
Towards Human-centric AutoML via Logic and
Argumentation
Joseph Giovanelli1, Giuseppe Pisano1

1
ALMA MATER STUDIORUM — Università di Bologna

Abstract
In the last decade, we have witnessed an exponential growth in both the complexity and the number of Machine Learning
(ML) techniques. As a consequence, leveraging such methods to solve real-case problems has become difficult for a Data
Scientist (DS). Automated Machine Learning (AutoML) tools were devised to alleviate that task, but easily became as complex
as the ML techniques themselves. The DS has started to rely on this kind of tools without understanding their functioning,
thus loosing the control over the process.

In this vision paper, we propose HAMLET (Human-centric AutoMl via Logic and Argumentation), a framework that
would help the DS to redeem her centrality. HAMLET is inspired to the well-known standard process model CRISP-DM.
Iteration after iteration, the knowledge is augmented by acquiring more constraints about the problem until a suitable solution
is found. HAMLET leverages Logic and Argumentation to merge both constraints and solutions in an uniformed human- and
machine-readable medium. Not only it allows an easy exploration of the new knowledge at each iteration, but it also enforces
a continuous revision via the AutoML tool and the confrontation between the DS and Domain Experts.

Keywords
AutoML, Logic, Argumentation, CRISP-DM, Data Scientist

1. Introduction
In relation to data platforms, it is well-known that Ma-
chine Learning (ML) plays a key role in the process of
data analysis. As a matter of fact, it has been pervasively
employed to cope with each and every type of real-case
problems [1, 2, 3, 4]. The Data Scientist (DS) (i.e., a spe-
cialist of data analysis) starts by collecting raw data in an
arbitrary format. Then she typically leverages a process
model that will help her to translate the knowledge about
the problem into ML constraints, and deploy the solution.
CRISP-DM [5] is the most acknowledged standard pro-
cess model and we will take it as a reference in the whole
paper. A solution consists of a ML pipeline: a series of
Data Pre-processing transformations and a ML algorithm.
The DS can instantiate both with a large set of techniques,
which have their own tunable hyper-parameters. These
choices highly affect the performance of a solution.

Automated Machine Learning (AutoML) tools have
been devised with the aim of assisting the DS during the
ML pipeline instantiation. They leverage state-of-the-art
optimisation approaches to smartly explore huge search
spaces of solutions. AutoML has been demonstrated to
provide accurate performance, even in a limited time bud-
get. During the setting up of the search space, it is highly

Published in the Workshop Proceedings of the EDBT/ICDT 2022 Joint

Conference (March 29-April 1, 2022), Edinburgh, UK

$ j.giovanelli@unibo.it (J. Giovanelli); g.pisano@unibo.it
(G. Pisano)
� 0000-0002-0990-3893 (J. Giovanelli); 0000-0003-0230-8212
(G. Pisano)

© 2022 Copyright for this paper by its authors. Use permitted under Creative
Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

important to the DS to leverage the knowledge about the
problem, considering all the ML constraints. Otherwise,
it might lead the AutoML tool to retrieve invalid solu-

tions (i.e., the result of those cannot be deemed correct).
Besides, AutoML tools became that complex to make
it difficult for the DS to understand their functioning,
hence losing the control over the process. Researchers
are aware of these problems [6]. There are some works
that have prescribed to use a human-centric framework
for AutoML [7, 8, 9], yet suggesting only design require-
ments. Alternatively, the authors in [10] have proposed
a tool that visualises the best and the worst solutions
retrieved by an AutoML tool.

We claim that the need of a human-centric framework
for AutoML is real, and it is crucial for the DS to augment

her knowledge via the retrieved solutions. At this pur-
pose we propose HAMLET (Human-centric AutoMl via
Logic and Argumentation), which leverages Logic and
Argumentation to:

• structure the ML constraints and the AutoML so-
lutions in a Logical Knowledge Base (LogicalKB);

• parse the structured LogicalKB into a human- and
machine-readable medium called Problem Graph;

• leverage the Problem Graph to set up an AutoML
search space;

• leverage the Problem Graph to allow both the DS
and an AutoML tool to revise the current knowl-
edge.

