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Abstract

Currently, deep learning technologies have achieved great success in applying deep
neural networks(DNNs) to multiple domains. However, their high functional intensity,
whether computational or memory, has become a heavy burden in the utilization of deep
learning, especially in constrained resource platforms. A potential solution is FPGA, which
provides effective means for optimizing and accelerating DNNs. Therefore, an important of
field of research has been the development of DNN applications with FPGA accelerators.
In this paper, existing optimization techniques are evaluated to provide a comprehensive
overview of FPGA-based DNN accelerators. The review herein addresses software- and
hardware-level acceleration techniques (including, but not limited to, model compression,
parameter quantization, and energy-efficiency in structural design).

1 Introduction

In recent years, deep neural networks(DNNs) have made substantial progress across a broad
array of applications with excellent performance in all instances. Such applications include
computer vision tasks, natural language processing, protection of cultural heritage [1, 2], and
many others besides. As such, the flexibility of DNNs brings great convenience to modern
standards of living. However, the demand for computation and memory in both quantity and
complexity makes their deployment a heavy burden on resource constrained hardware platforms,
such as robotics, mobile devices, etc. Nevertheless, training processes can be implemented on
powerful devices such as GPUs, for which the inference process always works on these limited
resource platforms. At the same time, research has revealed that there is massive redundancy
in a given DNN’s operations [3]. Therefore, research on the optimization and acceleration of
DNNs has grown increasingly prominent.

One avenue of study is the field programmable gate array(FPGA) which provides an ef-
fective solution for DNN acceleration. FPGA has superior energy efficiency when compared
to GPUs and CPUs, and although deeper networks have higher accuracy, they also greatly
increase the number of parameters and the model size. The deeper network also brings an
increased requirement for computing, bandwidth, and storage, meaning DNNs exert a heavy
strain on resource constrained devices. Thanks to the rapid evolution of DNNs, possessing
reprogrammable and reconfigurable hardware makes FPGA-based devices well suited to sup-
porting them. FPGA’s also feature high throughput, low power consumption, and high parallel
workflow, which make the device’s performance excellent for DNNs. In particular, the latest
release of Intel FPGA-Agilex possesses improved chip layout, optimizing the architecture’s de-
sign and algorithm which results in considerable enhanced flexibility and stability. Based on
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this, FPGA can accelerate DNNs with a high level of efficiency on edge devices, and research 
has proposed multiple techniques for further acceleration in performance.

In this paper, we conduct a survey on the FPGA-based optimization for DNNs. For their 
implementation, optimization techniques as detailed within can be divided into two categories: 
software level, on algorithms; and hardware level, based on the FPGA itself. Subsequent to 
this review will be the introduction of optimizing methods on the software level, the expansion 
of acceleration techniques based on FPGA architecture, and a summary conclusion.

2 DNNs optimization on software level

Multiple techniques on software level to improve DNNs with high efficiency have been proposed. 
This section gives an overview of software level optimizations on DNNs.

2.1 Pruning and quantifying

Pruning and quantification are effective ways to compress neural n etworks. Network pruning is 
to remove redundant connections and ensure the effectiveness of neural network connections to 
improve efficiency. Data quantization is to quantify the DNN model parameters by replacing 
the float-point r epresentation w ith t he fi xed-point re presentation or  re ducing th e number of 
bits used for the representation. And with experimental verification, t he q uantified da ta has 
little impact on the accuracy of the models. At the same time, for the reason that FPGA 
is not suitable for floating-point o peration a nd t o o ptimize t he p arameters o f D NNs, data 
quantification i s also essential for DNN models to be deployed on FPGA.

The Binarization network is a very effective solution. Many scientists have engaged in 
research. Rastegari M et al. [4] proposed two kinds of binarization networks to reduce the model 
storage space through the binarization operation of weight. The former is called Binary-Weight-
Networks, which is to approximate its property weight with binary values, and the convolution 
operation is estimated only by addition and subtraction. The latter is called XNOR-Networks, 
the weights and the inputs of the convolutional layers as well as fully connected layers are all 
approximated by binarization, and the convolution can be estimated by XNOR and bit counting 
operations. In Binary-Weight Networks, the filters are approximate with binary values resulting 
in 32 memory saving. And XNOR-Networks makes convolution 58× faster and 32× memory 
savings.

Currently, 32-bit floating p oint d ata d oes n ot p erform p erfectly o n DNNS F PGA accel-
erators, so most of the advanced accelerators replace 32-bit floating p oint d ata w ith lower 
fixed-point r epresentations. I n [ 5] Podili e t a l. p roposed t o r eplace t he 3 2-bits floating-point 
data with 32-bits fixed-point d ata. According t o [ 6], Qiu et a l. proposed to use 16-bits fixed-
point data to replace the 32-bits floating-point d ata. A nd i n [ 7] Guo e t a l. p roposed that 
data quantization strategy helps reduce the bit-width down to 8-bit with negligible accuracy 
loss. These improvements on floating point b its greatly improve the efficiency o f computation 
without decreasing accuracy.

