describes the data flow for executing
an INSERT on a dataset with one multi-valued index.

containing operator’s computation. For this particular subplan
and containing operator INSERT, the value given to the DAG is
the orderline array, the DAG’s computation is extracting dis-
tinct item_id values from that particular array instance, and the
containing operator’s computation is pairing each item_id out-
put with the record’s primary key order_id and inserting this
pair into the secondary index. Instead of eliminating duplicates
via an explicit DISTINCT (as was the case for multi-valued index
bulk loading), an implicit DISTINCT operation (denoted by the
dotted lines composing the node in the figure) is performed by
the storage layer via duplicate key rejection.

5.4 Optimizing an Indexable Query
The goal of the AsterixDB query optimizer is to take an initial
data flow (henceforth referred to as a query plan) and transform
the query plan using a set of heuristics. The general heuristic
discussed here involves replacing full dataset scans with a more
selective search of the full dataset when applicable. This more
selective search is enabled through the use of a secondary index.

We will begin by describing how multi-valued indexes can be
utilized in query plans. Listing 6 describes an existential quantifi-
cation query that aims to find all users that have an office phone.

1 FROM User U
2 WHERE SOME P IN U.phones
3 SATISFIES P.kind = " office "
4 SELECT U;

Listing 6: A SQL++ existential quantification query.

If an applicable index exists (i.e., a multi-valued index on the
name field inside the phones array of objects), then the query plan
in Figure 4 would be generated. In this query plan, we divide the
utilization of our index into three phases:

(1) Secondary index probe phase (SIDX_PROBE)
(2) Primary index search phase (PIDX_PROBE)
(3) Validation phase (VALIDATE)

Starting from the bottom operator, we search our index for all
entries that have a sort key equal to "office". The output of this



Figure 4: Index leveraging plan to execute the existential
quantification query in Listing 6.

search is the primary key of the indexed dataset: user_id. We
refer to this operator as the secondary index probe phase.

As a consequence of non-locking secondary indexes, records
fetched by the probe phase may become invalid after the initial
secondary index lookup. To ensure that only valid records are
returned to the remainder of the plan after the index lookup, we
require two additional phases: the primary index search phase,
and the validation phase. In the primary index search phase, we
remove duplicate primary key values via the ORDER and DISTINCT
operators before using these values to search the primary index
for the records associated with Users. The inclusion of the ORDER
operator has the added benefit of minimizing the number of
index lookups [15] (an ORDER operator exists in the same place
for single-valued index leveraging query plans for this same
reason). After fetching the qualifying records, we perform the
validation phase using the two following operators: the SUBPLAN
operator and the SELECT operator. The SUBPLAN operator contains
a subplan to evaluate the indicator variable 𝑗 , which is equal to 0
when a record’s phones array does not contain an object whose
kind field is equal to "mobile" and 1 otherwise. 𝑗 is then attached
to each record and handed off to the SELECT operator that will
filter out all results where 𝑗 = 1 (i.e. records that satisfy the
existential quantification).

Utilization of a multi-valued index as described in Figure 4 can
also be extended to queries with a join that requires the values of
a multi-valued field. Listing 7 describes one such query, where we
aim to find all items that start with "ny" and that are referenced
in the orderline array of a Orders document. By default, Aster-
ixDB will choose to evaluate joins using a hybrid hash approach,
so we annotate our join predicate with ‘/∗+indexnl∗/’ to inform
the optimizer that we want to evaluate this join using an index if
possible. If an applicable index does not exist (i.e. a multi-valued
index on the item ID of an orderline), the plan illustrated in Fig-
ure 5 is generated. Conceptually, we (a) SCAN the Items dataset
to search for records that satisfy the LIKE predicate, (b) SCAN
the Orders dataset to extract all item_id values from each docu-
ment’s orderline array, (c) perform an equi-join, and (d) deliver
unique, qualifying Items records back to the user. If there are
only a few qualifying records in our outer dataset Items and a

Figure 5: Non-index-leveraging query plan to execute the
array-probing join query in Listing 7.

1 FROM Items I
2 JOIN (
3 FROM Orders O
4 UNNEST O.orderline OL
5 SELECT OL.item_id AS item_id
6 ) OL
7 ON OL.item_id /∗+ indexnl ∗/ = I.item_id
8 WHERE I.name LIKE "ny%"
9 SELECT DISTINCT I.i_id , I.name ;

Listing 7: A join query that probes the inside of an multi-
valued field of another dataset.

massive amount of orderline documents in our inner dataset
Orders, then the cost of this query plan is dominated by the SCAN
of our inner dataset.