Figure 1 illustrates how CRISP-DM, AutoML, and HAM-
LET interact with each other. We remark that our frame-
work allows the DS to never loose the control over the

mailto:j.giovanelli@unibo.it
mailto:g.pisano@unibo.it
https://orcid.org/0000-0002-0990-3893
https://orcid.org/0000-0003-0230-8212
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

process, and hence her centrality. Besides, HAMLET
allows to visualise the knowledge in an human- and
machine-readable format. As advocated in [11], the DS
requires to understand the AutoML process in order to
trust the proposed solutions.

The remain of the paper is structured as follows. Sec-
tion 2 and Section 3 introduce the main notions of respec-
tively AutoML and Argumentation. Section 4 illustrates
our framework. Finally, Section 5 draws the conclusions
and potential leveraging.

2. AutoML
AutoML tools have been conceived with the aim of light-
ening the DS in the overwhelming practise of finding the
suitable solution for the case at hand. We recall that in
the context of data platforms, a solution is a ML pipeline,
defined as a series of Data Pre-processing transforma-
tions followed by a ML algorithm. In its early days, only
the instantiation of the latter – the ML algorithm – was
addressed. Auto-Weka [12] formalised the problem as
Combined Algorithm Selection and Hyper-parameter Op-
timisation (CASH). In a nutshell, in order to find the
most performing configuration, various ML algorithms
– and related hyper-parameters – have to be tested over
a dataset. Such a problem was successfully coped by
leveraging Bayesian Optimisation (BO) [13], a sequen-
tial design strategy for global optimisation. The process
involves several iterations, through which different con-
figurations are explored. As the iterations advance, an
increasingly accurate model is built on top of the previ-
ous explored configurations, with the aim of suggesting
the most promising ones. The configurations keep being
explored, and updating the model, until a budget in terms
of either iterations or time is reached.

Recently, AutoML is no longer limited to optimise
just the ML algorithm phase, but it includes Data Pre-
processing as well. Indeed, with the aid of a series of
transformations, it is possible to achieve better perfor-
mance, unattainable with the most performing ML algo-
rithm configuration [14]. In [15], the author formalised
the problem as Data Pipeline Selection and Optimisation
(DPSO). Each of the transformations can be instantiated
with different techniques, which – analogously to the ML
algorithms – have their own hyper-parameters. Auto-
sklearn [16] includes Data Pre-processing already in its
first versions. Yet, they fix the arrangement of the trans-
formations a priori, without considering that the most
performing arrangement changes according to the case
and data at hand. Considering several arrangements
translates into larger search spaces, not easy to explore.

In order to cope with ever larger research spaces, vari-
ous expedients have been employed. Meta-learning (i.e.,
learning on top of learning) has been used to warm-start

the Bayesian Optimisation (i.e., to boost the convergence
process) by suggesting promising configurations (i.e., that
worked well in previous similar real-case problems) [17].
Ensembling (i.e., construction of a high-performing so-
lution combining several low-performing solutions; e.g.,
bagging, boosting, stacking) have been leveraged to en-
able AutoML tools to retrieve a solution that combines the
best performing configurations, instead of retrieving just
the best performing one [16]. Moreover, multi-fidelity
methods (i.e., the use of several partial estimations to
boost the time-consuming evaluation process) have been
exploited to let AutoML tools explore as many configura-
tions as possible.

All in all, the improvements made over the last years
have yielded to be so substantial that AutoML is nowa-
days able to handle the entire ML pipeline instantiation.
Yet, the stacking of complex mechanisms on top of each
other unavoidably led to a less understanding of the pro-
cess by the DS. We believe that the DS has the duty to
revise and supervise the suggested solutions. Unfortu-
nately, state-of-art AutoML tools overlook her role, and
do not let that possible.

3. Logic & Argumentation
Logic can be defined as the abstract study of statements,
sentences and deductive arguments [18]. From its birth,
it has been developed and improved widely and now
includes a variety of formalisms and technologies. Be-
tween all, Argumentation has proved itself an important
tool for handling conflicting information (e.g., opinions,
empirical data). This has led to a great number of re-
searches trying to establish a computational model of
logical arguments.

In Abstract Argumentation [19], a scenario can be rep-
resented by a directed graph. Each node represents an
argument, and each edge denotes an attack by one argu-
ment to another. Each argument is regarded as atomic.
There is no internal structure to an argument. Also, there
is no specification of what is an argument or an attack.
A graph can then be analysed to determine which argu-
ments are acceptable according to some general criteria
(i.e., semantics) [20].