By removing the insignificant channels of the network and quantizing the weights and bias 
expressed by floating point numbers (high precision) to be low precision integers, the size of the 
models and computation demand can be greatly reduced, which are effective means for DNN 
model compression.
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2.2 Knowledge of distillation

Knowledge distillation is to transfer dark knowledge-what deep learning methods actually learn,
from complex (teacher) model to simple (student) model by minimizing a loss function. Gener-
ally speaking, the teacher model has strong ability and performance, while the student model
is more compact. Through knowledge distillation, it is hoped that the student model can ap-
proach or surpass the teacher model as much as possible, so as to obtain similar prediction
accuracy with less complexity.

Hiton [8] adopted the strategy of feature matching within the Softmax layer for processing.
Its essence was to use Softmax output as supervision. But in order to make the score vector
softer, distillation temperature T is added to the Softmax layer to improve the performance
of distillation. The model trains the teacher at T = 1, uses the output probability of the
teacher softmax as the soft label at high temperature to fuse with the hard label to supervise
the student, and weighs the loss of the two. With 61 specialist models, there is a 4.4 percent
relative improvement in test accuracy overall.

Zagoruyko [9] thought that direct transferring of feature map as knowledge from teacher to
student is too rigid and the effect is poor. He hoped that the student could pay attention to
the areas that the teacher takes care. Therefore, he took the absolute values of feature planes
of different channels in the feature map for power operation and then added them together,
narrowing the distance between teacher and student’s attention map. It will have better effects
than direct transfer feature map.

Yang [10] thought that hard labels would lead to overfitting of the model, but soft labels
would contribute to the generalization ability of the model. In this regard, he proposed a
method that did not calculate the additional loss of all classes, but selected several classes with
the highest confidence score. During the training of teacher in the experiment, a constraint
was added to teacher’s loss for selection. And during the training of students, the teacher’s
soft labels obtained previously are combined with the hard labels. Experiments show that this
method improves the classification efficiency of data sets by 3 to 8 percent.

2.3 low-rank matrix factorization

While DNNs have achieved tremendous successes for many tasks, the training process of these
networks is time and resource expensive. One of the major reasons is that DNNs are trained
in a large number of parameters. Meanwhile, Low-rank factorization is a very effective method
to reduce the number of parameters.

Sainath et al. [11] proposed a low-rank matrix factorization of the final weight layer, and
applied this low-rank technique to DNNs for both acoustic modeling and language modeling.
This method reduced the number of parameters of the network by 30-50 percent.

For some simple DNN models, a few low-rank approximation and clustering schemes for
the convolutional kernels were proposed in [12]. They exploited the redundancy present within
the convolutional filters to derive approximations that significantly reduce the required compu-
tation, and their method achieved 2× speedup for a single convolutional layer with 1 percent
drop in classification accuracy.

The work in [13] proposed using different tensor decomposition schemes. This is achieved
by exploiting cross-channel or filter redundancy to construct a low rank basis of filters that are
rank-1 in the spatial domain. Reporting a 4.5× speedup with 1 percent drop in accuracy in
text recognition.
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2.4 Filter dimension reduction
Most of the advanced DNN models, such as Googlenet, and ResNet [14], use a large convolu-
tional filter s ize in the first convolution layer, thus giving the DNN model a la rger acceptance 
area for better performance. However, larger filter sizes tend to be computationally expensive.

Karpathy [15] proposed that 7 × 7 filter c an b e r eplaced by 3 × 3  s tacked fi lters. In  this 
way the network has smaller costs, and requires only about 50 percent the MACC operations 
required by a 7 × 7 filter.

Gschwend [16], another researcher working on this study replaced the 7×7 filter with a 3×3 
filter, and proved that the accuracy decreased by l ess than 1  percent after the r eplacement. It 
proved that the use of a smaller filter can be applied without compromising the accuracy.

3 Hardware-level acceleration on FPGA
There are multiple hardware platforms for DNNs, such as GPU, CPU, ASI, FPGA, etc. It is 
hard to say which works best for all deep learning applications. FPGA just offers some distinct 
advantages for DNNs. In this section, FPGA-based accelerations of DNNs are introduced in 
this section.

3.1 Acceleration based on sparsity
The high percentage of sparsity causes a serious problem of computation resource under-
utilization in sparse CNN accelerators, especially for the irregularity of sparsity. However, 
FPGA provides an effective solution on hardware level.

Yijin Guan et al. [17]. proposed an accelerator named Crane. In the accelerator, DMA can 
only obtain non-zero activation data and weights, and store them on the chip for convolution 
processing. The output RAM stores all generated results and transmits them to the output 
unit for convolution post-processing, including activation functions, pooling, and encoding. 
Experimental results show that Crane improves performance by 27 - 88 percent and reduces 
energy consumption by 16 - 48 percent, respectively, compared to the counterparts.