Now suppose that we do have a qualifying index for the query
in Listing 7. The AsterixDB optimizer would recognize this and
generate the plan illustrated in Figure 6, which logically performs
an index-nested loop join (INLJ). We divide the join using the
same three phases from Figure 4: a secondary index probe phase, a
primary index probe phase, and a validation phase. Starting from
the bottom two operators, we perform a search for qualifying
records of the outer dataset Items. We then use the item_id
field from this outer dataset to perform an index search and
retrieve the primary key associated with our inner dataset Orders.
These three operators compose the secondary index probe phase.
The primary index search phase is comprised of the following
three operators: an ORDER operator and a DISTINCT operator to
remove duplicate primary key values, and then a SEARCH operator
to retrieve qualifying records. Finally, the validation phase is
performed by extracting the items from our multi-valued field
and evaluating the join predicate to filter out invalid records.

Having described why the plans in Figure 4 and Figure 6 are
transactionally correct, we now describe our heuristic of replac-
ing dataset scans with index searches, implemented as a rule in
AsterixDB’s query optimizer. This rule is given in Algorithm 1,
which is repeatedly executed until the query plan itself does
not change (i.e., until the rule returns false). Following Algo-
rithm 1 and using Figure 5 as the input 𝑄 , we start from the root
DISTRIBUTE operator, and work our way down to the JOIN opera-
tor (now bound to the variable op). op_S here is the Orders SCAN
operator, and 𝑖 is a qualifying multi-valued index (in this case, 𝑖 =
orderItemIDIdx). An index qualifies to be used in a query plan if
there are variables in op produced from op_S or its children that



Figure 6: Index-leveraging query plan to execute the array-
probing join query in Listing 7.

match the structure defined in 𝑖 . Given the orderItemIDIdx index
specification in Listing 3, we match the orderline field inside
the UNNEST operator and the consequent access to the item_id
field in the JOIN operator.

At this point in the rule, we can commit to modifying 𝑄 . We
extract the relevant conjuncts 𝐶 from op that can be accelerated
with an index (R.item_id = f.item_id) and determine the pri-
mary key variables PK of our inner branch (order_id). Though
we are only describing the JOIN case, the SELECT case can be rea-
soned about in a similar fashion. For both cases, we aim to find
three subgraphs that correspond to the three phases from before.
Returning to the Figure 5 example, the SIDX_PROBE subgraph
is composed of the outer branch (Items SCAN and the original
SELECT operator for R.name), and a SEARCHSIDX with the rele-
vant conjuncts 𝐶 . The PIDX_PROBE subgraph is composed of the
ORDER, DISTINCT, and the SEARCHPIDX operators with the primary
key variables PK as the input to all. The VALIDATE subgraph is
composed of the inner branch without the op_S (just the UNNEST
operator in this example) and a new SELECT with the original
join predicate. Finally, we replace the original join operator op
in our query plan with the appropriate composition of all three
subgraphs.

Listing 7 was an example of existential quantification, though
multi-valued indexes can also accelerate queries that involve
universal quantification. Currently we impose an additional con-
straint requiring that a non-emptiness clause on the array / mul-
tiset being universally quantified on must exist, as empty arrays
and multisets satisfy such predicates vacuously but will not be
indexed; this constraint could be relaxed in the future by storing
empty multi-valued fields in the index in some way and handling
the empty case separately. The approach we take to leverage
a multi-valued index for use in evaluating a universal quantifi-
cation predicate is exactly the same as the approach taken to
leverage a multi-valued index for use in evaluating an existential

Algorithm 1: Process for modifying an existing query
plan to leverage an applicable multi-valued index.
Input: existing query plan 𝑄 , existing database indexes 𝐼
Output: true if 𝑄 has changed, false otherwise

for op := Preorder(root of Q) do
if op is neither a SELECT nor a JOIN then

continue;
end

op_S := first SCAN operator of Postorder(op);
𝑖 := FindQualifyingMultiValuedIndex(𝐼 , op, op_S);
if 𝑖 is null then

continue;
end

𝐶 := conjuncts from op that map to fields in 𝑖;
PK := primary key variables from op_S;
if op is a SELECT then

SIDX_PROBE := (SEARCHSIDX(𝐶));
PIDX_SEARCH := (ORDER(PK) → DISTINCT(PK) →

SEARCHPIDX(PK));
VALIDATE := (op);

replace (op_S) in 𝑄 with (SIDX_PROBE →
PIDX_SEARCH → VALIDATE);

end
else

SIDX_PROBE := (outer branch of op →
SEARCHSIDX(𝐶));