A way to link Abstract Argumentation and logical for-
malisms has been advanced in the field of Structured
Argumentation [21], where we assume a formal logi-
cal language for representing knowledge (i.e., a Logical
Knowledge Base), and specifying how arguments and
conflicts (i.e., attacks) can be derived from that knowl-
edge. In the structured approach, premises and claims
of the argument are made explicit, and the relationship
between them is formally defined through rules inter-
nal to the formalism. We can build the notion of attack
as a binary relation over structured arguments that de-

Figure 1: Integration of the HAMLET framework with the CRISP-DM standard process model and AutoML.

notes when one argument is in conflict with another
(e.g., contradictory claims or premises). One of the main
frameworks for Structured Argumentation is ASPIC+[22].
In this formalism arguments are built with two kinds of
inference rules: strict rules, whose premises guarantee
their conclusion, and defeasible rules, whose premises
only create a presumption in favour of their conclusion.
Then conflicts between arguments can arise from both
inconsistencies in the Logical Knowledge Base and the
defeasibility of the reasoning steps in an argument (i.e.,
a defeasible rule used in reaching a certain conclusion
from a set of premises can also be attacked).

In our view, once defined the right logical language
for encoding the DS and AutoML knowledge, a Struc-
tured Argumentation model (e.g., an ASPIC+ instance
[23]) would provide us with the formal machinery to
build an Argumentation framework upon the data, while
Abstract Argumentation would dispense the evaluation
tools.

4. Towards a human-centric
approach

Addressing ML problems encompasses the DS seeking for
a solution, considering all the constraints of the case. She
usually leverages a process model as CRISP-DM. The DS
starts by collecting raw data in an arbitrary format. Then,
in the first stage, Domain Understanding is conducted.
The DS works in a close cooperation with Domain Ex-
perts, and enlists domain-related constraints (i.e., intrinsic
of the problem). Follows Data Understanding, devoted
to data analysis, and with the aim of extracting data-

related constraints (i.e., defined by the data format). Do-

main and Data Understanding might be repeated many
times, until the DS is satisfied by the acquired knowl-
edge. Once she feels confident, she begins to investi-
gate different solutions throughout the next stages: Data
Pre-processing, Modelling, and Evaluation. Data Pre-
processing and Modelling are conducted to effectively
build the solution, while Evaluation offers a way to mea-
sure the performance of it. Finally, the process concludes
with the Deployment stage (i.e., the actual implementa-
tion of the solution).

We recall that building a solution consists of instan-
tiating a ML pipeline: a series of transformations –
defined in the Data Pre-processing stage – and a ML
algorithm—defined in the Modelling stage. Seeking the
most correct and performing solution, the DS should con-
sider the already known constraints – domain- and data-
related – and some new she discovers in the Data Pre-
processing and Modelling, respectively: transformation-

and algorithm-related constraints (i.e., due to the intrinsic
semantic of transformations and algorithms at hand).

Throughout the different stages, the DS acquires
knowledge from different points of view (i.e., domain-,
data-, transformation-, and algorithm-related). Besides,
as illustrated in Figure 1, CRISP-DM might be iterated
many times. The several iterations of the process aim
at augmenting such a knowledge about the problem. Fi-
nally, the process is ruled by interactions between the
DS and Domain Experts, discussing and arguing on both
constraints and solutions.

4.1. AutoML and CRISP-DM
As described in Section 2, AutoML helps in finding a
suitable ML pipeline instantiation (i.e., automatisation of

Data Pre-processing, Modelling, and Evaluation stages).
However, such an automatisation unavoidably leads to a
less overall understanding (i.e., the knowledge about the
problem cannot be properly augmented throughout the
process).

The definition of the search space has a huge impact
on the correctness and performance of the solutions. The
DS collects constraints to guarantee the correctness of
the solution, anticipating the effect of each of them, and
finally defining the search space.