Zhang et al. [18]. proposed a software-based coarse-grained pruning technique to sig-
nificantly r educe t he i rregularities o f s parse s ynapses. H e c ombines c oarse-grained pruning 
techniques with local quantization techniques, which can significantly r educe t he i ndex size 
and improve the network compression ratio. They further designed a hardware accelerator, 
Cambricon-X, to efficiently address the remaining sparse synapses and neuronal irregularities. 
Experimental results over a number of representative sparse networks show that the accelerator 
achieves, on average, 7.23× speedup and 6.43× energy saving against the state-of-the-art NN 
accelerator.

Zhou et al. [19], proposed an accelerator featuring processing elements (PE) -based archi-
tecture consisting of multiple PEs. Indexing modules efficiently select and transmit the desired 
neurons to the connected PE, reducing bandwidth requirements, while each PE stores irregular 
and compressed synapses in an asynchronous manner for local computation. Compared with a 
state-of-the-art sparse neural network accelerator, the accelerator is 1.71× and 1.37× better in 
terms of performance and energy efficiency, respectively.

3.2 Structure specialized for DNNs
With the feature of hardware reprogrammable and reconfigurable, DNNs can be accelerated on 
FPGA by elaborately designing the implementation method.
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Sina Ghaffari et al. [20] designed two kinds of specialized hardware architectures for DNNs.
The first architecture is suitable for the small DNNs of applications. The researchers designed
specific hardware for each individual layer. The second architecture has one hardware designed
for each layer that is used several times as we need different layers. There is a control loop
deciding when to use each hardware. With this technique, the network can have as many layers
as needed with the same resources. This architecture is extensive and can be easily used for
large networks.

Although PE parallel computation improves the computation speed, there may be time
delay inside PEs while FPGA is carrying out convolution calculations. Eyi Wang et al. [21]
realizes the pipeline optimization of convolution operations by adding registers between two
data processing nodes. During the process of data flow, each register stores the calculated data
of the node in each clock cycle and will cache the data in the clock cycle to the next calculated
node.

3.3 Resources utilization

One of the key issues for FPGA-based DNN accelerators is that the computational throughput
might not match well for the memory bandwidth provided by the FPGA platform. And many
methods have failed to achieve optimal performance without making full use of memory band-
width and logical resources. As a result, making full use of FPGA resources has been a very
important research direction.

In [22], Zhang proposed an analytical design scheme using the roofline model. For the
solution of a CNN design, the research quantitatively analyzes its computing throughput and
required memory bandwidth using various optimization techniques, such as loop tiling and
transformation. Then, with the help of roofline model, we can identify the solution with best
performance and lowest FPGA resource requirement.

In [5], Huimin proposed an end-to-end FPGA based CNN accelerator with all the layers
mapped on one chip, so that different layers can work concurrently in a pipelined structure to
increase the throughput. And a methodology which can find the optimized parallelism strategy
for each layer is proposed to achieve high throughput and high resource utilization.

3.4 Data flow optimization

For DNNs accelerator based on FPGA without fully studying the convolution loop optimization
before the hardware design phase, the resulting accelerator can hardly exploit the data reuse and
manage data movement efficiently. Therefore, the optimization of data flow is very important
in our opinion.

Yufei Ma et al. [23] put forward through quantitative analysis and optimization method
based on many design variables to optimize the convolution cycle, through the search design
variable configuration, they put forward CNN hardware accelerators clear data flow to minimize
memory access and data movement. At the same time, data flow is also used to maximize
resource utilization in order to obtain high performance.

In [24], Ding proposed an FPGA-based depthwise separable CNN accelerator with all the
layers working concurrently in a pipelined fashion to improve the system throughput and per-
formance. To implement the accelerator, The paper presented a custom computing engine
architecture to handle the dataflow between adjacent layers by using double-buffering-based
memory channels. This method achieved up to 17.6× speed up and 29.4× low power than CPU
and GPU implementations respectively.
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3.5 DNNs implementation on FPGA

The complexity and development overhead of the HDL(Hardware Description Language) make
it difficult to implement the algorithms on FPGA-based platforms efficiently, especially for
DNNs. There have been multiple tools to bridge the gap between DNNs and FPGA, which
liberates researchers to concentrate on the study of DNN algorithms. For example:

Vitis AI, the AI development environment of Xilinx for AI inference on Xilinx hardware
platforms, supports mainstream frameworks such as Caffe, PyTorch, TensorFlow, and latest
models capable of diverse deep learning tasks. The Xilinx also provides the Vitis HLS tool to
synthesize a C or C++ function into RTL code for acceleration in programmable logic device.

TF2FPGA [25], a framework that extends the well known TensorFlow system with au-
tomic FPGA acceleration capabilities, enables automatic and transparent generation of high
throughput DNN accelerators implemented on FPGA.

4 Conclusion

As presented here, a survey on the DNN acceleration technologies provides an illustration of
an ideal FPGA accelerator as the embodiment of a high level of hardware and software co-
operation. At the software level, this review summarizes the existing techniques for DNN
acceleration, which are prerequisites for them to be applied on FPGAs. And concerning hard-
ware, the featured approaches further optimize acceleration while focusing on different aspects.
Due to FPGA-based DNN accelerators being the vital feature for embedded application imple-
mentation, this study forms a comprehensive reference for future research.
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