
125 

 

Variational Method for Solving the Viscoelastic Deformation 
Problem in Biomaterials with Fractal Structure 
 

Volodymyr Shymanskyia and Yaroslav Sokolovskyyb  

 
a Department of Artificial Intelligence, Lviv Polytechnic National University, Lviv, Ukraine  
b Department of Computer-Aided Design Systems, Lviv Polytechnic National University, Lviv, Ukraine  

 
  

Abstract  
The mathematical model of the stress-strain state for biomaterials with a fractal structure is 

considered. The dependences between the stresses, strains and displacements components in 

the biomaterial with taking into account the existing effects of self-organization, deterministic 

chaos and spatial nonlocality are obtained. The apparatus of integro-differentiation of the 

fractional order to take into account the above properties of the material during construction of 

mathematical models was used. A method for obtaining an approximate solution of the 

considered problem has been developed which uses a constructed variational formulation of 

the problem of the stress-strain state of biomaterials with taking into account their fractal 

structure. The distribution of stresses, strains and displacements components in the material for 

partial cases of the problem is analyzed. 
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1. Introduction 

The study of the stress-strain state of bodies in the framework of the three-dimensional elasticity 
theory began a long time ago. The various methods for studying these problems are known now and 

many important results in this area have been obtained. The method for solving plane boundary 

problems of the elasticity theory for simply connected and multiply connected domains, which later 

became classical, proved effective. Another method for studying three-dimensional problems of the 
elasticity theory is the method of integral equations that serve as the basis for the development of 

algorithms for the numerical solution of the problem [1-3]. 

Using analytical methods for studying the stress-strain state of complex configuration bodies is 
associated with very significant mathematical difficulties [4]. Therefore, taking into account the 

expansion of the capabilities of computer technology, recently various numerical methods (finite 

elements, finite differences, variational-difference, etc.) have begun to be widely used [5-8]. 

At present, in medicine, the studying of the stress-strain state of biomaterials is an urgent scientific 
task, particularly in cardiovascular surgery. The person's properties of blood vessels change with age 

including mechanical (Young's modulus, Poisson's ratio). As a result, the walls of the vessels lose their 

elasticity. The blood flow leads to a qualitative redistribution of stresses inside the vessel walls. An 
experimental study of this problem is very difficult. Therefore, the numerical study of the influence of 

the vascular clamp on the stress-strain state of the wall of blood vessels is an urgent scientific problem. 

Such models can be used in medicine instead of laborious and difficult experimental studies in the 
future. A practically important result is to obtain the mechanical characteristics of the material of the 

arteries at various pressures [9, 2]. 
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Also to the material that is constantly exposed to stress is the bones of the skeleton. They are 
subjected to different stresses every day. A bone fracture may occur depending on the condition of the 

bone tissue and the nature of the stress. The possibilities for conducting direct experiments in this area 

are significantly limited. There is a need to use the capabilities of mathematical modeling. Bones are 

biological structures with complex structural organization and complex geometric shapes. The bone 
material is heterogeneous, with significantly pronounced anisotropy and nonlinear mechanical 

characteristics [10, 11]. 

A significant number of real processes do not fit into the concepts of continuum mechanics and 
require the involvement of ideas about the fractality of the environment in which these processes occur. 

Such processes, for example, are the rheological behavior of biomaterials. The appropriately modified 

Hooke's law was used to describe them, which requires the use of the mathematical apparatus of 
fractional integro-differential calculus. Yu.N. Rabotnov introduced a generalization of the rheological 

equation to describe the behavior of hereditary media in the case of fractional derivatives [12, 3]. 

Thus, since biomaterials are characterized by a complex structure, existing effects of spatial 

nonlocality and deterministic chaos it is advisable to use a mathematical apparatus of integro-
differentiation of fractional order to build mathematical models of their rheological behavior during 

loading which will allow to take into account these properties. 

2. Intego-Differentiation of Fractional Order Tools 

One of the problems with fractional derivatives is that there is no single definition. The numerical 
methods used to obtain an approximate solution of the problems described by equations with derivatives 

of fractional order are closely related to the type of derivative [13, 14]. 

Let us consider the fractional order integro-differentiation operators integral of the function 

),,( zyxf  over the variable x  in Caputo's understanding in more detail [15, 16, 7, 10]: 
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where    ,     ,N  ,10    

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0

1)( dxex x   - gamma function. 