EXAMPLE 1. Let us consider two transformations,
namely Discretisation (𝒟) and Normalisation (𝒩),
and a ML algorithm as Decision Tree (𝒟𝒯). Based on
the implementation, a possible algorithm-related con-
straint may be “require 𝒟 when applying 𝒟𝒯 ”. Ac-
cordingly, we consider a transformation-related con-
straint “no 𝒩 in pipelines with 𝒟”. This leads to
discard ML pipelines that contain 𝒟,𝒩 , and 𝒟𝒯 :

· · · → 𝒩 → · · · → 𝒟 → · · · → 𝒟𝒯
· · · → 𝒟 → · · · → 𝒩 → · · · → 𝒟𝒯

In real-case problems, consider all the possible effects
is overwhelming, and inconsistencies might occur. The
problem exacerbates when it comes to cross-cutting is-
sues, such as those related to ethical and legal fields. For
instance, topics like racism and gender equality have to
be treated separately, otherwise they could lead to so-
cial repercussions. As it is well-know, the authors of the
boston-house dataset [24] engineered a feature assum-
ing that racial self-segregation had a positive impact on
house prices. A way of addressing such an issue is to en-
code some kind of ethical constraint (e.g., dropping that
particular feature from the data). Furthermore, the ML
result is expected to be compliant to the laws of the in-
volved countries. To the best of our knowledge there is no
attempt to properly treat such ML constraints, and hence
ease the search space definition. Most of the tools are
not customisable (i.e., weak-constrained search spaces,
e.g., Auto-Weka, [12] Auto-Sklearn [16]), and others are
far too permissive (i.e., no assistance at all; e.g., Hyper-
Opt [25]). AutoML is not clear enough to provide the DS
with a feedback that would help to augment her knowl-
edge about the problem. We claim that a human-centric
framework should provide the mechanisms to: i) help
the DS to structure her knowledge about the problem
in an effective search space; ii) augment the knowledge
initially possessed by the DS with the one produced by
the AutoML optimisation process.

4.2. The role of logic
The two identified requisites share a common need: en-
coding both the DS knowledge about the problem and

the outcome of the AutoML tool in a uniform format.
As a result, it would be possible to use the DS knowl-
edge as an input for the optimisation process—search
space definition. Then, this initial knowledge can be
augmented with the possible solutions provided by an
AutoML tool. These possible solutions can be exploited
to derive new constraints (i.e., the awareness about the
problem increases). We see the augmented knowledge
as an awareness determined by an increased expertise
on the correct constraints. The finding of such correct
constraints leads to the finding of the correct solution—if
exists. In other words, at each CRISP-DM iteration, the
knowledge is encoded into the AutoML tool, which pro-
vides a feedback (i.e., augmented knowledge) in the same
format.

Logic could be the key element in defining a common
structure (i.e., a uniformed human- and machine-readable
medium) on which the knowledge of both the DS and
the AutoML tool can be combined fruitfully. In a way,
our approach follows the steps of the well known logical
based expert systems, of which it is possible to find a
great number of successful examples [26]. In literature, it
is also possible to find two well-known issues [27]: lack
of scalability and difficulties in the definition of a sound
knowledge base that encodes all the required pieces of
information. Yet, we believe they do not affect our model.
As to the former, the amount of the acquired knowledge
(i.e. the problem constraints) through CRISP-DM itera-
tions is not enough to label such a problem as a big data

problem, and hence scalability should not be an issue. As
to the latter, we believe that the analysis process would
only benefit from the clearness given by such a structured
investigation.

Logic would also provide the tools to cope with one of
the distinctive features of the knowledge we want to deal
with: the possible inconsistency. Indeed, the ML process
is the product of possible attempts, validated or refuted by
a consequent evaluation. Hence, the mechanism used to
encode the knowledge is required to manage this constant
revision process. This is the role of Argumentation—one
of the main approaches for dealing with inconsistent
knowledge and defeasible reasoning.

4.3. HAMLET
In the last paragraphs we identified two main require-

ments for a human-centric framework (i.e., structure the
DS knowledge in a well-defined AutoML search space,
and provide the solutions in accordance with the input
knowledge). We also introduced Computational Logic
– Argumentation in particular – as the main tool in our
investigation. Let us now delve into details of how these
pieces converge in our framework.