PIDX_PROBE := (ORDER(PK) → DISTINCT(PK) →
SEARCHPIDX(PK));

VALIDATE := (inner branch of op without op_S →
SELECT(predicate of op));

replace (op) in 𝑄 with (SIDX_PROBE →
PIDX_SEARCH → VALIDATE);

end
return true;

end
return false;

quantification predicate: replace the dataset scan with a multi-
valued index search. We can easily prove that such a query plan
transformation is valid, starting with a universal quantification
on a multi-valued field 𝐹 where |𝐹 | > 0:

𝑈 = { ∀𝑓 ∈ 𝐹 | 𝑃 (𝑓 ) } (1)

Given the predicate 𝑃 in the universal quantification of Equa-
tion 1, a multi-valued index B+ tree search to evaluate 𝑃 (e.g., the
secondary index probe phase of an index-nested loop join query
plan) returns the primary keys of all records that would satisfy
the existential quantification:

𝐸 = { ∃𝑓 ∈ 𝐹 | 𝑃 (𝑓 ) } (2)

All entries in𝑈 also exist in 𝐸, making𝑈 a subset of 𝐸 itself. The
problem at this point is identical to the issue of removing invalid
records from the secondary index probe phase as a consequence
of other concurrent transactions accessing the same secondary
index. Hence, the following phases of primary index search and
validation serve two purposes in the case of universal quantifica-
tion: (i) remove invalid records that may have changed from the
initial secondary index search, and (ii) remove entries in 𝐸 that
are not contained in𝑈 .
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Figure 7: Median response time vs. selectivity for several queries on an AsterixDB instance. We compare executions that
utilize an multi-valued index, perform a full scan of the data, use INLJ to perform joins, and use hybrid-hash to perform
joins.

6 INDEX VS. FULL SCAN EVALUATION
In this section, we compare the performance of queries in Aster-
ixDB that do not utilize an index vs. queries in AsterixDB that
do utilize a multi-valued index.

6.1 Experimental Setup
All experimental runs were performed on a single-node instance
of AsterixDB, executed on an AWS c5.xlarge node, 4 vCPUs @
3.4GHz with 8GB of RAM and AWS gp2 SSDs. The benchmark
queries used here are from CH2 [8], a document-oriented combi-
nation of TPC-C and TPC-H for a HOAP (hybrid operational /
analytical processing) workload. A total of 500 CH2 warehouses
were generated for this experiment, resulting in three datasets
larger than memory: Orders (25GB), Stock (25GB), and Customer
(12GB). Primary indexes were built on each dataset’s primary key
fields and one multi-valued index was built on the delivery_d
field inside the orderline object array of the Orders dataset. For
brevity, all fields in each query described here have their dataset
prefix removed (e.g. orderline refers to o_orderline in the orig-
inal set of queries). The full set of queries used in this experiment
can be found at https://github.com/glennga/aconitum.

6.2 Results and Analysis
Figure 7 depicts several CH2 queries executed using query plans
with a multi-valued index and without a multi-valued index (i.e.
a full dataset scan). We observe the median response times of the
queries on the y-axis, and the selectivity of the index-applicable
predicate (denoted as 𝜎) on the logarithmic x-axis. 𝜎 represents
the fraction of the dataset for which the predicate holds true.
Beginning with the left of Figure 7, we compare the performance
of queries that do not execute any joins (i.e. only involve the
Orders dataset). Query plans that use the multi-valued index
achieve sub-second response times for 𝜎 < 1.0e-5, while query
plans that perform a full scan of Orders consistently run longer
than 4 minutes (a 350x speedup minimum). As 𝜎 grows larger
and larger though, the response times for query plans that use
the multi-valued index increases faster than their full scan coun-
terparts. Beyond 𝜎 > 1.7e-1, we are better off evaluating queries
1, 6, and 12 using a full scan rather than using an index. As ex-
pected, plans that perform a secondary index search followed by

1 FROM Orders O, Stock S, Customer C,
2 Supplier SU , Nation N1 , Nation N2
3 UNNEST O.orderline OL
4 LET suppkey = ... , nationkey = ...
5 WHERE S.w_id = OL.supply_w_id AND
6 S.i_id = OL.i_id AND
7 C.id = O.c_id AND
8 C.w_id = O.w_id AND
9 C.d_id = O.d_id AND
10 SU.suppkey = suppkey AND
11 N1.nationkey = SU.nationkey AND
12 N2.nationkey = nationkey AND ...;

Listing 8: Portion of query CH2 query 7 (FROM and part of
WHERE), expressed in SQL++.

a primary index search are vastly superior in response time to
plans that perform full dataset scans when the applicable query
predicate has a low selectivity [15].