Relation (1) determines the differentiation operator of fractal order   in the Caputo sense, and (2) - 

integration.  
It also needs to note the following properties of these operators [7, 15, 16]: 

  ,fDfDD xxx
   (3) 

  .fIfII xxx
   (4) 

  ,gDfDgfD xxx
   (5) 

  .gIfIgfI xxx
   (6) 

Provided that 0),,( 
ax

zyxf  the following property is valid [7, 15, 16]: 

    .ffDIfID xxxx    (7) 

The parts fractional integration can be written as [7, 15, 16] 

    . 

b

a

x

b

a

x dxfIgdxgIf   (8) 

It is possible to generalize the derivative of the whole order to fractional derivatives (Riemann-

Liouville derivatives and Caputo derivatives). Fractional derivatives appear in new physical, technical 

and chemical problems arising in research activities. 
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3. Production of a Problem 

Let’s consider the viscoelastic deformation problem in biomaterial with taking into account its 

fractal structure. Suppose that a body that is in equilibrium is affected by mass forces 

 TZYX  ,,F  in the corresponding directions. And also surface forces  TVVVV ZYX ,,F  

with corresponding projections on the axis zyx ,, . Let’s find the components of the stress-strain state 

of the body, namely vectors  Tyzxzxyzyx  ,,,,,σ - stress,   Tyzxzxyzyx  ,,,,,ε - 

deformation and displacement  Tu ,,u , which are satisfying the equilibrium equation in 

elementary volume [9]: 

0 iijx FD
j
  (9) 

and the equilibrium conditions on the surface [17, 18, 9]: 

),cos( jijV xnF   (10) 

where n  - outer normal to the surface of the body S . 

The relationship between displacements and deformations will be written as follows [1, 18]: 

 .
2

1
jxixij ij

DD uu
   (11) 

Currently, the development of the fractal concept, using the mathematical apparatus of fractional 

integro-differentiation has caused a tendency to revise the basic provisions of the mechanics of 

biomaterials. This helps to model complex structures with a reasonable degree of adequacy. Using these 
tools it is possible to take into account the complex nature of nonlinear phenomena: the memory effects 

described above and the correlations of spatial dependences. In this case, in the passage to the limit, it 

is naturally possible to obtain previously known solutions, which makes it possible to formulate 

nontrivial generalized laws [19-21, 3]. 
Thus, using the updated Boltzmann-Voltaire theory for describing hereditary viscoelasticity the 

relationship between stresses and strains can be described through integral equations involving creep 

 relt Π  and relaxation  relt R  kernels. Thus, the use of the apparatus of integro-differentiation 

of fractional order makes it possible to take into account the fractal properties of the considered 

biomaterial [22, 12]: 

        ,ttItt relt εRεσ    (12) 

        .ttItt relt σΠσε    (13) 

Using the following equations makes it possible to express stress due to deformation: 
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  ,44 xyreltxyxy tRI     (17) 

  ,55 xzreltxzxz tRI     (18) 

  .66 yzreltyzyz tRI     (19) 
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Thus, we obtain the formulation of the viscoelastic deformation problem in biomaterials with a 
fractal structure using the above approach. 

4. Variation Formation of the Problem 

Today, many finite-difference numerical methods allow to obtain an approximate solution of the 

problem at the points of area discretization. However, they are conditionally convergent to the exact 
solution. Moreover, large computing resources to ensure proper accuracy are required. 

In turn, the use of the variational formulation of the problem will make it possible to obtain a 

continuous approximate solution. This will avoid area discretization [5, 6, 11, 18].  

All general theorems for small deformations are based on the equation of virtual works [23]: 

.dSdVdV i

V S

iVii

V

ijij uFuFεσ      (20) 

where V  - body volume, S  - body surface. 

Thus, among all permissible displacements ,,u  that satisfy the boundary conditions provide a 

minimum of full potential energy functional  : 

         ,,,,,,,,,  
SV

dSudVuuAu   (21) 

  ,,,  ZYuXu   (22) 

  .,,  VVV ZYuXu   (23) 
Taking into account the dependencies between stresses and strains components (12) and using 

relation (11) the energy function of the deformation components can be written as [24, 23]: 
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The boundary conditions of equilibrium on the surface can be written as: 
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Thus, substituting relation (24) into the functional (21), we obtain a variation formulation of the 

viscoelastic deformation problem of biomaterials with taking into account their fractal structure. 

5. Obtained Results 
5.1. Method of Constructing an Approximate Solution 

Using the obtained variational formulation of the constructed mathematical model will be studied 
the distribution of stresses, strains and displacements components in biomaterial with a fractal structure. 

Consider the cross-section of a bone with such spatial dimensions 

           .15.0;001.0;0;0;0;  bayx . 

Functionality (21) takes the form: 
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The boundary conditions (25)-(27) will be written as follows: 
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Let's fix the biomaterial on the boundary       .;0;1 byayx   Then we will calculate stress 

in the sample after applying the force 2/8 mKN  to the boundary       0;0;2  yayx  in the 

direction opposite to the axis ,y  i.e.   TV 8000,0,0  FF . 