Figure 1 illustrates a scheme of HAMLET. The DS con-
ducts the stages from Domain & Data Understanding to

Listing 1: Example of a LogicalKB using a logical formalism.

t 1 := > t r a n s f o rma t i o n (d i s c r e t i s a t i o n) .
t 2 := > t r a n s f o rma t i o n (n o rma l i s a t i o n) .
a1 := > a l go r i t hm (d e c i s i o n _ t r e e) .

c1 := > manda to r y_ t r an s f o rma t i on_ f o r _a l go r i t hm ([d i s c r e t i s a t i o n] , d e c i s i o n _ t r e e) .
c2 := > i n v a l i d _ t r a n s f o rm a t i o n _ s e t ([no rma l i s a t i on , d i s c r e t i s a t i o n]) .

Figure 2: Example of a Problem Graph. Green nodes are valid
arguments, red ones are refuted.

Data Pre-processing & Modelling, and thus gathers all
the constraints that represent the knowledge discovered
so far. The Logical Knowledge Base (LogicalKB) provides
a vehicle to encode such constraints. In particular, the
DS leverages an intuitive logical language, and enlists
the constraints one-by-one. In Section 3 we introduced
the notion of Structured Argumentation as a formal tool
to convert elements from a logical language into an Ar-
gumentation graph. Implementing and exploiting such
a Structured Argumentation tool, HAMLET proceeds to
resolve conflicts in the LogicalKB: the logical-encoded
knowledge is transformed in a Problem Graph.

The benefit of the Problem Graph is two-fold. First
of all, it can be leveraged by both the DS and Domain
Experts to understand and summarise the current knowl-
edge. Second of all, thanks to its nature, it is straightfor-
ward to convert such a graph of constraints into a space
of possible solutions (i.e., exploiting Argumentation se-
mantics, it is easy to obtain all the sets of arguments –
constraints – which hold together). As a matter of fact,
this feature would relieve the DS of the burden of manu-
ally considering all the effects of the possible constraints.
It is important to notice that, although the increased de-
gree of automatisation, the Problem Graph allows the DS

and Domain Experts to correct, revise, and supervise the
process. Accordingly, possible inconsistencies – due to
diverging constraints – can be verified by the DS using
her knowledge.

Once the knowledge has been accurately revised, an
AutoML tool is leveraged to automatise the ML pipeline
instantiation. Throughout the exploration, different solu-
tions are tested, which contribute to augment the global
knowledge about the problem. Accordingly, some of the
originally encoded knowledge by the DS and Domain
Experts might be refuted or found inconsistent. HAM-
LET is designed to enable a transparent augmentation
of the knowledge in the Problem Graph according to the
newfound solutions. The updating procedure is the same
as the one employed by the DS during the constraint
encoding phase. Specifically, the AutoML solutions are
automatically transposed to our logical language in the
form of new constraints, and then added to the Logi-
calKB. Of course, a change in the LogicalKB translates
in a change in the Problem Graph, allowing the DS and
Domain Experts to visualise and argue about it. The re-
vision of the Graph is the key element in the process of
augmenting the knowledge: the DS and Domain Experts
can consult each other and discuss how the new insights
relate with their initial knowledge. Indeed, thanks to the
nature of the Problem Graph, it would be extremely easy
to identify new possible conflicts and supporting argu-
ments. Consequently, new constraints can be derived.

EXAMPLE 2. In Example 1 we introduce two possi-
ble ML constraints. We now provide their encoding in
the LogicalKB, and the resulting Problem Graph. For
the sake of clarity, we focus only on Discretisation (𝒟)
and Normalisation (𝒩) as transformations, and Deci-
sion Tree (𝒟𝒯) as the ML algorithm. Listing 1 con-
tains the LogicalKB expressed in a logic language: t1
and t2 represent 𝒟 and 𝒩 respectively, a1 represents
𝒟𝒯 . We consider the algorithms-related constraint
c1, namely “require 𝒟 when applying 𝒟𝒯 ”, and the
trnasformation-related constraint c2, that is “no 𝒩 in
pipelines with 𝒟”. This LogicalKB is used to gener-
ate the Problem Graph shown in Figure 2, nodes rep-
resent arguments and edges represent attacks among
them. There are five possible ML pipelines: 𝒟𝒯 (p1),
𝒟 → 𝒟𝒯 (p2), 𝒩 → 𝒟𝒯 (p3), 𝒟 → 𝒩 → 𝒟𝒯

(p4), 𝒩 → 𝒟 → 𝒟𝒯 (p5). With no constraints,
we cannot discard any ML pipeline (i.e., there are no
incompatibilities between the arguments). By intro-
ducing c1, attacks against p1 and p3 are generated
(both pipelines contain 𝒟𝒯 but not 𝒟). By introduc-
ing c2, attacks against p4 and p5 are generated (both
pipelines contain 𝒟 and 𝒩). We can leverage a stan-
dard argumentation semantics (e.g., Dung’s grounded
semantics [19]) to evaluate the graph. In our case, all
the arguments with no attacks are admissible. Among
them, we retrieve the ones representing pipelines. p2
is the only valid pipeline, and it will be used to gener-
ate the AutoML search space.