The right graph in Figure 7 tells a similar story with a multi-
join query, query 7 (partially given in Listing 8 to highlight the
datasets being joined). Four plots are displayed here, varying the
plan for CH query 7 in some way:

(1) A query plan performing a full scan of Orders and a pri-
mary key index nested loop join (INLJ) to evaluate every
join.

(2) A query plan performing a full scan of Orders and a hash
join (HJ) to evaluate every join.

(3) A query plan using the multi-valued index on Orders and
an INLJ to evaluate every join.

(4) A query plan using the multi-valued index on Orders and
a HJ to evaluate every join.

Starting with a comparison between plans (1) and (3) (using an
INLJ and varying the use of the multi-valued index), we can reach
the same conclusion as before: lower values of 𝜎 enable larger
performance gains (i.e. speedup) when using amulti-valued index.
However, when we compare plans (2) and (4) (using a HJ and
varying the use of the multi-valued index), the overall speedup at
low values of 𝜎 is significantly smaller (x2.75 for HJ vs. x110 for
INLJ at 𝜎 = 1.0e-5). At low selectivity values for plan (4), the total
response time is dominated by the time to perform every join
(in particular, with the larger-than-memory datasets Customer
and Stock). Even if the relevant Orders records can be retrieved

https://github.com/glennga/aconitum
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Figure 8: Median response time vs. selectivity for two sets of queries across an AsterixDB instance (denoted as *DB), a
MongoDB instance (denoted as MDB), and the query service on a Couchbase instance (denoted as CBQ).

1 FROM Orders O
2 UNNEST O.orderline OL
3 WHERE OL.delivery_d BETWEEN $1 AND $2
4 GROUP BY OL.number
5 SELECT OL.number ,
6 SUM( OL.quantity ) AS sum_qty ,
7 SUM( OL.amount ) AS sum_amount ,
8 AVG( OL.quantity ) AS avg_qty ,
9 AVG( OL.amount ) AS avg_amount ,
10 COUNT (∗) AS count_order
11 ORDER BY OL.number ;

Listing 9: CH2 query 1, expressed in SQL++ (and also N1QL
for Query, given the similarities in each query language).
Selectivity is varied by modifying variables ‘$1’ and ‘$2’.

in sub-second time, if we cannot accelerate the time to perform
the joins then query 7 will always run longer than two minutes,
regardless of whether we use a multi-valued index or not.

The main takeaway from this experiment is that multi-valued
indexes can massively accelerate queries, but care should be
taken to avoid using indexes to satisfy predicates on non-small 𝜎
values. As with single-valued indexes, AsterixDB (at the time of
writing) does not vary its query plan based on different selectivity
values. If an index can satisfy some predicate in a SELECT operator,
AsterixDB will currently greedily default to integrate that index
into the query plan regardless of 𝜎 unless a hint is provided to
do otherwise. In terms of join methods, AsterixDB will default
to hybrid-hash joins unless an index-nested loop join hint is
provided.

7 SYSTEM COMPARISON EVALUATION
In this section, we compare the performance of queries that
can benefit from multi-valued indexes running on AsterixDB,
MongoDB, and Couchbase Query.

7.1 Experimental Setup
All experimental runs were performed on single-node instances
of AsterixDB, MongoDB and Couchbase, executed on an AWS
c5.xlarge node, 4 vCPUs @ 3.4GHz with 8GB of RAM and AWS
gp2 SSDs. The sameCH2 benchmarkwas used for this experiment
aswell, using the sameCH2 parameters (i.e. 500 total warehouses).
For all systems, primary indexes were built on each dataset’s
primary key fields and one multi-valued index was built on the

delivery_d field inside the orderline object array of the Orders
dataset. To aid in the evaluation of query 20, a secondary index
was also created for all systems on the i_id field of Stock. Each
system was given 30 minutes maximum to execute each query
as ad-hoc (i.e. not prepared) with the system terminating the
query execution if it exceeded this maximum. All queries were
written to leverage the multi-valued index and to use INLJ. The
full set of AsterixDB queries, Couchbase Query queries, and
MongoDB aggregation pipelines used in this experiment can be
found at https://github.com/glennga/aconitum.