Considering that the force VF  acts in the direction opposite to the axis   conditions (30)-(31) takes 

the form: 
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       
133 Vxyreltxy DuDtRIDuD F    (32) 

       
22221 Vyreltxrelt DtRIuDtRIdiv Fu     (33) 

Let’s find an approximate solution of the minimum of full potential energy functional (28) in the 
next form: 

     

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n

i

ii yxuayxuyxu
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The 
00 ,u  must satisfy the boundary conditions (32)-(33). 

iiu ,  are linearly independent basis 

functions. We use Robotnov's fractional-exponential operators [3] to approximate the functions 
00 ,u . 

         ybayaxaaxayxu   040302010 ,  (36) 

         ybbybxabxbyx   040302010 ,  (37) 
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We formulate an optimization problem for finding unknown coefficients for the functions (36)-(37) 

that would satisfy the boundary conditions (32)-(33) in such way: 

  min,,,,,,,
00 ,

0403020104030201
jj ba

bbbbaaaaf   (39) 

 

 

   
 

  

  

  
 

  2
2,

022

0210

2

1,
0033

00

0403020104030201

2

2

,,,,,,,

V
yx

yrelt

xrelt

V
yx

xyrelt

xy

DtRI

uDtRIdiv

DuDtRI

DuD

bbbbaaaaf

F

u

F































 (40) 

and satisfy the condition 
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Robotnov's piecewise fractional-exponential functions were chosen as the basis for constructing the 

approximate solution (34)-(35). Thus, the problem is to find such coefficients 
ii ba ,  for which functions 

(34)-(35) give a minimum to the functional (28). 

5.2. Obtained Numerical Results 

The femur bone of a 40 and 80 years old person was chosen as a model for numerical experiments. 
The cross-section was considered. 

The distributions of the stresses, strains and displacements components of the described sample 

subjected to external loads are calculated. Developed software was used for this purpose. [25, 26]. 
Let's analyze the obtained values of stresses in the biomaterial which was subjected to the above-

described load. The dynamics of the stress components y  and x  depending on the spatial coordinate 

y are shown in Figure 1 and Figure 2 accordingly. We can conclude that the stresses at the boundary 

0y  with taking into account the fractal structure and without differs by less than 2% but at the 

boundary 15.0y  at the 9834.0  this value is 3.2% and at 9368.0  this value is 9.7%. This is due 

to the existing effects of spatial nonlocality and the ability of the environment to remember the stress 

state. Figure 1 shows the transverse compressive stresses due to longitudinal tension. 
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Figure 1: Distribution of stress component y  depending on space with taking into account the 

fractal structure and without 
 

 

Figure 2: Distribution of stress component x  depending on space with taking into account the fractal 

structure and without 
 

Let’s calculate stress in the sample after applying the force 2/8 mKN  to the boundary 

      0;0;2  yayx  in the direction of the axis ,y  i.e.   TV 8000,0,0  FF . The dynamics of 

the stress components depending on the spatial coordinate y are shown in Figure 3 and Figure 4.  
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Figure 3: Distribution of stress component y  depending on space with taking into account the fractal 

structure and without 
 

 

Figure 4: Distribution of stress component x  depending on space with taking into account the fractal 

structure and without 
 

Analyzing those stresses dependences we can note that at the boundary 0y  obtained y  with 

taking into account the fractal structure and without is differ less than 1% but at the boundary 15.0y  

at the 9834.0  this value is 1.7% and at 9368.0  this value is 6.9%. 
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Analyzing the graphical dependences in Figure 2 and Figure 4, we can see that the maximum by 

module values of the normal stress x  are an order of magnitude smaller than the maximum by module 

values of the normal stress y . However, analyzing the influence of the fractal structure on the obtained 

results, we see that the maximum difference between the stress component x  with taking into account 

the fractal structure and without is equal to 18.7%. 

The fractality degree parameter   was determined by approximating the experimental data on the 

creep of biomaterials using the Mittag-Leffler functions. In particular, it was determined that for the 

bones of a 40-year-old person the average 9834.0 , and for an 80-year-old - 9368.0 . 

We conclude that the compressive stresses also accumulate due to the nonlocal structure of the 

medium. 

The obtained results are also consistent with the results of other scientists conducting research in the 

direction of modeling the rheological unit of bones [27]. 

6. Conclusion 

In this paper, we solve the actuality problem of constructing mathematical models of the viscoelastic 

deformation problem for biomaterials with taking into account their fractal structure. The main relations 

of rheological behavior of biomaterials under the action of external loads are obtained, which take into 

account the available effects of memory, self-organization and deterministic chaos in the material. 

Variational formulation of the problem will make it possible to obtain a continuous approximate 

solution and avoid diskretting the area. For partial cases, obtained results showed their adequacy and 

compliance with the simulated process. The dependence of the stress-strain state components on the 

fractality parameter is analyzed. The obtained results indicate that for materials with a higher degree of 

fractality the absolute values of the stress-strain state components increase. 
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