Example 2 illustrates how HAMLET leverages Logic
and Argumentation to handle the DS knowledge. The
proposed logic formalism allows to easily encode the dif-
ferent ML constraints into a LogicalKB. We highlight that
the Problem Graph generation is handled by an argumen-
tation engine, which is available in the Supplementary
Material 1. The use of the Problem Graph allows to prune
the considered ML pipeline for the AutoML search space.
AutoML could update the Problem Graph by extracting
constraints from the performed exploration, and trans-
posing them into the LogicalKB. For instance, the DS may
not have considered that data at hand contain missing
values. AutoML could help in identifying transformation-
related constraints such as: “require Imputation (ℐ) in
all the pipelines”. The resulting constraints might be in
conflict with the previous knowledge. In our vision, the
DS is able to visualise such inconsistencies through the
Problem Graph, and resolve them.

We remark how our framework is compliant with the
iterative nature of the CRISP-DM standard process model.
This aspect is crucial when trying to solve real-case prob-
lems through the use of modern data platforms. Indeed,
not only the different CRISP-DM stages can be executed
several times, but the whole process can be iterated, bring-
ing new information about the problem. We claim that
our framework support and ease the adoption of the de-
scribed resolution process model, by providing a tool that
is both human- and machine-readable. The knowledge
can be automatically handled throughout iterations, sup-
porting the DS in the whole analysis, in a continuous
revision of the problem constraints. At each iteration, a
portion of the knowledge is known and other is discov-
ered. Its integration into a unified augmented knowledge
graph allows to: i) derive new constraints from the dis-
covered knowledge, ii) jgcseamlessly visualise possible
inconsistencies and conflicts. This naturally leads to a
new iteration based on the new augmented knowledge.
Besides, the entire process might be boosted with the aid
of an external knowledge. In our vision, the DS commu-
nity could create a shared LogicalKB derived from the

1https://queueinc.github.io/HAMLET-DATAPLAT2022/

available literature and similar real-case problems.

5. Conclusions and potential
leveraging

The increasing complexity in the state-of-the-art AutoML
tools has led the DS to lose the control over the resolution
process. We believe that human awareness about all the
constraints and possible solutions of a ML problem is a
fundamental aspect to consider, and consequently should
play a key role in the design of next-generation data
platforms. Accordingly, in this vision paper we present
HAMLET, a human-centric AutoML framework based on
Logic and Structured Argumentation. Logic is exploited
to give a structure to the knowledge that the DS has to
consider while deploying a solution. The advantage of
such a choice is twofold. First of all, the logical encoding
of the knowledge allows an easy exploration and verifi-
cation of all the constraints that may apply to the case at
hand—it is overwhelming for the DS to correctly handle
the vast amount of them. Second of all, it provides a
medium that is both human- and machine- readable. The
DS and Domain experts can revise the knowledge, as well
as the AutoML tool, thus creating a constant feedback cy-
cle. We further remark that our framework could be able
to address a wide range of AutoML-related challenges.
We already highlighted a few of them: the embodiment
of both ethical and legal constraints, and the construction
of a shared knowledge among the DS community.

The road for future expansions is straightforward: we
plan to extend this work providing a sound formalisation
of HAMLET, and then a working implementation. It will
be then possible to effectively quantify the benefits of our
framework and test its efficacy on real-case problems.

References
[1] L. Zhou, S. Pan, J. Wang, A. V. Vasilakos, Ma-

chine learning on big data: Opportunities and
challenges, Neurocomputing 237 (2017) 350–361.
doi:10.1016/j.neucom.2017.01.026.