7.2 Results and Analysis
Figure 8 depicts the selectivity vs. the response time of several
queries executed using multi-valued indexes on different docu-
ment databases. In the left graph, we have queries 1, 6, and 12 (the
same queries used in the left graph of Figure 7). At 𝜎 ≤ 1.0e-5,
we observe the following response time hierarchy: MongoDB ≤
Couchbase Query < AsterixDB. Query 1 on Couchbase Query
actually has the smallest median response time with 13ms at
𝜎 = 7.0e-8, but queries 6 and 12 on Couchbase Query run roughly
3ms slower than queries 6 and 12 on MongoDB at the same 𝜎 .
At these low selectivities values, AsterixDB executes the slowest
with a minimum response time of 25ms. Each system achiev-
ing sub-second execution time for 𝜎 < 3.5e-6 is not surprising,
given the similarity in execution plans to leverage multi-valued
indexes in each system. Take query 1, given in Listing 9. Each
system starts by searching their respective multi-valued index for
primary keys of Orders such that the indexed delivery_d field
is between the two variables. Duplicate primary keys are then
removed by consulting the primary data source for Orders doc-
uments. From here, the orderline array undergoes an UNNEST
operation. AsterixDB differs from the remaining two here in
that the secondary index entries must be validated, so a filter is
performed on delivery_d using our two variables. Documents
at this point for all plans are then grouped by the number field
of their orderline document and the aggregates are computed.
Finally, the groups are sorted by their number field.

Another observation we can draw from this experiment is how
resilient each system’s response time is (per query) to increasing
values of 𝜎 . In particular, we are interested in finding the range
of selectivities each system supports for each query (i.e. how
many query executions that are below the 30 minute timeout).

https://github.com/glennga/aconitum


Under this light, a longer and flatter plot is more ideal. Couchbase
Query was able to execute queries 1, 6, and 12 up to 𝜎 = 7.0e-3.
MongoDB has larger range here of selectivities here: query 6
up to 𝜎 = 7.0e-2 and queries 1 and 12 up to 𝜎 = 1.75e-1. We
can conclude here that AsterixDB is the most resilient to large
selectivity values for queries 1, 6, and 12, capping out at 𝜎 =

5.25e-1.
In the right graph of Figure 8, we show the median response

time vs. the selectivity for two multi-join queries, queries 15 and
20. To roughly describe the complexity of each query, we list the
joins each query contains. Query 15 includes two joins: Orders
Z Stock and Stock Z Supplier. Query 20 includes four joins:
Orders Z Stock, Item Z Stock, Stock Z Supplier, and Supplier
Z Nation. In the face of these more complex queries (in contrast
to the single dataset queries 1, 6, and 12), how resilient are each
system’s response times for increasing values of 𝜎? With query
15, both MongoDB and Couchbase Query were able to execute for
increasing values of 𝜎 until 𝜎 = 7.0e-7 before timing out, while
AsterixDBwas able to execute up to𝜎 = 3.5e-1.With query 20, we
observe the smallest range of 𝜎 values thus far across any system
for MongoDB: a maximum of 𝜎 = 7.0e-7 before executing beyond
30 minutes. Couchbase Query comes in second: a maximum of
𝜎 = 7.0e-6 before exceeding the timeout. Finally, AsterixDB again
demonstrates the most resiliency in response time, executing up
to 𝜎 = 7.0e-4 before the executing beyond 30 minutes.

8 CONCLUSION
We have described the various steps needed to support secondary
indexes for multi-valued fields in AsterixDB. In short, this con-
sisted of: (i) detailing an approach that separated the implemen-
tation of multi-valued indexes with the low-level storage layer
of a database, (ii) describing a multi-valued index specification
language that is neither ambiguous with respect to structure nor
verbose, (iii) explaining the foundations for bulk loading and
maintaining multi-valued indexes, (iv) illustrating the evaluation
for existential and universal quantification queries, and (v) de-
scribing two sets of experiments that evaluated the efficacy of
multi-valued indexes in AsterixDB. We would like to stress that
although this work was done in AsterixDB, these concepts can
easily be applied to other systems with data flow and storage
layers.

Potential future work with respect to AsterixDB multi-valued
indexes involves (a) applying these same concepts to accelerate
other types of indexes (e.g. R Trees), (b) storing NULL values in
multi-valued indexes to accelerate queries that only involve the
prefix of the sort key, and (c) storing empty arrays and multisets
in order to accelerate general universal quantification queries
(i.e. remove the non-emptiness clause).
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