[2] P. Agrawal, R. Arya, A. Bindal, S. Bhatia, A. Gagneja,
J. Godlewski, Y. Low, T. Muss, M. M. Paliwal, S. Ra-
man, V. Shah, B. Shen, L. Sugden, K. Zhao, M.-C.
Wu, Data platform for machine learning, in: Pro-
ceedings of the 2019 International Conference on
Management of Data, SIGMOD ’19, Association for
Computing Machinery, New York, NY, USA, 2019,
p. 1803–1816. URL: https://doi.org/10.1145/3299869.
3314050. doi:10.1145/3299869.3314050.

[3] M. Francia, E. Gallinucci, M. Golfarelli, A. G. Leoni,
S. Rizzi, N. Santolini, Making data platforms
smarter with MOSES, Future Gener. Comput.

https://queueinc.github.io/HAMLET-DATAPLAT2022/
http://dx.doi.org/10.1016/j.neucom.2017.01.026
https://doi.org/10.1145/3299869.3314050
https://doi.org/10.1145/3299869.3314050
http://dx.doi.org/10.1145/3299869.3314050

Syst. 125 (2021) 299–313. doi:10.1016/j.future.
2021.06.031.

[4] C. Forresi, M. Francia, E. Gallinucci, M. Golfarelli,
Optimizing execution plans in a multistore, in:
L. Bellatreche, M. Dumas, P. Karras, R. Matule-
vičius (Eds.), Advances in Databases and Informa-
tion Systems, Springer International Publishing,
Cham, 2021, pp. 136–151.

[5] R. Wirth, J. Hipp, Crisp-dm: Towards a standard
process model for data mining, in: Proceedings of
the 4th international conference on the practical ap-
plications of knowledge discovery and data mining,
volume 1, Springer-Verlag London, UK, 2000.

[6] D. Xin, E. Y. Wu, D. J. L. Lee, N. Salehi, A. G.
Parameswaran, Whither automl? understanding
the role of automation in machine learning work-
flows, in: CHI ’21: CHI Conference on Human
Factors in Computing Systems, ACM, 2021, pp. 83:1–
83:16. doi:10.1145/3411764.3445306.

[7] Y. Gil, J. Honaker, S. Gupta, Y. Ma, V. D’Orazio,
D. Garijo, S. Gadewar, Q. Yang, N. Jahanshad, To-
wards human-guided machine learning, in: Pro-
ceedings of the 24th International Conference on
Intelligent User Interfaces, 2019, pp. 614–624.

[8] D. J.-L. Lee, S. Macke, A human-in-the-loop per-
spective on automl: Milestones and the road ahead,
IEEE Data Engineering Bulletin (2020).

[9] D. Wang, J. D. Weisz, M. Muller, P. Ram, W. Geyer,
C. Dugan, Y. Tausczik, H. Samulowitz, A. Gray,
Human-ai collaboration in data science: Exploring
data scientists’ perceptions of automated ai, Pro-
ceedings of the ACM on Human-Computer Interac-
tion 3 (2019) 1–24.

[10] J. P. Ono, S. Castelo, R. Lopez, E. Bertini, J. Freire,
C. T. Silva, Pipelineprofiler: A visual analytics tool
for the exploration of automl pipelines, IEEE Trans-
actions on Visualization and Computer Graphics
27 (2021) 390–400.

[11] J. Drozdal, J. Weisz, D. Wang, G. Dass, B. Yao,
C. Zhao, M. Muller, L. Ju, H. Su, Trust in automl:
exploring information needs for establishing trust
in automated machine learning systems, in: Pro-
ceedings of the 25th International Conference on
Intelligent User Interfaces, 2020, pp. 297–307.

[12] L. Kotthoff, C. Thornton, H. H. Hoos, F. Hutter,
K. Leyton-Brown, Auto-weka: Automatic model
selection and hyperparameter optimization in weka,
in: Automated Machine Learning, Springer, Cham,
2019, pp. 81–95.

[13] P. I. Frazier, A tutorial on bayesian optimization,
CoRR abs/1807.02811 (2018). URL: http://arxiv.org/
abs/1807.02811. arXiv:1807.02811.

[14] J. Giovanelli, B. Bilalli, A. Abelló, Effective data
pre-processing for automl, in: K. Stefanidis, P. Mar-
cel (Eds.), Proceedings of the 23rd International

Workshop on Design, Optimization, Languages and
Analytical Processing of Big Data (DOLAP), volume
2840 of CEUR Workshop Proceedings, CEUR-WS.org,
2021, pp. 1–10.

[15] A. Quemy, Data pipeline selection and optimiza-
tion., in: DOLAP, 2019.

[16] M. Feurer, A. Klein, K. Eggensperger, J. T. Springen-
berg, M. Blum, F. Hutter, Auto-sklearn: efficient
and robust automated machine learning, in: Auto-
mated Machine Learning, Springer, Cham, 2019, pp.
113–134.

[17] J. Giovanelli, B. Bilalli, A. Abelló, Data pre-
processing pipeline generation for autoetl, Infor-
mation Systems (2021) 101957.

[18] L. C. Paulson, Computational logic: its origins and
applications, Proceedings of the Royal Society A:
Mathematical, Physical and Engineering Sciences
474 (2018). doi:10.1098/rspa.2017.0872.

[19] P. M. Dung, On the acceptability of arguments and
its fundamental role in nonmonotonic reasoning,
logic programming and n-person games, Artifi-
cial Intelligence 77 (1995) 321–358. doi:10.1016/
0004-3702(94)00041-X.

[20] P. Baroni, M. Caminada, M. Giacomin, An introduc-
tion to argumentation semantics, Knowledge Engi-
neering Review 26 (2011) 365–410. doi:10.1017/
S0269888911000166.

[21] P. Besnard, A. J. García, A. Hunter, S. Modgil,
H. Prakken, G. R. Simari, F. Toni, Introduction to
structured argumentation, Argument & Computa-
tion 5 (2014) 1–4. doi:10.1080/19462166.2013.
869764.

[22] S. Modgil, H. Prakken, The ASPIC
+ framework

for structured argumentation: a tutorial, Argu-
ment & Computation 5 (2014) 31–62. doi:10.1080/
19462166.2013.869766.

[23] R. Calegari, G. Pisano, A. Omicini, G. Sartor, Arg2P:
An argumentation framework for explainable intel-
ligent systems, Journal of Logic and Computation
(2021). doi:10.1093/logcom/exab089.

[24] D. Harrison, D. Rubinfeld, Hedonic housing prices
and the demand for clean air, Journal of Environ-
mental Economics and Management 5 (1978) 81–
102. doi:10.1016/0095-0696(78)90006-2.

[25] J. Bergstra, B. Komer, C. Eliasmith, D. Yamins, D. D.
Cox, Hyperopt: a python library for model selection
and hyperparameter optimization, Computational
Science & Discovery 8 (2015) 014008.

[26] H. Tan, A brief history and technical review of
the expert system research, IOP Conference Se-
ries: Materials Science and Engineering 242 (2017).
doi:10.1088/1757-899X/242/1/012111.

[27] P. K. Coats, Why expert systems fail, Financial
Management 17 (1988) 77–86. URL: http://www.
jstor.org/stable/3666074.

http://dx.doi.org/10.1016/j.future.2021.06.031
http://dx.doi.org/10.1016/j.future.2021.06.031
http://dx.doi.org/10.1145/3411764.3445306
http://arxiv.org/abs/1807.02811
http://arxiv.org/abs/1807.02811
http://arxiv.org/abs/1807.02811
http://dx.doi.org/10.1098/rspa.2017.0872
http://dx.doi.org/10.1016/0004-3702(94)00041-X
http://dx.doi.org/10.1016/0004-3702(94)00041-X
http://dx.doi.org/10.1017/S0269888911000166
http://dx.doi.org/10.1017/S0269888911000166
http://dx.doi.org/10.1080/19462166.2013.869764
http://dx.doi.org/10.1080/19462166.2013.869764
http://dx.doi.org/10.1080/19462166.2013.869766
http://dx.doi.org/10.1080/19462166.2013.869766
http://dx.doi.org/10.1093/logcom/exab089
http://dx.doi.org/10.1016/0095-0696(78)90006-2
http://dx.doi.org/10.1088/1757-899X/242/1/012111
http://www.jstor.org/stable/3666074
http://www.jstor.org/stable/3666074

	1 Introduction
	2 AutoML
	3 Logic & Argumentation
	4 Towards a human-centric approach
	4.1 AutoML and CRISP-DM
	4.2 The role of logic
	4.3 HAMLET

	5 Conclusions and potential leveraging

